1
|
Cheng WH, Chen RM, Ong SC, Yeh YM, Huang PJ, Lee CC. Interaction of human neutrophils with Trichomonas vaginalis protozoan highlights lactoferrin secretion. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00210-X. [PMID: 39551635 DOI: 10.1016/j.jmii.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Neutrophils are vital constituents of the immune response in the vaginal environment, playing a pivotal role in the defense against trichomoniasis. Earlier studies have shown that Trichomonas vaginalis (T. vaginalis) can release leukotriene B4 (LTB4), a molecule that attracts and activates neutrophils. Additionally, secretory products from this parasite can induce the production of interleukin-8 (IL-8) in mast cells and neutrophils, which further recruits neutrophils to the infection site. The precise reasons behind T. vaginalis actively promoting interaction between parasites and neutrophils rather than inhibiting the inflammatory response remain unclear. RESULTS In this study, we collected conditioned medium to elucidate the intricate dynamics between T. vaginalis and human neutrophils. We conducted a comprehensive profiling of soluble excretory/secretory proteins (ESPs), identifying 192 protein spots, of which 94 were successfully characterized through mass spectrometry analysis. Notably, the majority of induced ESPs from co-cultivation exhibited consistency with the trichomonad and neutrophil standalone groups, except for lactoferrin, which was observed exclusively following the interaction between neutrophils and T. vaginalis. The secretion of lactoferrin was determined to be a contact-dependent process. It was interesting to identify the ability of the iron-loaded lactoferrin to extend the survival time of T. vaginalis under iron-deficient conditions. CONCLUSIONS This study represents the first to identify the origin of lactoferrin during T. vaginalis infection, shedding light on the potential reason for T. vaginalis's ability to attract neutrophils to the infection site: the acquisition of the iron source, lactoferrin.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ruei-Min Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| |
Collapse
|
2
|
Acanthamoeba castellanii Genotype T4: Inhibition of Proteases Activity and Cytopathic Effect by Bovine Apo-Lactoferrin. Microorganisms 2023; 11:microorganisms11030708. [PMID: 36985284 PMCID: PMC10059889 DOI: 10.3390/microorganisms11030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.
Collapse
|
3
|
Reyes-López M, Ramírez-Rico G, Serrano-Luna J, de la Garza M. Activity of Apo-Lactoferrin on Pathogenic Protozoa. Pharmaceutics 2022; 14:pharmaceutics14081702. [PMID: 36015327 PMCID: PMC9414845 DOI: 10.3390/pharmaceutics14081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Parasites and other eventually pathogenic organisms require the ability to adapt to different environmental conditions inside the host to assure survival. Some host proteins have evolved as defense constituents, such as lactoferrin (Lf), which is part of the innate immune system. Lf in its iron-free form (apo-Lf) and its peptides obtained by cleavage with pepsin are microbicides. Parasites confront Lf in mucosae and blood. In this work, the activity of Lf against pathogenic and opportunistic parasites such as Cryptosporidium spp., Eimeria spp., Entamoeba histolytica, Giardia duodenalis, Leishmania spp., Trypanosoma spp., Plasmodium spp., Babesia spp., Toxoplasma gondii, Trichomonas spp., and the free-living but opportunistic pathogens Naegleria fowleri and Acanthamoeba castellani were reviewed. The major effects of Lf could be the inhibition produced by sequestering the iron needed for their survival and the production of oxygen-free radicals to more complicated mechanisms, such as the activation of macrophages to phagocytes with the posterior death of those parasites. Due to the great interest in Lf in the fight against pathogens, it is necessary to understand the exact mechanisms used by this protein to affect their virulence factors and to kill them.
