1
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
2
|
Tantry M, Shaw T, Rao S, Mukhopadhyay C, Tellapragada C, Kalwaje Eshwara V. Heterogeneity and Genomic Plasticity of Acinetobacter baumannii and Acinetobacter nosocomialis Isolates Recovered from Clinical Samples in India. Curr Microbiol 2024; 81:415. [PMID: 39425793 DOI: 10.1007/s00284-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Acinetobacter baumannii and Acinetobacter nosocomialis are the imperious pathogens in the intensive care units. We aimed to explore the genomic features of these pathogens to understand the factors influencing their plasticity. Using next-generation sequencing, two carbapenem-resistant A. baumannii (AbaBS-3, AbaETR-4) isolates and a pan-susceptible A. nosocomialis (AbaAS-5) isolate were characterised. All genomes exhibited 94% similarity with a degree of heterogeneity. AbaBS-3 and AbaETR-4 harboured antibiotic resistance gene (ARG) repertoire to most antibiotic classes. Carbapenem resistance was due to blaOXA-23 and blaOXA-66 besides the antibiotic efflux pumps. Diverse mobile genetic elements (MGE), insertion sequences (IS), prophages and virulence determinants with a plethora of stress response genes were identified in all three genomes. Class-1 integron in AbaETR-4, encoded genes that confer resistance to aminoglycosides, phenicol, sulfonamides and disinfectants. Substitutions in LpxACD and PmrCAB of AbaETR-4 confirmed the colistin resistance in vitro. Novel mutations in piuA, responsible for transporting cefiderocol, were found in AbaBS-3 and AbaETR-4. Plasmids carrying toxin-antitoxin systems, ARGs and ISs were present in these genomes. All three genomes harboured diverse protein secretion systems, virulence determinants related to immune evasion, adherence, biofilm formation and iron acquisition systems. AbaAS-5 exclusively harboured serine protease pkf, and CpaA substrate of type-II secretion system but lacked the acinetobactin-iron acquisition system. Our work delivers a holistic genome characterization of A. baumannii, coupled with a trailblazing attempt to study A. nosocomialis from India. The presence of ARGs and potential virulence factors interspersed with MGE is a cause for concern, depicting the dynamic adaptability mediated by genetic recombination.
Collapse
Affiliation(s)
- Manasa Tantry
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Shwethapriya Rao
- Department of Critical Care, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 14183, Stockholm, Sweden
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Tang C, Hu X, Tang J, Wang L, Liu X, Peng Y, Xia Y, Xie J. The symbiont Acinetobacter baumannii enhances the insect host resistance to entomopathogenic fungus Metarhizium anisopliae. Commun Biol 2024; 7:1184. [PMID: 39300313 DOI: 10.1038/s42003-024-06779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Major symbiotic organisms have evolved to establish beneficial relationships with hosts. However, understanding the interactions between symbionts and insect hosts, particularly for their roles in defense against pathogens, is still limited. In a previous study, we proposed that the fungus Metarhizium anisopliae can infect the brown planthopper Nilaparvata lugens, a harmful pest for rice crops. To expand on this, we investigated changes in N. lugens' intestinal commensal community after M. anisopliae infection and identified key gut microbiotas involved. Our results showed significant alterations in gut microbiota abundance and composition at different time points following infection with M. anisopliae. Notably, certain symbionts, like Acinetobacter baumannii, exhibited significant variations in response to the fungal infection. The decrease in these symbionts had a considerable impact on the insect host's survival. Interestingly, reintroducing A. baumannii enhanced the host's resistance to M. anisopliae, emphasizing its role in pathogen defense. Additionally, A. baumannii stimulated host immune responses, as evidenced by increased expression of immune genes after reintroduction. Overall, our findings highlight the significance of preserving a stable gut microbial community for the survival of insects. In specific conditions, the symbiotic microorganism A. baumannii can enhance the host's ability to resist entomopathogenic pathogens through immune regulation.
