1
|
Wang H, Li H, Liu Z, Zhu Z, Cao Y. Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2024; 108:96. [PMID: 38212967 PMCID: PMC10784352 DOI: 10.1007/s00253-023-12996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Hui Li
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200438, China
| | - ZhiWei Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - ZhenYu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
2
|
Liu Y, Yu S, He Y, Zhang S, Liu M, Han J, Sun B. Design, Synthesis, and Activity Evaluation of Novel Benzazole Bifunctional Antifungal Inhibitors with an LDH Carrier. J Med Chem 2024; 67:11365-11388. [PMID: 38888292 DOI: 10.1021/acs.jmedchem.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Fungal infections maintain a close relation with the body's immune function. In this study, three series of benzazole compounds were designed as dual-target (PD-L1/CYP51) inhibitors using the skeleton splicing approach; their molecular structures were synthesized and evaluated accordingly. Among them, the compounds 9a-2, 12a-2, and 12b-1 exhibited potent antifungal activity and dual-target inhibition ability. Especially, the compound 12a-2 simultaneously exerted excellent bifunctional effects of fungal inhibition and immune activation. Moreover, a layered double hydroxide (LDH) carrier was also successfully constructed based on an infection microenvironment to improve the bioavailability and the targeting of compound 12a-2. This significantly accelerated the recovery process of deep and shallow fungal infections. In conclusion, this study expanded the development horizon of antifungal drugs and provided a novel drug delivery route for treating fungal infections.
Collapse
Affiliation(s)
- Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yanqin He
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Shiying Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| |
Collapse
|
3
|
Maschio-Lima T, Lemes TH, Marques MDR, Siqueira JPZ, de Almeida BG, Caruso GR, Von Zeska Kress MR, de Tarso da Costa P, Regasini LO, de Almeida MTG. Synergistic activity between conventional antifungals and chalcone-derived compound against dermatophyte fungi and Candida spp. Int Microbiol 2024:10.1007/s10123-024-00541-7. [PMID: 38819732 DOI: 10.1007/s10123-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The scarce antifungal arsenal, changes in the susceptibility profile of fungal agents, and lack of adherence to treatment have contributed to the increase of cases of dermatomycoses. In this context, new antimicrobial substances have gained importance. Chalcones are precursors of the flavonoid family that have multiple biological activities, have high tolerability by humans, and easy synthesis. In this study, we evaluated the in vitro antifungal activity, alone and in combination with conventional antifungal drugs, of the VS02-4'ethyl chalcone-derived compound against dermatophytes and Candida spp. Susceptibility testing was carried out by broth microdilution. Experiments for determination of the target of the compound on the fungal cell, time-kill kinetics, and toxicity tests in Galleria mellonella model were also performed. Combinatory effects were evaluated by the checkerboard method. Results showed high activity of the compound VS02-4'ethyl against dermatophytes (MIC of 7.81-31.25 μg/ml). The compound targeted the cell membrane, and the time-kill test showed the compound continues to exert gradual activity after 5 days on dermatophytes, but no significant activity on Candida. Low toxicity was observed at 250 mg/kg. Excellent results were observed in the combinatory test, where VS02-4'ethyl showed synergistic interactions with itraconazole, fluconazole, terbinafine, and griseofulvin, against all isolates tested. Although further investigation is needed, these results revealed the great potential of chalcone-derived compounds against fungal infections for which treatments are long and laborious.
Collapse
Affiliation(s)
- Taiza Maschio-Lima
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Mariela Domiciano Ribeiro Marques
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - João Paulo Zen Siqueira
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | | | - Glaucia Rigotto Caruso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Marcia Regina Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Paulo de Tarso da Costa
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luis Octávio Regasini
- Laboratory of Antibiotics and Chemotherapy, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Margarete Teresa Gottardo de Almeida
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Alsalman J, Althaqafi A, Alsaeed A, Subhi A, Mady AF, AlHejazi A, Francis B, Alturkistani HH, Ayas M, Bilbisi M, Alsharidah S. Middle Eastern Expert Opinion: Strategies for Successful Antifungal Stewardship Program Implementation in Invasive Fungal Infections. Cureus 2024; 16:e61127. [PMID: 38919246 PMCID: PMC11198984 DOI: 10.7759/cureus.61127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, global public health efforts have increasingly emphasized the critical role of antimicrobial stewardship (AMS) in improving outcomes, reducing costs, and combating the growing threat of antimicrobial resistance. However, antifungal stewardship (AFS) has remained relatively overlooked despite the staggering impact of invasive fungal infections (IFIs). This burden is particularly pronounced in hospitals worldwide, with the Middle East facing significant unmet needs. The rising population of immunocompromised individuals vulnerable to IFI has prompted an increased reliance on antifungal agents for both prevention and treatment. Given the considerable mortality associated with IFIs and the emergence of antifungal resistance, implementing AFS programs in hospital settings is becoming increasingly urgent. In this article, we offer expert insights into the strategies that can be used for successful antifungal stewardship program implementation in IFI. Drawing upon the extensive clinical experience of a multinational and multidisciplinary panel, we present recommendations for optimizing AFS practices. We delve into the challenges and practical considerations of tailoring local AFS initiatives to the evolving landscape of fungal infections. Additionally, we provide actionable recommendations and position statements for the effective implementation of AFS programs, informed by the collective clinical experiences of panel members across their respective countries of practice.
Collapse
Affiliation(s)
| | - Abdulhakeem Althaqafi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Infectious Diseases, King Abdullah International Medical Research Center, Jeddah, SAU
- Department of Medicine/Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Ahmad Alsaeed
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Adult Hematology and Stem Cell Transplantation, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Jeddah, SAU
| | - Ahmad Subhi
- Adult Infectious Diseases, Department of Medicine, Al-Qassimi Hospital, Emirates Health Services, Sharjah, ARE
| | - Ahmed F Mady
- Critical Care Medicine, King Saud Medical City, Riyadh, SAU
| | - Ayman AlHejazi
- Department of Oncology, King Abdulaziz Medical City Riyadh, Riyadh, SAU
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Bassam Francis
- Hematology, Hematology and Bone Marrow Transplant Center, Baghdad, IRQ
| | | | - Mouhab Ayas
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Montaser Bilbisi
- Department of Infectious Diseases, Abdali Medical Center, Amman, JOR
| | - Sondus Alsharidah
- Pediatric Stem Cell Transplant Unit, Department of Pediatric Hematology/Oncology, National Bank of Kuwait (NBK) Children's Specialized Hospital, Sabah Central Health Region, KWT
| |
Collapse
|
5
|
Niu X, Al-Hatmi AMS, Vitale RG, Lackner M, Ahmed SA, Verweij PE, Kang Y, de Hoog S. Evolutionary trends in antifungal resistance: a meta-analysis. Microbiol Spectr 2024; 12:e0212723. [PMID: 38445857 PMCID: PMC10986544 DOI: 10.1128/spectrum.02127-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The present paper includes a meta-analysis of literature data on 318 species of fungi belonging to 34 orders in their response to 8 antifungal agents (amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole, posaconazole, terbinafine, and voriconazole). Main trends of MIC results at the ordinal level were visualized. European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute (CLSI) clinical breakpoints were used as the staff gauge to evaluate MIC values ranging from resistance to susceptibility, which were subsequently compared with a phylogenetic tree of the fungal kingdom. Several orders (Hypocreales, Microascales, and Mucorales) invariably showed resistance. Also the basidiomycetous orders Agaricales, Polyporales, Sporidiales, Tremellales, and Trichosporonales showed relatively high degrees of azole multi-resistance, while elsewhere in the fungal kingdom, including orders with numerous pathogenic and opportunistic species, that is, Onygenales, Chaetothyiales, Sordariales, and Malasseziales, in general were susceptible to azoles. In most cases, resistance vs susceptibility was consistently associated with phylogenetic distance, members of the same order showing similar behavior. IMPORTANCE A kingdom-wide the largest set of published wild-type antifungal data comparison were analyzed. Trends in resistance in taxonomic groups (monophyletic clades) can be compared with the phylogeny of the fungal kingdom, eventual relationships between fungus-drug interaction and evolution can be described.
