1
|
Li J, Fang J, Jiang X, Zhang Y, Vidal-Puig A, Zhang CY. RNAkines are secreted messengers shaping health and disease. Trends Endocrinol Metab 2024; 35:201-218. [PMID: 38160178 DOI: 10.1016/j.tem.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Extracellular noncoding RNAs (ncRNAs) have crucial roles in intercellular communications. The process of ncRNA secretion is highly regulated, with specific ncRNA profiles produced under different physiological and pathological circumstances. These ncRNAs are transported primarily via extracellular vesicles (EVs) from their origin cells to target cells, utilising both endocrine and paracrine pathways. The intercellular impacts of extracellular ncRNAs are essential for maintaining homeostasis and the pathogenesis of various diseases. Given the unique aspects of extracellular ncRNAs, here we propose the term 'RNAkine' to describe these recently identified secreted factors. We explore their roles as intercellular modulators, particularly in their ability to regulate metabolism and influence tumorigenesis, highlighting their definition and importance as a distinct class of secreted factors.
Collapse
Affiliation(s)
- Jing Li
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Jingwen Fang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yujing Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China; Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, PR China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China.
| |
Collapse
|
2
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
3
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
4
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
5
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Yan YX, Dong J, Li YL, Lu YK, Yang K, Wang T, Zhang X, Xiao HB. CircRNA hsa_circ_0071336 is associated with type 2 diabetes through targeting the miR-93-5p/GLUT4 axis. FASEB J 2022; 36:e22324. [PMID: 35439323 DOI: 10.1096/fj.202200149rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Glucose transporter 4 (GLUT4) is a dominant regulator of whole-body glucose homeostasis. Accumulating evidence has shown that circular RNAs (circRNAs) play significant roles in the pathogenesis of disease. The aim of the present study was to identify the circRNA that can be used as a novel biomarker for type 2 diabetes (T2D) through regulating GLUT4. Based on previous microarray analysis comparing T2D cases and healthy controls, hsa_circ_0071336, which was predicted to be a regulator of GLUT4 by acting as a competitive endogenous RNAs (ceRNA) to sponge miR-93-5p, was selected for further validation. The clinical significance of circulating hsa_circ_0071336 was investigated in a large independent cohort. The results showed that circulating hsa_circ_0071336 was significantly downregulated in blood in T2D and had a high diagnostic accuracy for discriminating T2D and impaired fasting glucose (IFG) from healthy controls. Low expression of circ_0071336 was an independent predictor of T2D, IFG and insulin resistance. A luciferase reporter assay and western-blot analysis indicated that miR-93-5p was a direct target of hsa_circ_0071336, and miR-93-5p may negatively regulate the expression of GLUT4. The expression levels of hsa_circ_007136 were negatively related to miR-93-5p expression and positively correlated with the mRNA expression of GLUT4 in adipose tissues. In conclusion, hsa_circRNA_0071336 can be considered as a potential novel and stable biomarker for T2D and its early detection. hsa_circ_0071336 regulates the GLUT4 expression by sponging miR-93-5p and maybe involved in the pathogenesis of T2D. These findings may unveil new targets for the prevention, diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan-Ling Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ya-Ke Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Huan-Bo Xiao
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Kraczkowska W, Stachowiak L, Pławski A, Jagodziński PP. Circulating miRNA as potential biomarkers for diabetes mellitus type 2: should we focus on searching for sex differences? J Appl Genet 2022; 63:293-303. [PMID: 34984663 PMCID: PMC8979931 DOI: 10.1007/s13353-021-00678-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
microRNAs are non-coding molecules, approximately 22 nucleotides in length, that regulate various cellular processes. A growing body of evidence has suggested that their dysregulated expression is involved in the pathogenesis of diverse diseases, including diabetes mellitus type 2 (DM2). Early onset of this chronic and complex metabolic disorder is frequently undiagnosed, leading to the development of severe diabetic complications. Notably, DM2 prevalence is rising globally and an increasing number of articles demonstrate that DM2 susceptibility, development, and progression differ between males and females. Therefore, this paper discusses the role of microRNAs as a source of novel diagnostic biomarkers for DM2 and aims to underline the importance of sex disparity in biomarkers research. Taking into account an urgent need for the development of sex-specific diagnostic strategies in DM2, recent results have shown that circulating miRNAs are promising candidates for sex-biased biomarkers.