Collapse
Affiliation(s)
- Cui Tang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China
| | - Xiao Hu
- Wuhan Kernel Bio-tech Co. Ltd, Guannanyuan Road No.17, Guannan Industrial Park, Wuhan, 430074, China
| | - Jifeng Tang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China
| | - Lei Wang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China
| | - Xuewei Liu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China
| | - Yifan Peng
- Wuhan Kernel Bio-tech Co. Ltd, Guannanyuan Road No.17, Guannan Industrial Park, Wuhan, 430074, China
| | - Yuxian Xia
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China.
- National Engineering Research Center of Microbial Pesticides (Joint institute-Chongqing University), Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 405200, China.
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 405200, China.
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing, 405200, China.
- National Engineering Research Center of Microbial Pesticides (Joint institute-Chongqing University), Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 405200, China.
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 405200, China.
| |
Collapse
|
4
|
Kratou M, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Corona-Guerrero I, Cano-Argüelles AL, Wu-Chuang A, Bamgbose T, Almazan C, Mosqueda J, Obregón D, Mateos-Hernández L, Said MB, Cabezas-Cruz A. Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment. BMC Microbiol 2024; 24:322. [PMID: 39237861 PMCID: PMC11378419 DOI: 10.1186/s12866-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia.
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Avenue 31 Between 158 and 190, Havana, 10600, Cuba
| | - Elianne Piloto-Sardiñas
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de Las Lajas, Mayabeque, 32700, Cuba
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca, 37008, Spain
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Kings University, Odeomu, Osun State, Nigeria
- National Agency for Food and Drug Control and Administration (NAFDAC), Isolo, Lagos State, Nigeria
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France.
| |
Collapse
|
5
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
6
|
Mahdally NH, ElShiekh RA, Thissera B, Eltaher A, Osama A, Mokhtar M, Elhosseiny NM, Kashef MT, Magdeldin S, El Halawany AM, Rateb ME, Attia AS. Dihydrophenazine: a multifunctional new weapon that kills multidrug-resistant Acinetobacter baumannii and restores carbapenem and oxidative stress susceptibilities. J Appl Microbiol 2024; 135:lxae100. [PMID: 38627251 DOI: 10.1093/jambio/lxae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
AIMS The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority. METHODS AND RESULTS An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a marginally safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multipronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in subinhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics. CONCLUSIONS This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and nonconventional antimicrobial agent that is urgently needed.
Collapse
Affiliation(s)
- Norhan H Mahdally
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A ElShiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ashraf Eltaher
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ali M El Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- School of Pharmacy, Newgiza University, Giza 12585, Egypt
| |
Collapse
|
7
|
Casella LG, Torres NJ, Tomlinson BR, Shepherd M, Shaw LN. The novel two-component system AmsSR governs alternative metabolic pathway usage in Acinetobacter baumannii. Front Microbiol 2023; 14:1139253. [PMID: 37082186 PMCID: PMC10112286 DOI: 10.3389/fmicb.2023.1139253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
In this study, we identify a novel two-component system in Acinetobacter baumannii (herein named AmsSR for regulator of alternative metabolic systems) only present in select gammaproteobacterial and betaproteobacterial species. Bioinformatic analysis revealed that the histidine kinase, AmsS, contains 14 predicted N-terminal transmembrane domains and harbors a hybrid histidine kinase arrangement in its C-terminus. Transcriptional analysis revealed the proton ionophore CCCP selectively induces P amsSR expression. Disruption of amsSR resulted in decreased intracellular pH and increased depolarization of cytoplasmic membranes. Transcriptome profiling revealed a major reordering of metabolic circuits upon amsR disruption, with energy generation pathways typically used by bacteria growing in limited oxygen being favored. Interestingly, we observed enhanced growth rates for mutant strains in the presence of glucose, which led to overproduction of pyruvate. To mitigate the toxic effects of carbon overflow, we noted acetate overproduction in amsSR-null strains, resulting from a hyperactive Pta-AckA pathway. Additionally, due to altered expression of key metabolic genes, amsSR mutants favor an incomplete TCA cycle, relying heavily on an overactive glyoxylate shunt. This metabolic reordering overproduces NADH, which is not oxidized by the ETC; components of which were significantly downregulated upon amsSR disruption. As a result, the mutants almost exclusively rely on substrate phosphorylation for ATP production, and consequently display reduced oxygen consumption in the presence of glucose. Collectively, our data suggests that disruption of amsSR affects the function of the aerobic respiratory chain, impacting the energy status of the cell, which in turn upregulates alternative metabolic and energy generation pathways.