Collapse
Affiliation(s)
- Xueke Niu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Roxana G. Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Sector Micología, Hospital J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A. Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Paul E. Verweij
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
7
|
Murcia-Galán RA, Durán SM, Leal-Pinto SM, Roa-Cordero MV, Vargas JD, Herrera LV, Muñoz-Castro A, MacLeod-Carey D, Naranjo TW, Rodríguez-Kessler PL, Hurtado JJ. Antifungal activity of Co(II) and Cu(II) complexes containing 1,3-bis(benzotriazol-1-yl)-propan-2-ol on the growth and virulence traits of fluconazole-resistant Candida species: synthesis, DFT calculations, and biological activity. BMC Chem 2023; 17:135. [PMID: 37817173 PMCID: PMC10563319 DOI: 10.1186/s13065-023-01037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Relevant virulence traits in Candida spp. are associated with dimorphic change and biofilm formation, which became an important target to reduce antifungal resistance. In this work, Co(II) complexes containing a benzotriazole derivative ligand showed a promising capacity of reducing these virulence traits. These complexes exhibited higher antifungal activities than the free ligands against all the Candida albicans and non-albicans strains tested, where compounds 2 and 4 showed minimum inhibitory concentration values between 15.62 and 125 μg mL-1. Moreover, four complexes (2-5) of Co(II) and Cu(II) with benzotriazole ligand were synthesized. These compounds were obtained as air-stable solids and characterized by melting point, thermogravimetric analysis, infrared, Raman and ultraviolet/visible spectroscopy. The analysis of the characterization data allowed us to identify that all the complexes had 1:1 (M:L) stoichiometries. Additionally, Density Functional Theory calculations were carried out for 2 and 3 to propose a probable geometry of both compounds. The conformer Da of 2 was the most stable conformer according to the Energy Decomposition Analysis; while the conformers of 3 have a fluxional behavior in this analysis that did not allow us to determine the most probable conformer. These results provide an important platform for the design of new compounds with antifungal activities and the capacity to attack other target of relevance to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Ricardo A. Murcia-Galán
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Sandra M. Durán
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Sandra M. Leal-Pinto
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Martha V. Roa-Cordero
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Jose D. Vargas
- Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Laura V. Herrera
- Grupo Sistema Estomatognático Y Morfofisiología (SEMF), Departamento de Ciencias Básicas, Universidad Santo Tomás Seccional Bucaramanga, Carrera 27 No. 180-395, Bucaramanga, Colombia
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, 8420524 Santiago, Chile
| | - Desmond MacLeod-Carey
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials Center, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - Tonny W. Naranjo
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), 050010 Medellin, Colombia
- Facultad de Medicina, Universidad Pontificia Bolivariana, 050034 Medellín, Colombia
| | - Peter L. Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, 37150 León, Guanajuato México
| | - John J. Hurtado
- Grupo de Investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| |
Collapse
|
8
|
Wang Q, Tu J, Yang W, Liang T, Liu N, Sheng C. Discovery of Pyrazolone Carbothioamide Derivatives as Inhibitors of the Pdr1-KIX Interaction for Combinational Treatment of Azole-Resistant Candidiasis. J Med Chem 2023; 66:11893-11904. [PMID: 37584282 DOI: 10.1021/acs.jmedchem.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Candida glabrata has emerged as an important opportunistic pathogen of invasive candidiasis due to increasing drug resistance. Targeting Pdr1-KIX interactions with small molecules represents a potential strategy for treating drug-resistant candidiasis. However, effective Pdr1-KIX inhibitors are rather limited, hindering the validation of target druggability. Here, new Pdr1-KIX inhibitors were designed and assayed. Particularly, compound B8 possessed a new chemical scaffold and exhibited potent KIX binding affinity, leading to enhanced synergistic efficacy with fluconazole to treat resistant C. glabrata infection (FICI = 0.28). Compound B8 acted by inhibiting the efflux pump and down-regulating resistance-associated genes through blocking the Pdr1-KIX interaction. Compound B8 exhibited excellent in vitro and in vivo antifungal potency in combination with fluconazole against azole-resistant C. glabrata. It also had direct antifungal effect to treat C. glabrata infection, suggesting new mechanisms of action independent of Pdr1-KIX inhibition. Therefore, compound B8 represents a promising lead compound for antifungal drug development.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Tingting Liang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| |
Collapse
|
9
|
Sharma C, Kadosh D. Post-transcriptional control of antifungal resistance in human fungal pathogens. Crit Rev Microbiol 2023; 49:469-484. [PMID: 35634915 PMCID: PMC9766424 DOI: 10.1080/1040841x.2022.2080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Global estimates suggest that over 300 million individuals of all ages are affected by serious fungal infections every year, culminating in about 1.7 million deaths. The societal and economic burden on the public health sector due to opportunistic fungal pathogens is quite significant, especially among immunocompromised patients. Despite the high clinical significance of these infectious agents, treatment options are limited with only three major classes of antifungal drugs approved for use. Clinical management of fungal diseases is further compromised by the emergence of antifungal resistant strains. Transcriptional and genetic mechanisms that control drug resistance in human fungal pathogens are well-studied and include drug target alteration, upregulation of drug efflux pumps as well as changes in drug affinity and abundance of target proteins. In this review, we highlight several recently discovered novel post-transcriptional mechanisms that control antifungal resistance, which involve regulation at the translational, post-translational, epigenetic, and mRNA stability levels. The discovery of many of these novel mechanisms has opened new avenues for the development of more effective antifungal treatment strategies and new insights, perspectives, and future directions that will facilitate this process are discussed.
Collapse
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
10
|
Naicker S, Mohanlall V, Ngubane S, Mellem J, Mchunu NP. Phenotypic Array for Identification and Screening of Antifungals against Aspergillus Isolates from Respiratory Infections in KwaZulu Natal, South Africa. J Fungi (Basel) 2023; 9:616. [PMID: 37367552 DOI: 10.3390/jof9060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
The rapid emergence of invasive fungal infections correlates with the increasing population of immunocompromised individuals, with many cases leading to death. The progressive increase in the incidence of Aspergillus isolates is even more severe due to the clinical challenges in treating invasive infections in immunocompromised patients with respiratory conditions. Rapid detection and diagnosis are needed to reduce mortality in individuals with invasive aspergillosis-related infections and thus efficient identification impacts clinical success. The phenotypic array method was compared to conventional morphology and molecular identification on thirty-six Aspergillus species isolated from patients with respiratory infections at the Inkosi Albert Luthuli Hospital in Kwa-Zulu Natal. In addition, an antimicrobial array was also carried out to screen for possible novel antimicrobial compounds for treatment. Although traditional morphological techniques are useful, genetic identification was the most reliable, assigning 26 to Aspergillus fumigatus species, 8 Aspergillus niger, and 2 Aspergillus flavus including cryptic species of A. niger, A. tubingensis and A. welwitschiae. The phenotypic array technique was only able to identify isolates up to the genus level due to a lack of adequate reference clinical species in the database. However, this technique proved crucial in assessing a wide range of possible antimicrobial options after these isolates exhibited some resistance to azoles. Antifungal profiles of the thirty-six isolates on the routine azole voriconazole showed a resistance of 6%, with 61% having moderate susceptibility. All isolates resistant to the salvage therapy drug, posaconazole pose a serious concern. Significantly, A. niger was the only species resistant (25%) to voriconazole and has recently been reported as the species isolated from patients with COVID-19-associated pulmonary aspergillosis (CAPA). Phenotypic microarray showed that 83% of the isolates were susceptible to the 24 new compounds and novel compounds were identified for potentially effective combination treatment of fungal infections. This study also reports the first TR34/98 mutation in Aspergillus clinical isolates which is located in the cyp51A gene.