Collapse
Affiliation(s)
- Weronika Kraczkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Lucyna Stachowiak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
8
|
Fluitt MB, Mohit N, Gambhir KK, Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:5126968. [PMID: 35237694 PMCID: PMC8885279 DOI: 10.1155/2022/5126968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing at a staggering rate around the world. In the United States, more than 30.3 million Americans have DM. Type 2 diabetes mellitus (T2DM) accounts for 91.2% of diabetic cases and disproportionately affects African Americans and Hispanics. T2DM is a major risk factor for cardiovascular disease (CVD) and is the leading cause of morbidity and mortality among diabetic patients. While significant advances in T2DM treatment have been made, intensive glucose control has failed to reduce the development of macro and microvascular related deaths in this group. This highlights the need to further elucidate the underlying molecular mechanisms contributing to CVD in the setting of T2DM. Endothelial dysfunction (ED) plays an important role in the development of diabetes-induced vascular complications, including CVD and diabetic nephropathy (DN). Thus, the endothelium provides a lucrative means to investigate the molecular events involved in the development of vascular complications associated with T2DM. microRNAs (miRNA) participate in numerous cellular responses, including mediating messages in vascular homeostasis. Exosomes are small extracellular vesicles (40-160 nanometers) that are abundant in circulation and can deliver various molecules, including miRNAs, from donor to recipient cells to facilitate cell-to-cell communication. Endothelial cells are in constant contact with exosomes (and exosomal content) that can induce a functional response. This review discusses the modulatory role of exosomal miRNAs and proteins in diabetes-induced endothelial dysfunction, highlighting the significance of miRNAs as markers, mediators, and potential therapeutic interventions to ameliorate ED in this patient group.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Neal Mohit
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Diabetes Treatment Center, Howard University Hospital, 2041 Georgia Ave, NW, Washington, DC 20060, USA
| |
Collapse
|
9
|
Lu YK, Chu X, Wang S, Sun Y, Zhang J, Dong J, Yan YX. Identification of Circulating hsa_circ_0063425 and hsa_circ_0056891 as Novel Biomarkers for Detection of Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e2688-e2699. [PMID: 33608702 DOI: 10.1210/clinem/dgab101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Circular RNAs (circRNAs), which are involved in the development of diseases by regulating gene expression, have become promising novel biomarkers for diseases. OBJECTIVE The aim of the present study was to identify the circulating circRNA biomarkers for early detection of type 2 diabetes (T2D). METHODS The circRNA expression profiles were screened by microarray and compared between 5 new T2D cases and 5 healthy controls. The expression of candidate circRNAs that may be involved in the insulin phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway were validated by RT-qPCR in a second sample with 30 T2D cases and 30 controls. The association between circRNAs and T2D and their clinical significances were further assessed by logistic regression model, correlation analysis, and ROC curve in a large cohort comprising 313 subjects. The microRNA (miRNA) targets of circRNAs were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG), and insulin resistance. The 2-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls, especially when body mass index was integrated. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significant positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. CONCLUSION Downregulated hsa_circ_0063425 and hsa_circ_0056891 might contribute to the pathogenesis of T2D. They are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ya-Ke Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xi Chu
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yue Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| |
Collapse
|
10
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
11
|