Collapse
|
4
|
Dick CF, Rocco-Machado N, Dos-Santos ALA, Carvalho-Kelly LF, Alcantara CL, Cunha-E-Silva NL, Meyer-Fernandes JR, Vieyra A. An Iron Transporter Is Involved in Iron Homeostasis, Energy Metabolism, Oxidative Stress, and Metacyclogenesis in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:789401. [PMID: 35083166 PMCID: PMC8785980 DOI: 10.3389/fcimb.2021.789401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
The parasite Trypanosoma cruzi causes Chagas’ disease; both heme and ionic Fe are required for its optimal growth, differentiation, and invasion. Fe is an essential cofactor in many metabolic pathways. Fe is also harmful due to catalyzing the formation of reactive O2 species; for this reason, all living systems develop mechanisms to control the uptake, metabolism, and storage of Fe. However, there is limited information available on Fe uptake by T. cruzi. Here, we identified a putative 39-kDa Fe transporter in T. cruzi genome, TcIT, homologous to the Fe transporter in Leishmania amazonensis and Arabidopsis thaliana. Epimastigotes grown in Fe-depleted medium have increased TcIT transcription compared with controls grown in regular medium. Intracellular Fe concentration in cells maintained in Fe-depleted medium is lower than in controls, and there is a lower O2 consumption. Epimastigotes overexpressing TcIT, which was encountered in the parasite plasma membrane, have high intracellular Fe content, high O2 consumption—especially in phosphorylating conditions, high intracellular ATP, very high H2O2 production, and stimulated transition to trypomastigotes. The investigation of the mechanisms of Fe transport at the cellular and molecular levels will assist in elucidating Fe metabolism in T. cruzi and the involvement of its transport in the differentiation from epimastigotes to trypomastigotes, virulence, and maintenance/progression of the infection.
Collapse
Affiliation(s)
- Claudia F Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L A Dos-Santos
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F Carvalho-Kelly
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina L Alcantara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narcisa L Cunha-E-Silva
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program in Translational Biomedicine/BIOTRANS, Unigranrio University, Duque de Caxias, Brazil
| |
Collapse
|
5
|
Assessment of the Effect of Lactoferrin on Promastigote and Amastigote Forms of Leishmania major In Vitro. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.95865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep 2018; 8:18020. [PMID: 30575774 PMCID: PMC6303297 DOI: 10.1038/s41598-018-36563-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin (LF) is an 80 KDa iron-binding glycoprotein that plays a significant role in the innate immune system and is considered to be an important microbicide molecule. It has been suggested to be effective in the treatment of giardiasis, an intestinal disease caused by the protozoan parasite G. lamblia. However, the molecular mechanisms by which LF exerts its effect on this parasite are unknown. Most of the microbicidal activity of human or bovine LF (hLF or bLF) has been associated with the N-terminal region of the mature LF - lactoferricin (LFcin). LFcin is produced by pepsin cleavage of the native protein in vitro and likely in vivo. In this work, we analyse the participation of the endocytic machinery of G. lamblia in the internalization of bLF and bLFcin and their effects on cell homeostasis. Our results show that, when bLF or bLFcin are internalized by receptor-mediated endocytosis, cell growth stops, and morphological changes are produced in the trophozoites, which ultimately will produce immature cysts. Our findings contribute to disclose the fine mechanism by which bLF and bLFcin may function as an antigiardial molecule and why they have therapeutic potential to eradicate giardiasis.
Collapse
|
7
|
Gastelum-Martínez A, León-Sicairos C, Plata-Guzmán L, Soto-Castro L, León-Sicairos N, de la Garza M. Iron-modulated virulence factors of Entamoeba histolytica. Future Microbiol 2018; 13:1329-1341. [PMID: 30238768 DOI: 10.2217/fmb-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is a human parasite that causes amoebiasis, a disease that affects the colon and liver and is prevalent worldwide. This protozoan requires a high concentration of iron to survive and reproduce. Iron modulates the expression of parasite virulence factors, including hemoglobinases, hemoglobin-binding proteins and cysteine proteases, as well as proteins related to the amoebic cytoskeleton. This review summarizes the virulence factors that are affected by iron, resulting in upregulation or downregulation of E. histolytica genes. This review also discusses the functionality of iron in the mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Aurora Gastelum-Martínez
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Claudia León-Sicairos
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Laura Plata-Guzmán
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Liliana Soto-Castro
- Programa Regional del Noroeste para el Posgrado en Biotecnología de la Facultad de Ciencias Químico Biológicas. Universidad Autónoma de Sinaloa. Av. de las Américas y Josefa Ortiz (Cd. Universitaria) Culiacán 80030, Sinaloa, Mexico