Collapse
Affiliation(s)
- Sarla Naicker
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Sandile Ngubane
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - John Mellem
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | | |
Collapse
|
11
|
Aitha S, Thumma V, Ambala S, Matta R, Panga S, Pochampally J. Bis 1, 2, 3‐ Triazoles Linked Deoxybenzoin Hybrids as Antimicrobial Agents: Synthesis, In Vitro and In Silico Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shalini Aitha
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
- Government Degree College for Women Karimnagar 505001 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College Hyderabad 500059 Telangana India
| | | | - Raghavender Matta
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
| | - Shyam Panga
- Dr. N. J. Paulbudhe College of Pharmacy Ahmednagar 414003 Maharashtra India
| | | |
Collapse
|
12
|
Disclosing the distribution regularities for chiral recognition exemplified by R-and RS- of new antifungal: Impact of pH and temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Candida auris, a singular emergent pathogenic yeast: its resistance and new therapeutic alternatives. Eur J Clin Microbiol Infect Dis 2022; 41:1371-1385. [PMID: 36198878 DOI: 10.1007/s10096-022-04497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Nowadays, fungal infections affect millions of people across the world. Candida auris, a new emergent yeast, is a worrisome pathogen because it associates with a high rate of incidence and prevalence, including in the nosocomial environment. The hard identification, the phenotypic plasticity, and the easy adaptation to stressful conditions are some of the C. auris traits that render this latest yeast singular challenging. C. auris infections have already been reported from more than 30 countries and are associated with high mortality rates. This is the result from rapid transmission and the difficulty of prevention, control, and eradication. There are several factors related to the high virulence of C. auris, such as the multidrug resistance, biofilm development, and the ability to escape the response of the innate immune system. So, C. auris infections are a serious and alarming problem, not only because of the high pathogenicity of the fungal agent but also because of the low effectiveness of the treatments available. Although new formulations have been developed against C. auris strains, a better understanding is essential to efficiently treat, prevent, and control C. auris infections.
Collapse
|
14
|
Zare-Bidaki M, Maleki A, Ghanbarzadeh N, Nikoomanesh F. Expression pattern of drug-resistance genes ERG11 and TAC1 in Candida albicans Clinical isolates. Mol Biol Rep 2022; 49:11625-11633. [PMID: 36169896 DOI: 10.1007/s11033-022-07878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Candida albicans (C. albicans) is an opportunistic fungus and the most common cause of vulvovaginal candidiasis (VVC). In recent years, the use of antifungal drugs has led to the incidence of drug-resistant C. albicans strains. The purpose of this study is twofold: to determine the pattern of drug susceptibility and the relationship between demographic factors and the incidence of drug resistance among C. albicans isolates and to investigate the expression pattern of drug-resistance genes ERG11 and TAC1 in C. albicans isolates. METHODS AND RESULTS This descriptive cross-sectional study was conducted on 50 C. albicans isolates from women with VVC. Antifungal susceptibility of the isolates was tested by M27-A3/S4 broth micro dilution method following the Clinical and Laboratory Standards Institute (CLSI) guidelines. High susceptibility rates were recorded for itraconazole and voriconazole (68%), followed by ketoconazole (46%). Fluconazole had the lowest susceptibility to C. albicans with susceptibility of 36%. The change in ERG11 and TAC1 genes expression was determined by qPCR. The mean ∆Ct values of ERG11 and TAC1genes were significantly different between fluconazole-resistant and susceptible groups (p < 0.001). Interestingly, we found that 77% of fluconazole-susceptible isolates had significantly upregulated ERG11 gene (2.9-99.0 fold). In addition, the expression of TAC1 was upregulated in 44% of fluconazole-susceptible isolates (3.86-89.8 fold). CONCLUSION Our finding revealed that incidence of drug resistance in C. albicans is not simply controlled by genes but is a multi-factorial phenomenon, where several factors and mechanisms are involved in the process of drug resistance.
Collapse
Affiliation(s)
- Majid Zare-Bidaki
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Anis Maleki
- Student Research committee, Birjand University of Medical University, Birjand, Iran
| | - Nahid Ghanbarzadeh
- Department of Gynecology and Obstetrics, Birjand University of Medical University, Birjand, Iran
| | - Fatemeh Nikoomanesh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Dunaiski CM, Kock MM, Jung H, Peters RPH. Importance of Candida infection and fluconazole resistance in women with vaginal discharge syndrome in Namibia. Antimicrob Resist Infect Control 2022; 11:104. [PMID: 35971143 PMCID: PMC9377096 DOI: 10.1186/s13756-022-01143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vaginal discharge syndrome (VDS) is a common condition. Clinical management targets sexually transmitted infections (STIs) and bacterial vaginosis (BV); there is limited focus on Candida infection as cause of VDS. Lack of Candida treatment coverage and, if present, antifungal resistance may result in VDS treatment failure. This study aimed to determine the prevalence of Candida infection, antifungal resistance, and coinfections in Namibian women with VDS. METHODS A cross-sectional study was performed using 253 vaginal swabs from women with VDS in Namibia. Demographic data was collected, and phenotypic and molecular detection of Candida species was performed followed by fluconazole susceptibility testing of Candida isolates. BV was diagnosed using Nugent score microscopy; molecular detection of Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis was performed. RESULTS Candida species was detected in 110/253 women (43%). Ninety women (36%) had Candida albicans and 24 (9.5%) had non-albicans Candida species. The non-albicans species detected were 19 (17%) Candida glabrata, 4.0 (3.5%) Candida krusei, and 1.0 (0.9%) Candida parapsilosis. Candida albicans were more frequently isolated in younger (p = 0.004) and pregnant women (p = 0.04) compared to non-albicans Candida species. Almost all (98%) Candida albicans isolates were susceptible to fluconazole while all non-albicans Candida species were fluconazole resistant. STIs were diagnosed in 92 women (36%): 30 (12%) with C. trachomatis, 11 (4.3%) N. gonorrhoeae, and 70 (28%) T. vaginalis; 98 (39%) women had BV. Candida infection alone was diagnosed in 30 women (12%), combined with STIs in 42 women (17%) and was concurrent with BV in 38 women (15%). Candida infection was more often detected in swabs from women without C. trachomatis detected (6.4% vs. 16%; OR 0.30; 95% CI 0.10-0.77, p = 0.006). CONCLUSIONS The high prevalence of Candida infection, especially those due to non-albicans Candida species that are resistant to fluconazole, is a great concern in our setting and may lead to poor treatment outcomes. Access to microbiological testing for Candida species in the context of syndromic management is warranted.
Collapse
Affiliation(s)
- Cara M Dunaiski
- Department of Health and Applied Sciences, Namibia University of Sciences and Technology, Windhoek, Namibia
- Department of Medical Microbiology, University of Pretoria, Prinshof Campus, Pathology Building, Room 3-11, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, University of Pretoria, Prinshof Campus, Pathology Building, Room 3-11, Pretoria, South Africa
- Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Prinshof Campus, Pathology Building, Room 3-11, Pretoria, South Africa
| | - Remco P H Peters
- Department of Medical Microbiology, University of Pretoria, Prinshof Campus, Pathology Building, Room 3-11, Pretoria, South Africa.
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
- Research Unit, Foundation for Professional Development, East London, South Africa.
| |
Collapse
|
16
|
Unraveling the Antibiofilm Activity of a New Nanogold Resin for Dentures and Epithesis. Pharmaceutics 2022; 14:pharmaceutics14071513. [PMID: 35890413 PMCID: PMC9322197 DOI: 10.3390/pharmaceutics14071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Dentures and epitheses are mostly made from poly(methyl methacrylate) (PMMA), which does not show antimicrobial properties. They present reservoirs of microorganisms grown in biofilms. The aim of this study is to prepare a PMMA enriched with gold nanoparticles (AuNPs)-PMMA/AuNPs and the examination of its physical, mechanical and antimicrobial properties. The AuNPS were synthetized from HAuCl4 using the ultrasonic spray pyrolysis method with lyophilization. The PMMA/AuNP samples were compared to PMMA samples. Density was measured by pycnometer. Microhardness was evaluated using the Vickers hardness test. Monomicrobial biofilm formation (Streptococcus mitis, Candida albicans, Staphylococcus aureus and Escherichia coli) was measured by colony-forming units (CFUs) and MTT test and visualized by SEM. AuNP release was measured indirectly (the CFUs of the medium around the sample). The density and microhardness of the PMMA/AuNPs were similar to those of the PMMA. CFU and MTT values for the biofilms formed on the PMMA for each of the tested species were higher than those of the biofilms formed on the PMMA/AuNPs. The CFUs of the medium around the sample were similar for both materials. PMMA/AuNPs showed a significant reduction in the monomicrobial biofilms of all tested species. AuNPs are not released from PMMA/AuNPs. Density, indirect measurement of residual monomer and dentures weight were similar between PMMA and PMMA/AuNPs. Microhardness, as a measure of the wear resistance, was also similar between tested discs.