Yan YX, Xiao HB, Lu YK, Sun Y, Wang S, Dong J, Wu LJ. hsa_circ_0111707 Is Associated With Risk of Stress-Related Type 2 Diabetes via Sponging miR-144-3p. Front Endocrinol (Lausanne) 2021; 12:790591. [PMID: 35116004 PMCID: PMC8803902 DOI: 10.3389/fendo.2021.790591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Chronic stress plays an important role in the development of type 2 diabetes (T2D). Circular RNAs (circRNAs) play significant roles in regulating the pathogenesis of diseases by regulating gene expression. The aim of the present study was to identify the association between hsa_circ_0111707 and stress-related T2D. METHODS The present study was performed based on a three-part design. The association between hsa_circ_0111707 in peripheral blood mononuclear cells (PBMCs) and T2D and stress-related variables were assessed in a cross-sectional study. The causal relationship of hsa_circ_0111707 on T2D was further investigated in a nested case-control study. miR-144-3p as the miRNA target of hsa_circ_0111707 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS The relative expression of hsa_circ_0111707 was significantly lower in the T2D and impaired fasting glucose (IFG) cases in comparison with controls. The hsa_circ_0111707 expression was significantly negatively correlated with miR-144-3p expression and plasma cortisol concentration and positively correlated with NR3C1 expression. In addition, hsa_circ_0111707 expression was negatively correlated with scores of "demands at work" and "insecurity at work" of Copenhagen Psychosocial Questionnaire (COPSOQ). Decreased hsa_circ_0111707 expression was associated with increased risk of T2D development. Functional analysis demonstrated that hsa_circ_0111707 functions as a sponge for miR-144-3p. CONCLUSION hsa_circ_0111707 is associated with risk of T2D development via sponging miR-144-3p. hsa_circ_0111707 in PBMCs can be considered a potential biomarker of stress-related T2D.
Collapse
Affiliation(s)
- Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- *Correspondence: Yu-Xiang Yan, ; Li-Juan Wu,
| | - Huan-Bo Xiao
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Ya-Ke Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yue Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Juan Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- *Correspondence: Yu-Xiang Yan, ; Li-Juan Wu,
| |
Collapse
|
12
|
Song G, Li L, Yang Y. MicroRNA-329-3p alleviates high glucose-induced endothelial cell injury via inhibition of the TLR4/TRAF6/NF-κB signaling pathway. Exp Ther Med 2020; 21:29. [PMID: 33262815 PMCID: PMC7690244 DOI: 10.3892/etm.2020.9461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the current study was to determine the expression of microRNA (miRNA/miR)-329-3p in patients with type 2 diabetes mellitus (T2DM) and to investigate the effect of miR-329-3p on vascular endothelial cell function under high-glucose conditions. A total of 33 healthy individuals and 31 patients with T2DM were enrolled in the present study. Peripheral blood was collected from all participants. Human umbilical vein endothelial cells (HUVECs) were transfected with a miR-329-3p mimic or miR-329-3p inhibitor. Following treatment with 25 mmol/l glucose, a Cell Counting Kit-8 assay and flow cytometry analysis were used to assess cell viability and apoptosis levels, respectively. A dual luciferase reporter assay, western blot analysis and reverse transcription-quantitative PCR were used to assess molecular mechanism of miR-329-3p in HUVECs. The results revealed that plasma miR-329-3p expression was decreased patients with T2DM compared with healthy controls, and in HUVECs treated with high glucose concentrations. In addition, miR-329-3p reduced high glucose-induced damage to HUVEC cells. miR-329-3p directly bound to toll like receptor (TLR)-4 and regulated its expression at the transcriptional and post-transcriptional levels. miR-329-3p was also demonstrated to be involved in the regulation of the TLR4/tumor necrosis factor receptor associated factor 6 (TRAF6)/nuclear factor (NF)-κB signaling pathway and the nuclear translocation of NF-κB under a high glucose environment. In conclusion, the results indicated that miR-329-3p may protect endothelial cells from high glucose-induced apoptosis via inhibition of the TLR4/TRAF6/NF-κB signaling pathway. The present study also demonstrated that miR-329-3p expression in the plasma of patients with T2DM was reduced, suggesting that upregulation of miR-329-3p may alleviate high glucose-induced endothelial cell injury via inhibition of the TLR4/TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Guangzhao Song
- Department of Endocrinology, The First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Liyan Li
- Department of Endocrinology, The First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Ying Yang
- Department of Medicine, Licheng District Maternal and Child Healthcare and Family Planning Service Center, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