Collapse
Affiliation(s)
- Leila G. Casella
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Nathanial J. Torres
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Lee W, Kim MH, Park J, Kim YJ, Kim E, Heo EJ, Kim SH, Kim G, Shin H, Kim SH, Kim HY. Seasonal Changes in the Microbial Communities on Lettuce ( Lactuca sativa L.) in Chungcheong-do, South Korea. J Microbiol Biotechnol 2023; 33:219-227. [PMID: 36524338 PMCID: PMC9998205 DOI: 10.4014/jmb.2210.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Hee Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Juyeon Park
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - You Jin Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Jeong Heo
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Gyungcheon Kim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Tang M, Ding G, Lu X, Huang Q, Du H, Xiao G, Wang D. Exposure to Nanoplastic Particles Enhances Acinetobacter Survival, Biofilm Formation, and Serum Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234222. [PMID: 36500844 PMCID: PMC9735686 DOI: 10.3390/nano12234222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 05/04/2023]
Abstract
The interaction between nanoplastics and bacteria remains still largely unclear. In this study, we determined the effect of nanopolystyrene particle (NP) on a bacterial pathogen of Acinetobacter johnsonii AC15. Scanning electron microscopy (SEM) analysis indicated the aggregation of NPs from 10 μg/L to 100 μg/L on surface of A. johnsonii AC15, suggesting that A. johnsonii AC15 acted as the vector for NPs. Exposure to 100−1000 μg/L NPs increased the growth and colony-forming unit (CFU) of A. johnsonii AC15. In addition, exposure to 100−1000 μg/L NPs enhanced the amount of formed biofilm of A. johnsonii AC15. Alterations in expressions of 3 survival-related (zigA, basD, and zur), 5 biofilm formation-related (ompA, bap, adeG, csuC, and csuD), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were observed after exposure to 1000 μg/L NPs. Moreover, both CFU and survival rate of A. johnsonii AC15 in normal human serum (NHS) were significantly increased by 1−1000 μg/L NPs, suggesting the enhancement in serum resistance of Acinetobacter pathogen by NPs. In the NHS, expressions of 3 survival-related (zigA, basD, and zur), 9 biofilm formation-related (ompA, bap, adeF, adeG, csuA/B, csuC, csuD, csuE, and hlyD), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were affected by 1000 μg/L NPs. Expressions of 1 survival-related (zigA), 5 biofilm formation-related (bap, adeG, csuC, csuD, and csuE), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were also altered by 10 μg/L NPs after the addition of NHS. Therefore, exposure to NPs in the range of μg/L has the potential to enhance bacterial virulence by increasing their growth, biofilm formation, and serum resistance.
Collapse
Affiliation(s)
- Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Guoying Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Xiaoyu Lu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
- Correspondence: (G.X.); (D.W.)
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (G.X.); (D.W.)