Collapse
|
17
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
18
|
The Dynamics of Single-Cell Nanomotion Behaviour of Saccharomyces cerevisiae in a Microfluidic Chip for Rapid Antifungal Susceptibility Testing. FERMENTATION 2022. [DOI: 10.3390/fermentation8050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fast emergence of multi-resistant pathogenic yeasts is caused by the extensive—and sometimes unnecessary—use of broad-spectrum antimicrobial drugs. To rationalise the use of broad-spectrum antifungals, it is essential to have a rapid and sensitive system to identify the most appropriate drug. Here, we developed a microfluidic chip to apply the recently developed optical nanomotion detection (ONMD) method as a rapid antifungal susceptibility test. The microfluidic chip contains no-flow yeast imaging chambers in which the growth medium can be replaced by an antifungal solution without disturbing the nanomotion of the cells in the imaging chamber. This allows for recording the cellular nanomotion of the same cells at regular time intervals of a few minutes before and throughout the treatment with an antifungal. Hence, the real-time response of individual cells to a killing compound can be quantified. In this way, this killing rate provides a new measure to rapidly assess the susceptibility of a specific antifungal. It also permits the determination of the ratio of antifungal resistant versus sensitive cells in a population.
Collapse
|
19
|
Ahmadi A, Mohammadnejadi E, Karami P, Razzaghi-Asl N. Current Status and Structure Activity Relationship of Privileged Azoles as Antifungal Agents (2016-2020). Int J Antimicrob Agents 2022; 59:106518. [PMID: 35045309 DOI: 10.1016/j.ijantimicag.2022.106518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Fungal infections have major contribution to the infectious related deaths in recent century. The issue has gotten worse with the advent of immunity impairing conditions such as HIV epidemic. Eukaryote nature of fungal pathogens leads to harder eradication than bacterial infections. Given the importance of the problem, considerable efforts have been put on the synthesis and biological assessment of azole-based chemical scaffolds and their bioisosteres. The emergence of validated macromolecular targets within different fungal species inspires structure-based drug design strategies toward diverse azole-based agents. Despite of advantageous features, emergence of drug-resistant fungal species restrict the applicability of current azoles as the first-line antifungal agents. Consequently, it appears advisable to elucidate SARs and chemical biodiversity within antifungal azoles. Current contribution was devoted to a brief look at clinically applied drugs, structure-based classification of azole antifungals and their structure activity relationships (SARs). Reviewed molecules belong to the antifungal structures that were reported throughout 2016-2020.
Collapse
Affiliation(s)
- A Ahmadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - E Mohammadnejadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil
| | - P Karami
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
20
|
Albehaijani SHI, Macreadie I, Morrissey CO, Boyce KJ. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac033. [PMID: 35402912 PMCID: PMC8986524 DOI: 10.1093/jacamr/dlac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fungal infections are common life-threatening diseases amongst immunodeficient individuals. Invasive fungal disease is commonly treated with an azole antifungal agent, resulting in selection pressure and the emergence of drug resistance. Antifungal resistance is associated with higher mortality rates and treatment failure, making the current clinical management of fungal disease very challenging. Clinical isolates from a variety of fungi have been shown to contain mutations in the MSH2 gene, encoding a component of the DNA mismatch repair pathway. Mutation of MSH2 results in an elevated mutation rate that can increase the opportunity for selectively advantageous mutations to occur, accelerating the development of antifungal resistance. Objectives To characterize the molecular mechanisms causing the microevolutionary emergence of antifungal resistance in msh2 mismatch repair mutants of Cryptococcus neoformans. Methods The mechanisms resulting in the emergence of antifungal resistance were investigated using WGS, characterization of deletion mutants and measuring ploidy changes. Results The genomes of resistant strains did not possess mutations in ERG11 or other genes of the ergosterol biosynthesis pathway. Antifungal resistance was due to small contributions from mutations in many genes. MSH2 does not directly affect ploidy changes. Conclusions This study provides evidence that resistance to fluconazole can evolve independently of ERG11 mutations. A common microevolutionary route to the emergence of antifungal resistance involves the accumulation of mutations that alter stress signalling, cellular efflux, membrane trafficking, epigenetic modification and aneuploidy. This complex pattern of microevolution highlights the significant challenges posed both to diagnosis and treatment of drug-resistant fungal pathogens.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - C. Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Kylie J. Boyce
- School of Science, RMIT University, Melbourne, VIC, Australia
- Corresponding author. E-mail:
| |
Collapse
|
21
|
Botelho TKR, Danielli LJ, Seide M, Borges PP, Cruz AB. Distribution and antifungal susceptibility of Candida species isolated from clinical samples in southern Brazil. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Teh BW, Yeoh DK, Haeusler GM, Yannakou CK, Fleming S, Lindsay J, Slavin MA. Consensus guidelines for antifungal prophylaxis in haematological malignancy and haemopoietic stem cell transplantation, 2021. Intern Med J 2021; 51 Suppl 7:67-88. [PMID: 34937140 DOI: 10.1111/imj.15588] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antifungal prophylaxis can reduce morbidity and mortality from invasive fungal disease (IFD). However, its use needs to be optimised and appropriately targeted to patients at highest risk to derive the most benefit. In addition to established risks for IFD, considerable recent progress in the treatment of malignancies has resulted in the development of new 'at-risk' groups. The changing epidemiology of IFD and emergence of drug resistance continue to impact choice of prophylaxis, highlighting the importance of active surveillance and knowledge of local epidemiology. These guidelines aim to highlight emerging risk groups and review the evidence and limitations around new formulations of established agents and new antifungal drugs. It provides recommendations around use and choice of antifungal prophylaxis, discusses the potential impact of the changing epidemiology of IFD and emergence of drug resistance, and future directions for risk stratification to assist optimal management of highly vulnerable patients.
Collapse
Affiliation(s)
- Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel K Yeoh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Gabrielle M Haeusler
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Costas K Yannakou
- Department of Molecular Oncology and Cancer Immunology, Epworth Freemasons Hospital, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Shaun Fleming
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Health, Melbourne, Victoria, Australia
| | - Julian Lindsay
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Immunocompromised Host Infection Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
24
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
25
|
Almeida-Paes R, de Andrade IB, Ramos MLM, Rodrigues MVDA, do Nascimento VA, Bernardes-Engemann AR, Frases S. Medicines for Malaria Venture COVID Box: a source for repurposing drugs with antifungal activity against human pathogenic fungi. Mem Inst Oswaldo Cruz 2021; 116:e210207. [PMID: 34755820 PMCID: PMC8577065 DOI: 10.1590/0074-02760210207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment of mycoses is often ineffective, usually prolonged, and has some side effects. These facts highlight the importance of discovering new molecules to treat fungal infections. OBJECTIVES To search the Medicines for Malaria Venture COVID Box for drugs with antifungal activity. METHODS Fourteen human pathogenic fungi were tested against the 160 drugs of this collection at 1.0 µM concentration. We evaluated the ability of the drugs to impair fungal growth, their fungicidal nature, and morphological changes caused to cells. FINDINGS Thirty-four molecules (21.25%) presented antifungal activity. Seven are antifungal drugs and one is the agricultural fungicide cycloheximide. The other drugs with antifungal activity included antibiotics (n = 3), antimalarials (n = 4), antivirals (n = 2), antiparasitcs (n = 3), antitumor agents (n = 5), nervous system agents (n = 3), immunosuppressants (n = 3), antivomiting (n = 1), antiasthmatic (n = 1), and a genetic disorder agent (n = 1). Several of these drugs inhibited Histoplasma capsulatum and Paracoccidioides brasiliensis growth (15 and 20, respectively), while Fusarium solani was not affected by the drugs tested. Most drugs were fungistatic, but niclosamide presented fungicidal activity against the three dimorphic fungi tested. Cyclosporine affected morphology of Cryptococcus neoformans. MAIN CONCLUSIONS These drugs represent new alternatives to the development of more accessible and effective therapies to treat human fungal infections.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Iara Bastos de Andrade
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Mariana Lucy Mesquita Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Marcus Vinícius de Araújo Rodrigues
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Vinícius Alves do Nascimento
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Andréa Reis Bernardes-Engemann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Susana Frases
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
26
|
Chakraborty A, Fernando LD, Fang W, Dickwella Widanage MC, Wei P, Jin C, Fontaine T, Latgé JP, Wang T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun 2021; 12:6346. [PMID: 34732740 PMCID: PMC8566572 DOI: 10.1038/s41467-021-26749-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses. The fungal cell wall is a complex structure composed mainly of glucans, chitin and glycoproteins. Here, the authors use solid-state NMR spectroscopy to assess the cell wall architecture of Aspergillus fumigatus, comparing wild-type cells and mutants lacking major structural polysaccharides, with insights into the distinct functions of these components.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | | | - Pingzhen Wei
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Thierry Fontaine
- Unité de Biologie et pathogénicité fongiques, INRAE, USC2019, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular biology and Biotechnology (IMBBFORTH), University of Crete, Heraklion, Greece.