13
|
Nie H, Zhang K, Xu J, Liao K, Zhou W, Fu Z. Combining Bioinformatics Techniques to Study Diabetes Biomarkers and Related Molecular Mechanisms. Front Genet 2020; 11:367. [PMID: 32425976 PMCID: PMC7204005 DOI: 10.3389/fgene.2020.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
Objective To explore the mechanism of plasma circulating miRNA-126 and miRNA-28-3p in diabetes mellitus (DM) patients, and to identify the related bioinformatics analysis. Methods Randomly selected 120 DM patients as the observation group and 120 non- DM patients as the control group. The plasma circulating miRNA-126 and miRNA-28-3p were analyzed by qRT-PCR, and their target genes, biological information, related lncRNA and circRNA were predicted. Results The circulating miRNA-126 (0.1162 ± 0.0236 vs. 0.0018 ± 0.0862) and miRNA-28-3p (0.1378 ± 0.0268 vs. 0.0006 ± 0.0167) levels in the observation group were significantly higher than those in the control group, and differences were statistically significant (P < 0.01). The Pearson correlation coefficient of miRNA-126 and miRNA- 28-3p was 0.4337 (P < 0.01). ROC curve analysis of miRNA-126 and miRNA-28-3p showed that the differences of the area under curve were statistically significant between the two groups (P < 0.01). Bioinformatics prediction showed that miRNA-126 and miRNA-28-3p may be involved in regulation of the insulin signaling pathway, insulin receptor signaling pathway, insulin/insulin growth factor signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway and angiogenesis. Moreover, it may be associated with a variety of lncRNA and cir-cRNA. Conclusion Circulating miRNA-126 and miRNA-28-3p can be a potential biomarker of DM and it may play an important role in the DM by regulating insulin or insulin growth factor related signaling pathways.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaihua Zhang
- Department of General Surgery, Jiujiang Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jiasheng Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaili Liao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhonghua Fu
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Gurwitz D. Genomics and the future of psychopharmacology: MicroRNAs offer novel therapeutics
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636487 PMCID: PMC6787538 DOI: 10.31887/dcns.2019.21.2/dgurwitz] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs functioning as regulators of the
transcription of protein-coding genes in eukaryotes. During the last two decades,
studies on miRNAs indicate that they have potential as diagnostic and prognostic
biomarkers for a wide range of cancers. Research interest in miRNAs has moved to
embrace further medical disciplines, including neuropsychiatric disorders, comparing
miRNA expression and mRNA targets between patient and control blood samples and
postmortem brain tissues, as well as in animal models of neuropsychiatric disorders.
This manuscript reviews recent findings on miRNAs implicated in the pathology of mood
disorders, schizophrenia, and autism, as well as their diagnostic potential, and
their potential as tentative targets for future therapeutics. The plausible
contribution of X chromosome miRNAs to the larger prevalence of major depression
among women is also evaluated.
Collapse
Affiliation(s)
- David Gurwitz
- Author affiliations: Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. Address for correspondence: David Gurwitz, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978 Israel.
| |
Collapse
|
15
|
Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients 2019; 11:nu11030644. [PMID: 30884834 PMCID: PMC6471792 DOI: 10.3390/nu11030644] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. There are insufficient scientific data that support the safety of consuming NNS. However, recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM). This sequence of events may result in changes in the gut microbiota composition through microRNA (miRNA)-mediated changes. The mechanism(s) by which miRNAs alter gene expression of different bacterial species provides a link between the consumption of NNS and the development of metabolic changes. Another potential mechanism that connects NNS to metabolic changes is the molecular crosstalk between the insulin receptor (IR) and G protein-coupled receptors (GPCRs). Here, we aim to highlight the role of NNS in obesity and discuss IR-GPCR crosstalk and miRNA-mediated changes, in the manipulation of the gut microbiota composition and T2DM pathogenesis.