| | - Nidia León-Sicairos
- CIASaP Facultad de Medicina. Universidad Autónoma de Sinaloa. Cedros y Sauces Frac. Fresnos. Culiacán 80246, Sinaloa, México; Departamento de Investigación, Hospital Pediátrico de Sinaloa. Boulevard Constitución S/N, Col. Jorge Almada, Culiacán 80200, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco 07360, CdMx, Mexico
| |
Collapse
|
8
|
Kannathasan S, Murugananthan A, Kumanan T, de Silva NR, Rajeshkannan N, Haque R, Iddawela D. Epidemiology and factors associated with amoebic liver abscess in northern Sri Lanka. BMC Public Health 2018; 18:118. [PMID: 29316900 PMCID: PMC5761098 DOI: 10.1186/s12889-018-5036-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically diagnosed amoebic liver abscess (ALA) caused by Entamoeba histolytica has been an important public health problem in Jaffna district, northern Sri Lanka for last three decades. In order to draw up a control strategy for elimination of this condition, knowledge of its epidemiology and factors associated with this condition in the local context is vital. METHODS All clinically diagnosed ALA patients admitted to the Teaching Hospital, Jaffna during the study period were included in the study and the data were collected using an interviewer administered questionnaire. One hundred blood samples from randomly selected toddy (a local alcoholic drink consisting of the fermented sap of the Palmyrah palm) consumers and 200 toddy samples were collected. Toddy samples were cultured in Robinson's medium to establish the presence of Entamoeba histolytica in the sample. Climatic data and the total toddy sales in the district were obtained from the Meteorological and Excise Departments respectively. A sub group of randomly selected 100 patients were compared with 100 toddy consumers who were negative for E. histolytica antibody to explore the potential risk factors. RESULTS Between July 2012 and July 2015, 346 of 367 ALA patients were enrolled in this study. Almost all patients (98.6%) were males with a history of heavy consumption of alcohol (100%). Almost all (94.2%) were within the age group 31-50 years. None of the cultured toddy samples grew E. histolytica. The monthly incidence of disease peaked in the dry season, matching the total toddy sales in the district. Age, type of alcohol and frequency of drinking were identified as potential risk factors whereas frequency of alcohol consumption and type of alcohol (consuming toddy and arrack) were identified as the independent risk factors. Moreover, the knowledge, attitude and practices towards ALA were poor among participants and the control group. CONCLUSIONS Though the number of cases has declined in recent years, ALA still remains as an important public health problem in Jaffna district. The transmission route of E. histolytica leading to ALA has to be further explored. Moreover, greater awareness among the public who are at risk would be beneficial in order to eliminate the disease.
Collapse
Affiliation(s)
- Selvam Kannathasan
- Department of Pathology, Faculty of Medicine, University of Jaffna, Jaffna, Sri Lanka
| | | | | | | | | | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Devika Iddawela
- Department of Parasitology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
9
|
Rybarczyk J, Kieckens E, Vanrompay D, Cox E. In vitro and in vivo studies on the antimicrobial effect of lactoferrin against Escherichia coli O157:H7. Vet Microbiol 2017; 202:23-28. [DOI: 10.1016/j.vetmic.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
10
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
11
|
Zinc bioavailability from whey. Enthalpy-entropy compensation in protein binding. Food Res Int 2016; 89:749-755. [DOI: 10.1016/j.foodres.2016.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023]
|
12
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
13
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
14
|
Anand N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int J Nanomedicine 2015; 10:6355-69. [PMID: 26504384 PMCID: PMC4605239 DOI: 10.2147/ijn.s85286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mohan Lal Dubey
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol 2015. [PMID: 26217331 PMCID: PMC4496571 DOI: 10.3389/fmicb.2015.00702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.
Collapse
Affiliation(s)
- Nidia León-Sicairos
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico
| | - Uriel A Angulo-Zamudio
- Maestría en Ciencias de la Salud, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico
| | - Jorge Velázquez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| | | | - Adrian Canizalez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| |
Collapse
|
16
|
Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416712. [PMID: 26090408 PMCID: PMC4450812 DOI: 10.1155/2015/416712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.
Collapse
|
17
|
Greganova E, Steinmann M, Mäser P, Fankhauser N. In silico ionomics segregates parasitic from free-living eukaryotes. Genome Biol Evol 2014; 5:1902-9. [PMID: 24048281 PMCID: PMC3814192 DOI: 10.1093/gbe/evt134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.