| |
Collapse
|
10
|
Hou S, Wu H, Chen S, Li X, Zhang Z, Cheng Y, Chen Y, He M, An Q, Man C, Du L, Chen Q, Wang F. Bovine skin fibroblasts mediated immune responses to defend against bovine Acinetobacter baumannii infection. Microb Pathog 2022; 173:105806. [PMID: 36179976 DOI: 10.1016/j.micpath.2022.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen which can cause pneumonia, sepsis and infections of skin and soft tissue. The host mostly relies on innate immune responses to defend against the infection of A. baumannii. Currently, it has been confirmed that fibroblasts involved in innate immune responses. Therefore, to explore how bovine skin fibroblasts mediated immune responses to defend against A. baumannii infection, we analyzed the differential transcripts data of bovine skin fibroblasts infected with bovine A. baumannii by RNA-sequencing (RNA-seq). We found that there were 3014 differentially expressed genes (DEGs) at 14h with bovine A. baumannii infection, including 1940 up-regulated genes and 1074 down-regulated genes. Gene Ontology (GO) enrichment showed that ubiquitin protein ligase binding, IL-6 receptor complex, ERK1 and ERK2 cascade terms were mainly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that innate immune pathways were significantly enriched, such as TNF, IL-17, NLR, MAPK, NF-κB, endocytosis, apoptosis and HIF-1 signaling pathways. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed that GO terms such as chemokine receptor binding and Th17 cell differentiation and KEGG pathways such as TLR and cytokine-cytokine receptor interaction pathways were up-regulated. In addition, CASP3 and JUN were the core functional genes of apoptosis, while IL-6, ERBB2, EGFR, CHUK and MAPK8 were the core functional genes of immunity by Protein-Protein Interaction (PPI) analysis. Our study provided an in-depth understanding of the molecular mechanisms of fibroblasts against A. baumannii infection. It also lays the foundation for the development of new therapeutic targets for the diseases caused by A. baumannii infection and formulates effective therapeutic strategies for the prevention and control of the diseases caused by A. baumannii.
Collapse
Affiliation(s)
- Simeng Hou
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Haotian Wu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Xubo Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Meirong He
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
11
|
Schmidt SBI, Rodríguez-Rojas A, Rolff J, Schreiber F. Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129280. [PMID: 35714537 DOI: 10.1016/j.jhazmat.2022.129280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution and transmission of AMR. Previous studies showed that de-novo mutagenesis and horizontal gene transfer (HGT) by conjugation or transformation - important processes underlying resistance evolution and spread - are affected by antibiotics, metals and pesticides. However, natural microbial communities are also frequently exposed to biocides used as material preservatives, but it is unknown if these substances induce mutagenesis and HGT. Here, we show that active substances used in material preservatives can increase rates of mutation and conjugation in a species- and substance-dependent manner, while rates of transformation are not increased. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in Escherichia coli, whereas no increases were identified for Bacillus subtilis and Acinetobacter baylyi. Benzalkonium chloride, chlorhexidine and permethrin increased conjugation in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Taken together, our data show the importance of assessing the contribution of material preservatives on AMR evolution and spread.
Collapse
Affiliation(s)
- Selina B I Schmidt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Internal Medicine - Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
12
|
Odularu AT, Afolayan AJ, Sadimenko AP, Ajibade PA, Mbese JZ. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9048245. [PMID: 36060142 PMCID: PMC9433265 DOI: 10.1155/2022/9048245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Challenges encountered in relapse of illness caused by resistance of microorganisms to antimicrobial agents (drugs) are due to factors of severe stress initiated by random use of antibiotics and insufficient beneficial approaches. These challenges have resulted to multiple drug resistance (MDR) and, subsequently, biofilm formation. A type of intercellular communication signal called quorum sensing (QS) has been studied to cause the spread of resistance, thereby enabling a formation of stable community for microorganisms. The QS could be inhibited using QS inhibitors (QSIs) called quorum-quenching (QQ). The QQ is an antibiofilm agent. Indole derivatives from plant sources can serve as quorum-quenching eradication approach for biofilm, as well as a promising nontoxic antibiofilm agent. In other words, phytochemicals in plants help to control and prevent biofilm formation. It could be recommended that combination strategies of these indoles' derivatives with antibiotics would yield enhanced results.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- School of Further and Continuing Education, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony J. Afolayan
- Centre of Phytomedicine, Department of Botany, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, Private Bag X1314, South Africa
| | - Alexander P. Sadimenko
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
13
|
Breisch J, Schumm C, Poehlein A, Daniel R, Averhoff B. The carnitine degradation pathway of Acinetobacter baumannii and its role in virulence. Environ Microbiol 2022; 24:4437-4448. [PMID: 35652489 DOI: 10.1111/1462-2920.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.