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
27
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
28
|
Darwish RM, AlKawareek MY, Bulatova NR, Alkilany AM. Silver nanoparticles, a promising treatment against clinically important fluconazole-resistant Candida glabrata. Lett Appl Microbiol 2021; 73:718-724. [PMID: 34510497 DOI: 10.1111/lam.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Resistance to azole antifungal agents is a challenging limitation in Candida glabrata treatment. It is associated with decreased intracellular concentrations of antifungal agents as a result of overexpression of efflux pumps on the cellular plasma membranes. This work evaluates the potential of silver nanoparticles (AgNPs) to reverse the resistance of fungal cells to fluconazole. Silver nanoparticles were prepared using wet chemical method and characterised by UV-Vis spectrophotometry, dynamic light scattering, and zeta potential. Broth microdilution and pour plates methods were used to study the anticandidal activity using two C. glabrata fluconazole-resistant strains (DSY565 and CBS138) known to overexpress active efflux pumps, and a standard fluconazole sensitive strain ATCC 22553. Silver nanoparticles-fluconazole combinations decreased concentrations of fluconazole substantially without compromising the activity. These findings suggest that AgNPs enhance the efficacy of fluconazole and offer a promising application in therapy of C. glabrata infections.
Collapse
Affiliation(s)
- R M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - M Y AlKawareek
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - A M Alkilany
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
29
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
30
|
Aldejohann AM, Herz M, Martin R, Walther G, Kurzai O. Emergence of resistant Candida glabrata in Germany. JAC Antimicrob Resist 2021; 3:dlab122. [PMID: 34377983 PMCID: PMC8346698 DOI: 10.1093/jacamr/dlab122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Background Candida glabrata is the second leading fungal pathogen causing candidaemia and invasive candidiasis in Europe. This yeast is recognized for its rapid ability to acquire antifungal drug resistance. Objectives We systematically evaluated 176 C. glabrata isolates submitted to the German National Reference Center for Invasive Fungal Infections (NRZMyk) between 2015 and 2019 with regard to echinocandin and fluconazole susceptibility. Methods Susceptibility testing was performed using a reference protocol (EUCAST) and a range of commercial assays. Hot spot regions of the echinocandin target FKS genes were sequenced using Sanger sequencing. Results In total, 84 of 176 isolates were initially classified as anidulafungin-resistant based on EUCAST testing. Of those, 71 harboured mutations in the glucan synthase encoding FKS genes (13% in FKS1, 87% in FKS2). Significant differences in anidulafungin MICs were found between distinct mutation sites. 11 FKS wild-type (WT) isolates initially classified as resistant exhibited anidulafungin MICs fluctuating around the interpretation breakpoint upon re-testing with multiple assays. Two FKS WT isolates consistently showed high anidulafungin MICs and thus must be considered resistant despite the absence of target gene mutations. Over one-third of echinocandin-resistant strains displayed concomitant fluconazole resistance. Of those, isolates linked to bloodstream infection carrying a change at Ser-663 were associated with adverse clinical outcome. Conclusions Resistant C. glabrata strains are emerging in Germany. Phenotypic echinocandin testing can result in misclassification of susceptible strains. FKS genotyping aids in detecting these strains, however, echinocandin resistance may occur despite a wild-type FKS genotype.
Collapse
Affiliation(s)
| | - Michaela Herz
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| |
Collapse
|
31
|
Hameed S, Hans S, Singh S, Dhiman R, Monasky R, Pandey RP, Thangamani S, Fatima Z. Revisiting the Vital Drivers and Mechanisms of β-Glucan Masking in Human Fungal Pathogen, Candida albicans. Pathogens 2021; 10:942. [PMID: 34451406 PMCID: PMC8399646 DOI: 10.3390/pathogens10080942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/31/2022] Open
Abstract
Among the several human fungal pathogens, Candida genus represents one of the most implicated in the clinical scenario. There exist several distinctive features that govern the establishment of Candida infections in addition to their capacity to adapt to multiple stress conditions inside humans which also include evasion of host immune responses. The complex fungal cell wall of the prevalent pathogen, Candida albicans, is one of the main targets of antifungal drugs and recognized by host immune cells. The wall consists of tiered arrangement of an outer thin but dense covering of mannan and inner buried layers of β-glucan and chitin. However, the pathogenic fungi adopt strategies to evade immune recognition by masking these molecules. This capacity to camouflage the immunogenic polysaccharide β-glucan from the host is a key virulence factor of C. albicans. The present review is an attempt to collate various underlying factors and mechanisms involved in Candida β-glucan masking from the available pool of knowledge and provide a comprehensive understanding. This will further improve therapeutic approaches to candidiasis by identifying new antifungal targets that blocks fungal immune evasion.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Ross Monasky
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| |
Collapse
|
32
|
Abstract
BACKGROUND AND OBJECTIVE With the widespread use of antifungals to treat superficial mycoses, reports of antifungal resistance are increasing. Antifungal resistance is becoming a public health challenge and needs to be addressed in parallel with antibacterial and antiviral resistance. METHODS We review the growing resistance of fungal pathogens such as Trichophyton species and the emergence of novel pathogens, including multidrug-resistant strains in superficial mycoses. We also discuss the importance of laboratory diagnosis and antifungal susceptibility testing (AFST) in the management of recalcitrant infections. RESULTS AND CONCLUSION Antifungal resistance can occur naturally or develop over time when fungi are exposed to antifungals. The frequency of terbinafine-resistant Trichophyton isolates is increasing. Opportunistic pathogens such as Aspergillus and Candida species have developed resistance to classic azoles such as itraconazole and fluconazole, and the newer azoles such as posaconazole and voriconazole. Although uncommon, topical antifungals such as efinaconazole and tavaborole have shown to induce resistance in Trichophyton rubrum. The emergence of multidrug-resistant Trichophyton mentagrophytes/interdigitale, Candida auris, and Aspergillus species causing severe infections is highly concerning. Routine AFST should be considered to determine the most effective treatment, especially if there is failure to therapy. Combination treatment of oral and topical antifungals may be a consideration for managing recalcitrant infections.