Collapse
|
16
|
Xihua L, Shengjie T, Weiwei G, Matro E, Tingting T, Lin L, Fang W, Jiaqiang Z, Fenping Z, Hong L. Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl Res 2019; 205:33-43. [PMID: 30392876 DOI: 10.1016/j.trsl.2018.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is characterized by a cluster of metabolic disorders including obesity, dyslipidemia, hyperglycemia, and hypertension. Here, we report that 27 microRNAs were found to be expressed differently in serum and urine samples of MetS patients compared to control subjects on microarray analysis. Further qualitative real time- polymerase chain reaction analyses confirmed that circulating levels of miR-143-3p were significantly elevated in MetS patients compared with controls, both in serum and urine samples. After accounting for confounding factors, high levels of miR-143-3p remained an independent risk factor for insulin resistance. Inhibition of miR-143-3p expression in mice protected against development of obesity-associated insulin resistance. Furthermore, we demonstrated that insulin-like growth factor 2 receptor (IGF2R) was among the target genes of miR-143-3p by searching 3 widely used bioinformatics databases and preliminary validation. Our experiments suggest that knockdown of circulating miR-143-3p may protect against insulin resistance in the setting of MetS via targeting of IGF2R and activation of the insulin signaling pathway. Our results characterize the miR-143-3p-IGF2R pathway as a potential target for the treatment of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Lin Xihua
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, the Affliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Tang Shengjie
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gui Weiwei
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Matro
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Tingting
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Lin
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wu Fang
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Jiaqiang
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Fenping
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Hong
- Department of Endocrinology, the Affliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
18
|
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234:42-50. [DOI: 10.1002/jcp.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Mafi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | | | - Moein Mobini
- Kinesiology Department University of Calgary Calgary Alberta Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
19
|
Gomes A, da Silva IV, Rodrigues CMP, Castro RE, Soveral G. The Emerging Role of microRNAs in Aquaporin Regulation. Front Chem 2018; 6:238. [PMID: 29977890 PMCID: PMC6021494 DOI: 10.3389/fchem.2018.00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Aquaporins (AQPs) are membrane channels widely distributed in human tissues. AQPs are essential for water and energy homeostasis being involved in a broad range of pathophysiological processes such as edema, brain injury, glaucoma, nephrogenic diabetes insipidus, salivary and lacrimal gland dysfunction, cancer, obesity and related metabolic complications. Compelling evidence indicates that AQPs are targets for therapeutic intervention with potential broad application. Nevertheless, efficient AQP modulators have been difficult to find due to either lack of selectivity and stability, or associated toxicity that hamper in vivo studies. MicroRNAs (miRNAs) are naturally occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. Recent identification of miRNAs as endogenous modulators of AQP expression provides an alternative approach to target these proteins and opens new perspectives for therapeutic applications. This mini-review compiles the current knowledge of miRNA interaction with AQPs highlighting miRNA potential for regulation of AQP-based disorders.