Collapse
Affiliation(s)
- Jennifer Breisch
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Clemens Schumm
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
14
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
15
|
Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Arch Microbiol 2022; 204:200. [PMID: 35239017 DOI: 10.1007/s00203-022-02807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Biofilm formation by Acinetobacter baumannii is one of the major cause of its persistence in hospital environment. Biofilm phenotypes are more resistant to physical as well as chemical stresses than their planktonic counterparts. The present study was carried in quest of biofilm-associated protein markers and their association with various biological pathways of A. baumannii. The study was designed with an aim to highlight the crucial common factor present in the majority of the A. baumannii strains irrespective of its resistance nature. A label-free proteome comparison of biofilm and planktonic phenotypes of A. baumannii was done using QExactive tandem mass spectrometry. Our investigation suggests key elevation of adhesion factors, acetate metabolism, nutrient transporters, and secretion system proteins are required for biofilm formation in A. baumannii. Elevation of biofilm-associated proteins revealed that biofilm is the unique phenotype with the potential to form robust matrix-embedded colonies and defeat stress condition. Further, core protein markers of biofilm phenotypes could be used as targets for new clinical interventions to combat biofilm-associated infections.
Collapse
|
16
|
Ribeirinho-Soares S, Moreira NFF, Graça C, Pereira MFR, Silva AMT, Nunes OC. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. WATER RESEARCH 2022; 209:117932. [PMID: 34902759 DOI: 10.1016/j.watres.2021.117932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Cátia Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
17
|
Breisch J, Huber LS, Kraiczy P, Hubloher J, Averhoff B. The ß-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:170-178. [PMID: 35023294 DOI: 10.1111/1758-2229.13042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ß-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (ΔpcaHG) and the catechol-1,2-dioxygenase (ΔcatA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ß-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance.
Collapse
Affiliation(s)
- Jennifer Breisch
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Lisa Sophie Huber
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Josephine Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
18
|
Hamidian M, Maharjan RP, Farrugia DN, Delgado NN, Dinh H, Short FL, Kostoulias X, Peleg AY, Paulsen IT, Cain AK. Genomic and phenotypic analyses of diverse non-clinical Acinetobacter baumannii strains reveals strain-specific virulence and resistance capacity. Microb Genom 2022; 8:000765. [PMID: 35166651 PMCID: PMC8942024 DOI: 10.1099/mgen.0.000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a critically important pathogen known for its widespread antibiotic resistance and ability to persist in hospital-associated environments. Whilst the majority of A. baumannii infections are hospital-acquired, infections from outside the hospital have been reported with high mortality. Despite this, little is known about the natural environmental reservoir(s) of A. baumannii and the virulence potential underlying non-clinical strains. Here, we report the complete genome sequences of six diverse strains isolated from environments such as river, soil, and industrial sites around the world. Phylogenetic analyses showed that four of these strains were unrelated to representative nosocomial strains and do not share a monophyletic origin, whereas two had sequence types belonging to the global clone lineages GC1 and GC2. Further, the majority of these strains harboured genes linked to virulence and stress protection in nosocomial strains. These genotypic properties correlated well with in vitro virulence phenotypic assays testing resistance to abiotic stresses, serum survival, and capsule formation. Virulence potential was confirmed in vivo, with most environmental strains able to effectively kill Galleria mellonella greater wax moth larvae. Using phenomic arrays and antibiotic resistance profiling, environmental and nosocomial strains were shown to have similar substrate utilisation patterns although environmental strains were distinctly more sensitive to antibiotics. Taken together, these features of environmental A. baumannii strains suggest the existence of a strain-specific distinct gene pools for niche specific adaptation. Furthermore, environmental strains appear to be equally virulent as contemporary nosocomial strains but remain largely antibiotic sensitive.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The iThree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ram P. Maharjan
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel N. Farrugia
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Natasha N. Delgado