Collapse
Affiliation(s)
- Aditya K Gupta
- Department of Medicine, Division of Dermatology, University of Toronto School of Medicine, Toronto, ON, Canada.,Mediprobe Research Inc., London, ON, Canada
| | | |
Collapse
|
33
|
Soulountsi V, Schizodimos T, Kotoulas SC. Deciphering the epidemiology of invasive candidiasis in the intensive care unit: is it possible? Infection 2021; 49:1107-1131. [PMID: 34132989 DOI: 10.1007/s15010-021-01640-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Invasive candidiasis (IC) has emerged in the last decades as an important cause of morbidity, mortality, and economic load in the intensive care unit (ICU). The epidemiology of IC is still a difficult and unsolved enigma for the literature. Accurate estimation of the true burden of IC is difficult due to variation in definitions and limitations inherent to available case-finding methodologies. Candidemia and intra-abdominal candidiasis (IAC) are the two predominant types of IC in ICU. During the last two decades, an increase in the incidence of candidemia has been constantly reported particularly in the expanding populations of elderly or immunosuppressed patents, with a parallel change in Candida species (spp.) distribution worldwide. Epidemiological shift in non-albicans spp. has reached worrisome trends. Recently, a novel, multidrug-resistant Candida spp., Candida auris, has globally emerged as a nosocomial pathogen causing a broad range of healthcare-associated invasive infections. Epidemiological profile of IAC remains imprecise. Though antifungal drugs are available for Candida infections, mortality rates continue to be high, estimated to be up to 50%. Increased use of fluconazole and echinocandins has been associated with the emergence of resistance to these drugs, which affects particularly C. albicans and C. glabrata. Crucial priorities for clinicians are to recognize the epidemiological trends of IC as well as the emergence of resistance to antifungal agents to improve diagnostic techniques and strategies, develop international surveillance networks and antifungal stewardship programmes for a better epidemiological control of IC.
Collapse
Affiliation(s)
- Vasiliki Soulountsi
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece.
| | - Theodoros Schizodimos
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece
| | | |
Collapse
|
34
|
Abstract
Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the antibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2(−), and metal salts of transition metals and main group elements, is summarized. Preclinical studies show a broad range of antibacterial potential, and these investigations are supported by appraisals of possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness, is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less work conducted on antiparasitic behavior.
Collapse
|
35
|
Abstract
Over the past 15 years, there has been an increase in the development and utilization of newer antifungal agents. The ideal antifungal, however, in regard to spectrum of activity, pharmacokinetic/pharmacodynamic properties, development of resistance, safety, and drug interaction profile remains elusive. This article reviews pharmacologic aspects of Food and Drug Administration-approved polyenes, flucytosine, azoles, and echinocandins as well as promising pipeline antifungal agents. Unique properties of these newer agents are highlighted. The clinical role of established and investigational antifungal agents as treatment and/or prevention of invasive fungal infections is discussed.
Collapse
Affiliation(s)
- Melissa D Johnson
- Duke University Medical Center, Box 102359 DUMC, Durham NC 27710, USA.
| |
Collapse
|
36
|
Pfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. Antimicrobial activity of manogepix, a first-in-class antifungal, and comparator agents tested against contemporary invasive fungal isolates from an international surveillance programme (2018-2019). J Glob Antimicrob Resist 2021; 26:117-127. [PMID: 34051400 DOI: 10.1016/j.jgar.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Manogepix, the active moiety of the prodrug fosmanogepix, is a novel antifungal with activity against major fungal pathogens including Candida (except Candida krusei), Aspergillus and difficult-to-treat/rare moulds. We tested manogepix and comparators against 2669 contemporary (2018-2019) fungal isolates collected from 82 medical centres in North America (42.3%), Europe (37.9%), Asia-Pacific (12.3%) and Latin America (7.6%). Of these, 70.7% were Candida spp., 3.6% were non-Candida yeasts including 49 Cryptococcus neoformans var. grubii, 21.7% were Aspergillus spp. and 4.1% were other moulds. METHODS Isolates were tested for antifungal susceptibility by the CLSI reference broth microdilution method. RESULTS Manogepix (MIC50/90, 0.008/0.06 mg/L) was the most active agent tested against Candida spp. isolates; corresponding anidulafungin, micafungin and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, manogepix (MIC50/90, 0.5/2 mg/L) was ≥4-fold more active than anidulafungin, micafungin and fluconazole against C. neoformans var. grubii. Against Aspergillus spp., manogepix (MEC50/90, 0.015/0.03 mg/L) had comparable activity to anidulafungin and micafungin. Low manogepix concentrations inhibited uncommon species of Candida, non-Candida yeasts, and rare moulds including Scedosporium spp. and Lomentospora (Scedosporium) prolificans. CONCLUSION Manogepix exhibited potent activity against contemporary fungal isolates, including echinocandin- and azole-resistant strains of Candida and Aspergillus spp., respectively. Although rare, Candida strains that were non-wild type for manogepix demonstrated resistance to fluconazole. However, the clinical relevance of this finding is unknown. The extended spectrum of manogepix is noteworthy for its activity against many less-common yet antifungal-resistant strains. Clinical studies are underway to evaluate the utility of fosmanogepix against difficult-to-treat resistant fungal infections.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, IA, USA; University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
37
|
Sonthalia S, Pandey A, Mehndiratta R, Agrawal M, Das S, Shreshtha S. "Azole menace"-An underappreciated trigger perpetuating the epidemic of antifungal therapeutic failure in cutaneous mycoses. Dermatol Ther 2021; 34:e14959. [PMID: 33857337 DOI: 10.1111/dth.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
The South-Asian epidemic of anti-fungal therapeutic failures (AFTF) is on the rise. Although many demographic, environmental, and socioeconomic factors have been implicated in the genesis of this problem, two pharmacological issues warrant attention. While detailed discussions on the role of topical corticosteroid (TCS) in the changing landscape of the superficial mycotic infections in this region have been making headlines, another equally, rather more important pharmacological factor seems to have been undermined by the hype around TCS. The fastidious pharmacokinetic properties and related practical aspects of the triazole group of oral and topical antifungals, especially oral itraconazole seem to contribute significantly to the persistence of AFTF epidemic. In this paper, we shall discuss the broad aspects of the spectral precariousness of oral triazole antifungals with special emphasis to itraconazole, a concept known as the "azole menace" in the overall pathogenesis and tenacity of the AFTF epidemic.
Collapse
Affiliation(s)
- Sidharth Sonthalia
- Department of Dermatology & Dermatosurgery, Skinnocence: The Skin Clinic & Research Centre, Gurugram, India
| | - Amarendra Pandey
- Department of Dermatology & Laser Surgery, Cosmasure, Jabalpur, India
| | - Ruchika Mehndiratta
- Department of Dermatology & STD, Tvacha Skin & Laser Clinic, Ghaziabad, India
| | - Mahima Agrawal
- Department of Dermatology & STD, Miraderm Skin Centre, New Delhi, India
| | - Shukla Das
- Department of Microbiology, UCMS & GTB Hospital, New Delhi, India
| | | |
Collapse
|
38
|
Seyedjavadi SS, Khani S, Amani J, Halabian R, Goudarzi M, Hosseini HM, Eslamifar A, Shams-Ghahfarokhi M, Imani Fooladi AA, Razzaghi-Abyaneh M. Design, Dimerization, and Recombinant Production of MCh-AMP1-Derived Peptide in Escherichia coli and Evaluation of Its Antifungal Activity and Cytotoxicity. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:638595. [PMID: 37744143 PMCID: PMC10512307 DOI: 10.3389/ffunb.2021.638595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 09/26/2023]
Abstract
Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67-6.66 μM and 3.33-26.64 μM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
39
|
Abstract
Malassezia are emerging fungal pathogens causing opportunistic skin and severe systemic infection. Nosocomial outbreaks are associated with azole resistance and understanding of the underlying mechanisms are limited to knowledge from other fungal species. Herein, we identified distinct antifungal susceptibility patterns in 26 Malassezia furfur isolates derived from healthy and diseased individuals. A Y67F CYP51 mutation was identified in five isolates of M. furfur However, this mutation alone was insufficient to induce reduce azole susceptibility in the wild type strain. RNA-seq and differential gene analysis of healthy and disease derived strains exposed to clotrimazole in vitro identified several key metabolic pathways and transporter proteins which are involved in reduce azole susceptibility. The pleiotropic drug transporter PDR10 was the single most highly upregulated transporter gene in multiple strains of M. furfur after azole treatment and increased expression of PDR10 is associated with reduced azole susceptibility in some systemic disease isolates of M. furfur Deletion of PDR10 in a pathogenic M. furfur strain with reduced susceptibility reduced MIC values to the level of that in susceptible isolates. The current dearth of antifungal technologies, globally emerging multi-azole resistance, and broad agriculture and consumer care use of azoles means improved understanding of the mechanisms underlying intrinsic and acquired azole resistance in Malassezia is crucial for development of antibiotic stewardship and antifungal treatment strategies.