Collapse
Affiliation(s)
- André Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
21
|
Xie B, Liu Z, Jiang L, Liu W, Song M, Zhang Q, Zhang R, Cui D, Wang X, Xu S. Increased Serum miR-206 Level Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer's Disease: A 5-Year Follow-up Study. J Alzheimers Dis 2018; 55:509-520. [PMID: 27662297 DOI: 10.3233/jad-160468] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence suggests that individuals with amnestic mild cognitive impairment (aMCI) tend to progress to probable Alzheimer's disease (AD) with aging. This study was performed to examine whether circulating miRNAs could be potential predictors for the progression of aMCI to AD. A total of 458 patients with aMCI were included in this study, and the clinical data were collected at two time points: the baseline and the follow-up assessment. These aMCI patients were classified into two groups after 5 years: aMCI-stable group (n = 330) and AD-conversion group (n = 128). The expression of miR-206 and miR-132 and the levels of BDNF and SIRT1 in serum were detected using a quantitative real-time RT-PCR (qPCR) and the ELISA method, respectively. Kaplan-Meier method (Log-rank test) was used for univariate survival analysis. Cox proportional hazard model was used to estimate the prognostic value of miRNAs in conversion from aMCI to AD. At the baseline, serum levels of miR-206 in aMCI-AD group were significantly elevated compared to aMCI-aMCI group and the same trend was found at 5-year follow-up time point as well. There were no significant differences in serum levels of miR-132 between the conversion and non-conversion group at both time points. Kaplan-Meier analysis showed significant correlation between AD conversion and higher serum levels of miR-206 for aMCI patients (HR = 3.60, 95% CI: 2.51- 5.36, p < 0.001). Multivariate Cox regression analysis revealed that serum miR-206 and its target BDNF were significant independent predictors for AD conversion (HR = 4.22, p < 0.001). These results suggested that increased serum miR-206 level might be a potential predictor of conversion from aMCI to AD.
Collapse
Affiliation(s)
- Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Mei Song
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Mental Health, Hebei Medical University, Shijiazhuang, P.R. China
| | - Qingfu Zhang
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Burn Engineering Center of Hebei Province, Shijiazhuang, P.R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Xueyi Wang
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Mental Health, Hebei Medical University, Shijiazhuang, P.R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
22
|
miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal. Int J Mol Sci 2018; 19:ijms19020522. [PMID: 29425121 PMCID: PMC5855744 DOI: 10.3390/ijms19020522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Evidence has been provided linking microRNAs (miRNAs) and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO) accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.
Collapse
|
23
|
Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, Beguinot F, Miele C. The Destiny of Glucose from a MicroRNA Perspective. Front Endocrinol (Lausanne) 2018; 9:46. [PMID: 29535681 PMCID: PMC5834423 DOI: 10.3389/fendo.2018.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.
Collapse
Affiliation(s)
- Paola Mirra
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Cecilia Nigro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Immacolata Prevenzano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessia Leone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gregory Alexander Raciti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudia Miele,
| |
Collapse
|
24
|
Serum miRNAs miR-23a, 206, and 499 as Potential Biomarkers for Skeletal Muscle Atrophy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8361237. [PMID: 29214178 PMCID: PMC5682897 DOI: 10.1155/2017/8361237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
Muscle biopsy has long been expected to be replaced by noninvasive biomarkers with diagnostic value and prognostic applications for muscle atrophy. Growing evidence suggests that circulating microRNAs (miRNAs) could act as biomarkers for numerous pathophysiological statuses. In the present study, our results showed that the serum levels of six muscle-specific miRNAs (miR-1/23a/133/206/208b/499) were all elevated in unloading induced mice. The medium levels of these six muscle-specific miRNAs were all elevated in starvation induced atrophic C2C12 myotubes. Moreover, the serum levels of miR-23a/206/499 were induced in participants after 45 days of head-down bed rest (HDBR). The levels of miR-23a/206/499 were positively correlated with the ratio of soleus volume loss in HDBR participants, indicating that they might represent the process of muscle loss. In conclusion, our results demonstrated that circulating miRNAs could serve as useful biochemical and molecular indicators for muscle atrophy diagnosis and disease progression.