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Francesca L. Short
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Xenia Kostoulias
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton Y. Peleg
- Infection & Immunity Program Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
19
|
Ding X, Yang C, Moreira W, Yuan P, Periaswamy B, de Sessions PF, Zhao H, Tan J, Lee A, Ong KX, Park N, Liang ZC, Hedrick JL, Yang YY. A Macromolecule Reversing Antibiotic Resistance Phenotype and Repurposing Drugs as Potent Antibiotics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001374. [PMID: 32995131 PMCID: PMC7503100 DOI: 10.1002/advs.202001374] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Indexed: 05/22/2023]
Abstract
In order to mitigate antibiotic resistance, a new strategy to increase antibiotic potency and reverse drug resistance is needed. Herein, the translocation mechanism of an antimicrobial guanidinium-functionalized polycarbonate is leveraged in combination with traditional antibiotics to afford a potent treatment for drug-resistant bacteria. Particularly, this polymer-antibiotic combination approach reverses rifampicin resistance phenotype in Acinetobacter baumannii demonstrating a 2.5 × 105-fold reduction in minimum inhibitory concentration (MIC) and a 4096-fold reduction in minimum bactericidal concentration (MBC). This approach also enables the repurposing of auranofin as an antibiotic against multidrug-resistant (MDR) Gram-negative bacteria with a 512-fold MIC and 128-fold MBC reduction, respectively. Finally, the in vivo efficacy of polymer-rifampicin combination is demonstrated in a MDR bacteremia mouse model. This combination approach lays foundational ground rules for a new class of antibiotic adjuvants capable of reversing drug resistance phenotype and repurposing drugs against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | - Wilfried Moreira
- Singapore‐MIT Alliance for Research and Technology (SMART)1 CREATE WaySingapore138602Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | | | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Jeremy Tan
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | - Ashlynn Lee
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | - Kai Xun Ong
- Singapore‐MIT Alliance for Research and Technology (SMART)1 CREATE WaySingapore138602Singapore
| | - Nathaniel Park
- IBM Almaden Research Center650 Harry RoadSan JoseCA95120USA
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| | | | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology31 Biopolis Way, The NanosSingapore138669Singapore
| |
Collapse
|
20
|
The H-NS Regulator Plays a Role in the Stress Induced by Carbapenemase Expression in Acinetobacter baumannii. mSphere 2020; 5:5/4/e00793-20. [PMID: 32848010 PMCID: PMC7449629 DOI: 10.1128/msphere.00793-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) is recognized as one of the most threatening Gram-negative bacilli. H-NS is known to play a role in controlling the transcription of a variety of different genes, including those associated with the stress response, persistence, and virulence. In the present work, we uncovered a link between the role of H-NS in the A. baumannii stress response and its relationship with the envelope stress response and resistance to DNA-damaging agents. Overall, we posit a new role of H-NS, showing that H-NS serves to endure envelope stress and could also be a mechanism that alleviates the stress induced by MBL expression in A. baumannii. This could be an evolutionary advantage to further resist the action of carbapenems. Disruption of the histone-like nucleoid structuring protein (H-NS) was shown to affect the ability of Gram-negative bacteria to regulate genes associated with virulence, persistence, stress response, quorum sensing, biosynthesis pathways, and cell adhesion. Here, we used the expression of metallo-β-lactamases (MBLs), known to elicit envelope stress by the accumulation of toxic precursors in the periplasm, to interrogate the role of H-NS in Acinetobacter baumannii, together with other stressors. Using a multidrug-resistant A. baumannii strain, we observed that H-NS plays a role in alleviating the stress triggered by MBL toxic precursors and counteracts the effect of DNA-damaging agents, supporting its role in stress response. IMPORTANCE Carbapenem-resistant A. baumannii (CRAB) is recognized as one of the most threatening Gram-negative bacilli. H-NS is known to play a role in controlling the transcription of a variety of different genes, including those associated with the stress response, persistence, and virulence. In the present work, we uncovered a link between the role of H-NS in the A. baumannii stress response and its relationship with the envelope stress response and resistance to DNA-damaging agents. Overall, we posit a new role of H-NS, showing that H-NS serves to endure envelope stress and could also be a mechanism that alleviates the stress induced by MBL expression in A. baumannii. This could be an evolutionary advantage to further resist the action of carbapenems.