Collapse
|
40
|
Favarello LM, Nucci M, Queiroz-Telles F, Guimarães T, Salles MJ, Sukiennik TCT, da Matta DA, Melo ASA, Colombo AL. Trends towards lower azole susceptibility among 200 Candida tropicalis bloodstream isolates from Brazilian medical centres. J Glob Antimicrob Resist 2021; 25:199-201. [PMID: 33812048 DOI: 10.1016/j.jgar.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Candida tropicalis is one of the three most frequent species causing candidaemia in Latin America. Despite the high prevalence of C. tropicalis in candidaemia cases in Brazil, little is known about the trends in fluconazole susceptibility over time. The objective of this study was to evaluate temporal trends in azole resistance rates among C. tropicalis bloodstream isolates from patients treated in six Brazilian medical centres over a 12-year period. METHODS We selected 200 C. tropicalis bloodstream isolates from six medical centres in Brazil collected between 2007 and 2018. Species identification was confirmed by MALDI-TOF/MS. Antifungal susceptibility testing for four antifungal agents was performed by the Clinical and Laboratory Standards Institute (CLSI) microbroth method. RESULTS Overall, rates of non-susceptibility were 4% and 3.5% to fluconazole and voriconazole, respectively. All isolates were susceptible to amphotericin B and only one isolate was resistant to echinocandins. CONCLUSION Although we failed to demonstrate statistical differences in the rates of azole resistance documented during the period of analysis, trends towards lower susceptibility to fluconazole and voriconazole were shown.
Collapse
Affiliation(s)
- Larissa M Favarello
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcio Nucci
- Hospital Universitário da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Queiroz-Telles
- Departamento de Saúde Coletiva, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Thaís Guimarães
- Hospital do Servidor Público Estadual de São Paulo, São Paulo, Brazil
| | - Mauro J Salles
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | | | - Daniel A da Matta
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Analy S A Melo
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Arnaldo L Colombo
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
41
|
Arné P, Risco-Castillo V, Jouvion G, Le Barzic C, Guillot J. Aspergillosis in Wild Birds. J Fungi (Basel) 2021; 7:241. [PMID: 33807065 PMCID: PMC8004873 DOI: 10.3390/jof7030241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/23/2023] Open
Abstract
The ubiquitous fungi belonging to the genus Aspergillus are able to proliferate in a large number of environments on organic substrates. The spores of these opportunistic pathogens, when inhaled, can cause serious and often fatal infections in a wide variety of captive and free-roaming wild birds. The relative importance of innate immunity and the level of exposure in the development of the disease can vary considerably between avian species and epidemiological situations. Given the low efficacy of therapeutic treatments, it is essential that breeders or avian practitioners know the conditions that favor the emergence of Aspergillosis in order to put adequate preventive measures in place.
Collapse
Affiliation(s)
- Pascal Arné
- Ecole Nationale Vétérinaire d’Alfort, Centre Hospitalier Universitaire Vétérinaire de la Faune Sauvage (Chuv-FS), 94700 Maisons-Alfort, France; (V.R.-C.); (C.L.B.)
- Ecole Nationale Vétérinaire d’Alfort, Dynamic Research Group UPEC, EnvA, USC Anses, 94700 Maisons-Alfort, France; (G.J.); (J.G.)
| | - Veronica Risco-Castillo
- Ecole Nationale Vétérinaire d’Alfort, Centre Hospitalier Universitaire Vétérinaire de la Faune Sauvage (Chuv-FS), 94700 Maisons-Alfort, France; (V.R.-C.); (C.L.B.)
- Ecole Nationale Vétérinaire d’Alfort, Dynamic Research Group UPEC, EnvA, USC Anses, 94700 Maisons-Alfort, France; (G.J.); (J.G.)
- Ecole Nationale Vétérinaire d’Alfort, Biopôle Alfort, 94700 Maisons-Alfort, France
| | - Grégory Jouvion
- Ecole Nationale Vétérinaire d’Alfort, Dynamic Research Group UPEC, EnvA, USC Anses, 94700 Maisons-Alfort, France; (G.J.); (J.G.)
- Ecole Nationale Vétérinaire d’Alfort, Biopôle Alfort, 94700 Maisons-Alfort, France
| | - Cécile Le Barzic
- Ecole Nationale Vétérinaire d’Alfort, Centre Hospitalier Universitaire Vétérinaire de la Faune Sauvage (Chuv-FS), 94700 Maisons-Alfort, France; (V.R.-C.); (C.L.B.)
| | - Jacques Guillot
- Ecole Nationale Vétérinaire d’Alfort, Dynamic Research Group UPEC, EnvA, USC Anses, 94700 Maisons-Alfort, France; (G.J.); (J.G.)
- Ecole Nationale Vétérinaire d’Alfort, Biopôle Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
42
|
Capric acid secreted by Saccharomyces boulardii influences the susceptibility of Candida albicans to fluconazole and amphotericin B. Sci Rep 2021; 11:6519. [PMID: 33753842 PMCID: PMC7985486 DOI: 10.1038/s41598-021-86012-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
The effect of capric acid, secreted by the probiotic yeasts Saccharomyces boulardii, was evaluated on the activities of fluconazole (FLC) and amphotericin B (AMB) against pathogenic Candida albicans fungus. The findings indicated that capric acid may be a promising additive for use in combination with FLC. A FLC-capric acid combination led to reduced efflux activity of multidrug resistance (MDR) transporter Cdr1p by causing it to relocalize from the plasma membrane (PM) to the interior of the cell. The above effect occurred due to inhibitory effect of FLC-capric acid combination of ergosterol biosynthesis. However, capric acid alone stimulated ergosterol production in C. albicans, which in turn generated cross resistance towards AMB and inhibited its action (PM permeabilization and cytoplasm leakage) against C. albicans cells. This concluded that AMB should not be administered among dietary supplements containing capric acid or S. boulardii cells.
Collapse
|
43
|
Suchodolski J, Krasowska A. Fructose Induces Fluconazole Resistance in Candida albicans through Activation of Mdr1 and Cdr1 Transporters. Int J Mol Sci 2021; 22:ijms22042127. [PMID: 33669913 PMCID: PMC7924610 DOI: 10.3390/ijms22042127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.
Collapse
|
44
|
Blokhina SV, Ol'khovich MV, Sharapova AV, Levshin IB, Perlovich GL. Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Morris AJ, McKinney WP, Rogers K, Freeman JT, Roberts SA. Antifungal susceptibility of clinical mould isolates in New Zealand, 2001-2019. Pathology 2021; 53:639-644. [PMID: 33518383 DOI: 10.1016/j.pathol.2020.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022]
Abstract
The objective of this study was to review the antifungal susceptibility of clinical mould isolates performed by the New Zealand Mycology Reference Laboratory. Isolates were either local or referred for testing from other New Zealand laboratories. All isolates were tested by the broth colorimetric microdilution method, Sensititre YeastOne (SYO). Epidemiological cut-off values (ECVs) derived from either the Clinical and Laboratory Standards Institute (CLSI) method or SYO were used to determine the proportion of non-wild type (non-WT) isolates, i.e., those with an increased likelihood to harbour acquired mechanisms of resistance. A total of 614 isolates were tested. Most isolates (55%) were from the respiratory tract followed by musculoskeletal tissue (17%), eye (10%) and abdomen (5%). The azoles had similar activity except for voriconazole which was less active against the Mucorales. The echinocandins had good activity against Aspergillus spp., other hyaline moulds and dematiaceous isolates but were inactive against Fusarium spp., Lomentospora prolificans and the Mucorales. Amphotericin B had best activity against the Mucorales. The two least susceptible groups were Fusarium spp. and L. prolificans isolates. Three Aspergillus isolates were non-WT for amphotericin B, and four non-WT for azoles. Non-WT were not encountered for caspofungin. Non-Aspergillus isolates in New Zealand have susceptibility patterns similar to those reported elsewhere. In contrast to a growing number of other countries, azole resistance was rare in A. fumigatus sensu stricto. Non-WT isolates were uncommon. The results provide a baseline for monitoring emerging antifungal resistance in New Zealand and support current Australasian treatment guidelines for invasive fungal infections.