Collapse
|
25
|
Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta 2017; 487:363-368. [PMID: 29045858 DOI: 10.1016/j.cca.2017.10.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) and characterized by covalently closed loop without 5' and 3' end. Recently, the diagnostic value of circRNAs has received more and more attention. However, the in-depth study about circRNAs diagnosis in breast cancer is still rarely reported. In present study, we try to investigate the circRNAs expression profiles in breast cancer peripheral blood and discover valuable diagnostic biomarkers. METHODS The expression profiles of circRNAs in plasma specimens were screened from five breast cancer and paired healthy volunteer s. The expression levels of selected candidate circRNAs were detected by RT-PCR. The diagnostic value was performed using receiver operating characteristic (ROC) curve. RESULTS CircRNAs microarray assay showed that 41 circRNAs were aberrantly expressed with 2 fold change, including 19 up-regulated and 22 down-regulated circRNAs. Among these circRNAs, 3 candidate circRNAs were validated to be significantly dysregulated using RT-PCR, including hsa_circ_0001785, hsa_circ_0108942 and hsa_circ_0068033. In lager study cohort (n=20), ROC curve showed that hsa_circ_0001785 had better diagnostic value (AUC=0.771) than others. Moreover, in further extensive study cohort (n=57), we found that hsa_circ_0001785 plasma had better diagnostic accuracy (AUC=0.784) than CEA (AUC=0.562) and CA15-3 (AUC=0.629). Besides, hsa_circ_0001785 plasma level was closely related to histological grade (P=0.013), TNM stage (P=0.008) and distant metastasis (P=0.016). Furthermore, hsa_circ_0001785 plasma level in postoperative patients (0.283±0.043) was significantly lower than that of preoperative patients (0.109±0.037, P<0.01). CONCLUSION Our study reveals the aberrant circRNAs expression profiles in breast cancer peripheral blood, and identifies the potential diagnostic value of plasma hsa_circ_0001785, providing a stable biomarkers for the diagnosis and progress of breast cancer.
Collapse
|
26
|
Eismann J, Hirschfeld M, Erbes T, Rücker G, Jäger M, Ritter A, Weiss D, Gitsch G, Mayer S. Hypoxia- and acidosis-driven aberrations of secreted microRNAs in endometrial cancer in vitro. Oncol Rep 2017. [PMID: 28627686 DOI: 10.3892/or.2017.5717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to their post-transcriptional regulatory impact on gene expression, microRNAs (miRNA, miRs) influence decisively cellular processes of differentiation, proliferation and apoptosis. In oncogenic pathways various miRNAs exert either oncogenic or tumor suppressor activities in a stage-specific manner. Dysregulation of miRNA expression pattern has been associated with several human cancers including endometrial cancer (EC). In the present study, expression profile alterations of EC associated secreted miRNAs were determined under the microenvironmental stress situations hypoxia and acidosis occurring in tumor progression and metastasis. The potential influence of hypoxia and acidosis vs. control conditions on the expression levels of 24 EC-relevant miRNA types was quantitatively accessed via real-time PCR in three established EC in vitro models. Expression data were analyzed statistically. In vitro application of hypoxia resulted in downregulation of miR-15a, miR-20a, miR-20b and miR-128-1 in Ishikawa cells (type I EC) and upregulation of miR-21 in EFE-184 cells (type I EC). Acidosis triggered upregulation of tumor promoting miR-125b in AN3-CA cell (type II EC), whereas in Ishikawa cells (type I EC) miRNAs with tumor suppressive function were found altered in divergent directions, both up- (let-7a) and down- (miR-22) regulated. Our current findings emphasize the functional importance of secreted miRNAs in the immediate response of EC cells to exogenic stress situations such as the typical tumor epiphenomena hypoxia and acidosis. Focusing on the specific potential of secreted, thus circulating miRNA molecules, alterations in expression levels not only influence intracellular gene expression and signaling cascades, but also transfer the induction of (tumor)biological cellular changes to adjacent cells.