Collapse
Affiliation(s)
- Eva Greganova
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Hiller C, Nissen A, Benítez D, Comini MA, Krauth-Siegel RL. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage. PLoS Pathog 2014; 10:e1004075. [PMID: 24722489 PMCID: PMC3983053 DOI: 10.1371/journal.ppat.1004075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/02/2014] [Indexed: 01/23/2023] Open
Abstract
African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px)-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I–II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I–II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective stage of T. brucei. The respective knockout of the cytosolic px I–II in the procyclic insect form resulted in cells that were fully viable in Trolox-free medium. In many cell types, mitochondria are the main source of intracellular reactive oxygen species but iron-induced oxidative lysosomal damage has been described as well. African trypanosomes are the causative agents of human sleeping sickness and the cattle disease Nagana. The parasites are obligate extracellular pathogens that multiply in the bloodstream and body fluids of their mammalian hosts and as procyclic forms in their insect vector, the tsetse fly. Bloodstream Trypanosoma brucei in which the genes for cytosolic lipid hydroperoxide-detoxifying peroxidases have been knocked out undergo an extremely rapid membrane peroxidation and lyse within less than two hours when they are cultured without an exogenous antioxidant. Here we show that the primary site of intracellular damage is the single terminal lysosome of the parasites. Disintegration of the lysosome clearly precedes damage of the mitochondrion and parasite death. Iron, acquired by the endocytosis of iron-loaded host transferrin, induces cell lysis. Contrary to the cytosolic enzymes, the respective mitochondrial peroxidase is dispensable for both in vitro proliferation and mouse infectivity. This is the first report demonstrating that cytosolic thiol peroxidases are responsible for protecting the lysosome of a cell.
Collapse
Affiliation(s)
- Corinna Hiller
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Amrei Nissen
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A. Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
19
|
Trichomoniasis and lactoferrin: future prospects. Infect Dis Obstet Gynecol 2012; 2012:536037. [PMID: 22988421 PMCID: PMC3439953 DOI: 10.1155/2012/536037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/05/2012] [Accepted: 08/18/2012] [Indexed: 01/19/2023] Open
Abstract
Trichomonas vaginalis is a parasitic protozoan which infects the urogenital tract and requires iron as an essential nutrient. Iron is known to upregulate various adhesins required for cytoadherance and other factors involved in pathogenesis. At mucosal surfaces, iron is chelated by lactoferrin resulting in low levels of free iron. However, pathogens have evolved mechanisms for an increased uptake of iron. The present review highlights the role of iron in survival of Trichomonas during fluctuating concentrations of iron at mucosal surfaces during the menstrual cycle. Future prospects in terms of new drug and vaccine targets related to iron and its receptors have also been described.
Collapse
|
20
|
Abstract
Lactoferrin is an abundant iron-binding protein in milk. This 80 kDa bilobal glycoprotein is also present in several other secreted bodily fluids, as well as in the secondary granules of neutrophils. The potent iron-binding properties of lactoferrin can locally create iron deficiency, and this is an important factor in host defense as it prevents bacteria from growing and forming biofilms. In addition to having antibacterial activity, lactoferrin is now known to have a long list of other beneficial biological properties. It has direct antiviral, antifungal, and even some anticancer activities. It can also promote wound healing and bone growth, or it can act as an iron carrier. Moreover, lactoferrin displays a cytokine-like “alarmin” activity, and it activates the immune system. Simultaneously, it can bind endotoxin (lipopolysaccharide), and in doing so, it modulates the activity of the host immune response. The majority of these intriguing biological activities reside in the unique positively charged N-terminal region of the protein. Interestingly, several peptides, which retain many of the beneficial activities, can be released from this region of lactoferrin. An isoform of the human protein, known as delta-lactoferrin, is expressed inside many cells, where it acts as a transcription factor. Lactoferrin purified from human and bovine milk have very similar but not completely identical properties. Lactoferrin receptors have been identified on the surface of various cells, and some of these can bind both the human and the bovine protein. Because of the extensive health-promoting effects of lactoferrin, there has been considerable interest in the use of bovine or human lactoferrin as a “protein nutraceutical” or as a therapeutic protein. When lactoferrin is used as a “biologic drug”, it seems to be orally active in contrast to most other therapeutic proteins.
Collapse
Affiliation(s)
- Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|