Collapse
Affiliation(s)
- Arthur J Morris
- New Zealand Mycology Reference Laboratory, LabPlus, Auckland City Hospital, Auckland, New Zealand.
| | - Wendy P McKinney
- New Zealand Mycology Reference Laboratory, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Karen Rogers
- New Zealand Mycology Reference Laboratory, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Joshua T Freeman
- Microbiology Laboratory, Christchurch Hospital, Christchurch, New Zealand
| | - Sally A Roberts
- New Zealand Mycology Reference Laboratory, LabPlus, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
46
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
47
|
Assress HA, Selvarajan R, Nyoni H, Ogola HJO, Mamba BB, Msagati TAM. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3217-3229. [PMID: 32914303 DOI: 10.1007/s11356-020-10688-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) can be significant sources of antifungal resistant fungi, which can disseminate further in the environment by getting into rivers together with effluents discharged from WWTPs and pose a risk for human health. In this study, the presence of azole resistance was determined in fungal isolates from treated effluents of two WWTPs using the standard microdilution method from Clinical and Laboratory Standards Institute (CLSI). A total of 41 fungal isolates representing 23 fungal species and 16 fungal genera were obtained. Fungal genera related to the known human and/or plant pathogens such as Aspergillus, Fusarium, and Candida were detected. Among the observed species, the susceptibility of Aspergillus fumigatus and Fusarium oxysporum was tested against fluconazole (FCZ), ketoconazole (KTZ), itraconazole (ITZ), and voriconazole (VCZ). The isolate A. fumigatus was susceptible to KTZ, ITZ, and VCZ, while it showed resistance against FCZ. On the contrast, the isolate F. oxysporum showed resistance to KTZ, ITZ, and VCZ. Comparatively, VCZ showed highest activity against both A. fumigatus and F. oxysporum. Analysis of the gene Cyp51A for the A. fumigatus isolate showed no evidence of drug resistance that could be related to point mutations and/or tandem repeats in the gene. To the best of our knowledge, this is the first susceptibility test study on A. fumigatus and F. oxysporum isolates from the WWTPs of South Africa. In conclusion, this study indicated an urgent need for thorough investigation with larger group of fungal isolates from different regions of South Africa to broadly understand the role of WWTPs in the dissemination of azole antifungal drug resistance.
Collapse
Affiliation(s)
- Hailemariam Abrha Assress
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
| | - Henry Joseph Oduor Ogola
- College of Agriculture and Environmental Sciences, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida, Johannesburg, 1709, South Africa
| | - Bhekie B Mamba
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa
- State Key Laboratory of Separation Membranes and Membrane Process/National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus A M Msagati
- College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, P.O. Box 392, UNISA 0003, Florida-Park, Roodepoort, Johannesburg, 1709, South Africa.
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P O Box 447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
48
|
Huseynov RM, Javadov SS, Osmanov A, Khasiyev S, Valiyeva SR, Almammadova E, Denning DW. The burden of serious fungal infections in Azerbaijan. Ther Adv Infect Dis 2021; 8:20499361211043969. [PMID: 34497715 PMCID: PMC8419541 DOI: 10.1177/20499361211043969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Azerbaijan is an upper middle-income country in South Caucasus with an area of 86,600 km2 and a total population of 10 million people and gross domestic product of US $4480 per capita. The aim of this research is to estimate fungal infection burden and highlight the problem at national and international levels. METHODS Fungal infection burden was estimated using data from epidemiological papers and population at risk and LIFE (Leading International Fungal Education) modelling. RESULTS The number of people living with human immunodeficiency virus (PLHIV) in 2018 was 6193, 29% of them not receiving antiretroviral therapy. Based on 90% and 20% rates of oral and oesophageal candidiasis in patients with CD4 cell count <200 µl-1 we estimate 808 and 579 patients with oral and oesophageal candidiasis, respectively. The annual incidences of cryptococcal meningitis and Pneumocystis pneumonia are 5 and 55 cases, respectively. We estimated 2307 cases of chronic pulmonary aspergillosis (CPA), 4927 patients with allergic bronchopulmonary aspergillosis (ABPA), and 6504 with severe asthma with fungal sensitization (SAFS). Using data on chronic obstructive pulmonary diseases (COPD), lung cancer, acute myeloid leukaemia rates, and number of transplantations, we estimated 693 cases of invasive aspergillosis following these conditions. Using a low-European rate for invasive candidiasis, we estimated 499 and 75 patients with candidemia and intra-abdominal candidiasis respectively. The number of adult women (15-55 years) in Azerbaijan is ~2,658,000, so it was estimated that 159,490 women suffer from recurrent vulvovaginal candidiasis (rVVC). DISCUSSION In total, the estimated number of people suffering from fungal diseases in Azerbaijan is 225,974 (2.3% of the population). However, the fungal rate is underestimated due to lack of epidemiological data. The most imminent need is improvement in diagnostic capabilities. This aim should be achieved via establishing a reference laboratory and equipping major clinical centers with essential diagnostics assays.
Collapse
Affiliation(s)
- Ravil M. Huseynov
- The Department of Medical Microbiology and Immunology, Azerbaijan Medical University, Mardanov Qardashlari 98, Baku, Azerbaijan
| | - Samir S. Javadov
- The Department of Medical Microbiology and Immunology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Ali Osmanov
- Global Action Fund for Fungal Infections, Geneva, Switzerland
| | - Shahin Khasiyev
- The Department of Informatics and Statistics, Ministry of Health of Azerbaijan Republic, Baku, Azerbaijan
| | - Samira R. Valiyeva
- Republican Centre for Combating AIDS, Ministry of Health of Azerbaijan Republic, Baku, Azerbaijan
| | - Esmira Almammadova
- Republican Centre for Combating AIDS, Ministry of Health of Azerbaijan Republic, Baku, Azerbaijan
| | - David W. Denning
- Global Action Fund for Fungal Infections, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
49
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
50
|
Somboon P, Soontorngun N. An actin depolymerizing agent 19,20-epoxycytochalasin Q of Xylaria sp. BCC 1067 enhanced antifungal action of azole drugs through ROS-mediated cell death in yeast. Microbiol Res 2020; 243:126646. [PMID: 33227681 DOI: 10.1016/j.micres.2020.126646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Multidrug resistance is a highly conserved phenomenon among all living organisms and a major veritable public health problem worldwide. Repetitive uses of antibiotics lead to antimicrobial drug resistance. Here, 19,20-epoxycytochalasin Q (ECQ) was isolated from endophytic fungus Xylaria sp. BCC 1067 and, its chemical structure was determined via chromatographic and spectral methods. ECQ displayed an antifungal activity with low MIC50 of 410 and 55 mg/l in the model yeast Saccharomyces cerevisiae wild-type and ScΔpdr5 strains, respectively. ECQ was a new inducer and potential substrate of key multi-drug efflux pumps S. cerevisiae ScPdr5 and Candida albicans CaCdr1. ECQ targeted actin filament, disrupting actin dynamics of yeast cells. ECQ also sensitized the ScΔsrv2 mutant, lacking suppressor of RasVal19. Overexpression of ScPDR5 or CaCDR1 genes prevented aggregation of actin and alleviated antifungal effect of ECQ. Additionally, ECQ induced high accumulation of reactive oxygen species, caused plasma membrane leakage and decreased yeast cell survival. Importantly, a discovery of ECQ implied a cellular connection between multi-drug resistance and actin stability, an important determinant of transporter mediated-drug resistance mechanism. Combination of ECQ and antifungal azoles displayed promising drug synergy against S. cerevisiae strains expressing multi-drug transporters, thereby providing potential solution for antifungal therapy and chemotherapeutic application.
Collapse
Affiliation(s)
- Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|