Collapse
Affiliation(s)
- Julia Eismann
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Institute for Medical Biometry and Statistics, Medical Center - University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerald Gitsch
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring. Nutrients 2017; 9:nu9020122. [PMID: 28208792 PMCID: PMC5331553 DOI: 10.3390/nu9020122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 01/09/2023] Open
Abstract
Paternal obesity programs metabolic syndrome in offspring. Low-impact exercise in obese males improves the metabolic health of female offspring, however whether this occurred in male offspring remained unknown. C57BL/6NHsd (Harlan) mice were fed a control diet (CD; 6% fat, n = 7) or a high-fat diet (HFD; 21% fat, n = 16) for 18 weeks. After 9 weeks, HFD-fed mice either remained sedentary (HH, n = 8) or undertook low–moderate exercise (HE, n = 8) for another 9 weeks. Male offspring were assessed for glucose/insulin tolerance, body composition, plasma lipids, pancreatic islet cell morphology and microRNA expression. Founder HH induced glucose intolerance, insulin insensitivity, and hyperlipidaemia in male offspring (p < 0.05). Metabolic health was fully restored in male offspring by founder exercise to control levels. Founder HH reduced pancreatic β-cell area and islet cell size in male offspring, and altered the expression of 13 pancreatic microRNAs (p < 0.05). Founder HE led to partial restoration of pancreatic islet cell morphology and the expression of two pancreatic microRNAs (let7d-5p, 194-5p) in male offspring. Founder HE reduced male offspring adiposity, increased muscle mass, reduced plasma free fatty acids (FFAs), and further altered pancreatic microRNAs (35 vs. HH; 32 vs. CD) (p < 0.05). Low-impact exercise in obese fathers prior to conception, without dietary change, may be a viable intervention strategy to reduce the ill-effects of obesity-induced paternal programming in male offspring.
Collapse
|
28
|
Hoxa5 undergoes dynamic DNA methylation and transcriptional repression in the adipose tissue of mice exposed to high-fat diet. Int J Obes (Lond) 2016; 40:929-37. [PMID: 26980478 DOI: 10.1038/ijo.2016.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/28/2015] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES The genomic bases of the adipose tissue abnormalities induced by chronic positive calorie excess have been only partially elucidated. We adopted a genome-wide approach to directly test whether long-term high-fat diet (HFD) exposure affects the DNA methylation profile of the mouse adipose tissue and to identify the functional consequences of these changes. SUBJECTS/METHODS We have used epididymal fat of mice fed either high-fat (HFD) or regular chow (STD) diet for 5 months and performed genome-wide DNA methylation analyses by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mouse Homeobox (Hox) Gene DNA Methylation PCR, RT-qPCR and bisulphite sequencing analyses were then performed. RESULTS Mice fed the HFD progressively expanded their adipose mass accompanied by a significant decrease in glucose tolerance (P<0.001) and insulin sensitivity (P<0.05). MeDIP-seq data analysis revealed a uniform distribution of differentially methylated regions (DMR) through the entire adipocyte genome, with a higher number of hypermethylated regions in HFD mice (P<0.005). This different methylation profile was accompanied by increased expression of the Dnmt3a DNA methyltransferase (Dnmt; P<0.05) and the methyl-CpG-binding domain protein Mbd3 (P<0.05) genes in HFD mice. Gene ontology analysis revealed that, in the HFD-treated mice, the Hox family of development genes was highly enriched in differentially methylated genes (P=0.008). To validate this finding, Hoxa5, which is implicated in fat tissue differentiation and remodeling, has been selected and analyzed by bisulphite sequencing, confirming hypermethylation in the adipose tissue from the HFD mice. Hoxa5 hypermethylation was associated with downregulation of Hoxa5 mRNA and protein expression. Feeding animals previously exposed to the HFD with a standard chow diet for two further months improved the metabolic phenotype of the animals, accompanied by return of Hoxa5 methylation and expression levels (P<0.05) to values similar to those of the control mice maintained under standard chow. CONCLUSIONS HFD induces adipose tissue abnormalities accompanied by epigenetic changes at the Hoxa5 adipose tissue remodeling gene.
Collapse
|