Collapse
|
21
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
22
|
Zeidler S, Müller V. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol 2019; 21:2212-2230. [PMID: 30773801 DOI: 10.1111/1462-2920.14565] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
Multidrug resistant (MDR) pathogens are one of the most pressing challenges of contemporary health care. Acinetobacter baumannii takes a predominant position, emphasized in 2017 by the World Health Organization. The increasing emergence of MDR strains strengthens the demand for new antimicrobials. Possible targets for such compounds might be proteins involved in resistance against low water activity environments, since A. baumannii is known for its pronounced resistance against desiccation stress. Despite the importance of desiccation resistance for persistence of this pathogen in hospitals, comparable studies and precise data on this topic are rare and the mechanisms involved are largely unknown. This review aims to give an overview of the studies performed so far and the current knowledge on genes and proteins important for desiccation survival. 'Osmotic stress' is not identical to 'desiccation stress', but the two share the response of bacteria to low water activities. Osmotic stress resistance is in general studied much better, and in recent years it turned out that accumulation of compatible solutes in A. baumannii comprises some special features such as the bifunctional enzyme MtlD synthesizing the unusual solute mannitol. Furthermore, the regulatory pathways, as understood today, will be discussed.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Wang Y, Wang X, Ali F, Li Z, Fu Y, Yang X, Lin W, Lin X. Comparative Extracellular Proteomics of Aeromonas hydrophila Reveals Iron-Regulated Secreted Proteins as Potential Vaccine Candidates. Front Immunol 2019; 10:256. [PMID: 30833947 PMCID: PMC6387970 DOI: 10.3389/fimmu.2019.00256] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023] Open
Abstract
In our previous study, several iron-related outer membrane proteins in Aeromonas hydrophila, a serious pathogen of farmed fish, conferred high immunoprotectivity to fish, and were proposed as potential vaccine candidates. However, the protective efficacy of these extracellular proteins against A. hydrophila remains largely unknown. Here, we identified secreted proteins that were differentially expressed in A. hydrophila LP-2 in response to iron starvation using an iTRAQ-based quantitative proteomics method. We identified 341 proteins, of which 9 were upregulated in response to iron starvation and 24 were downregulated. Many of the differently expressed proteins were associated with protease activity. We confirmed our proteomics results with Western blotting and qPCR. We constructed three mutants by knocking out three genes encoding differentially expressed proteins (Δorf01830, Δorf01609, and Δorf03641). The physiological characteristics of these mutants were investigated. In all these mutant strains, protease activity decreased, and Δorf01609, and Δorf01830 were less virulent in zebrafish. This indicated that the proteins encoded by these genes may play important roles in bacterial infection. We next evaluated the immune response provoked by the six iron-related recombinant proteins (ORF01609, ORF01830, ORF01839, ORF02943, ORF03355, and ORF03641) in zebrafish as well as the immunization efficacy of these proteins. Immunization with these proteins significantly increased the zebrafish immune response. In addition, the relative percent survival (RPS) of the immunized zebrafish was 50-80% when challenged with three virulent A. hydrophila strains, respectively. Thus, these extracellular secreted proteins might be effective vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiaojun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
24
|
Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist 2018; 16:59-71. [PMID: 30144636 DOI: 10.1016/j.jgar.2018.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter spp. are aerobic, rod-shaped, Gram-negative bacteria belonging to the Moraxellaceae family of the class Gammaproteobacteria and are considered ubiquitous organisms. Among them, Acinetobacter baumannii is the most clinically significant species with an extraordinary ability to accumulate antimicrobial resistance and to survive in the hospital environment. Recent reports indicate that A. baumannii has also evolved into a veterinary nosocomial pathogen. Although Acinetobacter spp. can be identified to species level using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) coupled with an updated database, molecular techniques are still necessary for genotyping and determination of clonal lineages. It appears that the majority of infections due to A. baumannii in veterinary medicine are nosocomial. Such isolates have been associated with several types of infection such as canine pyoderma, feline necrotizing fasciitis, urinary tract infection, equine thrombophlebitis and lower respiratory tract infection, foal sepsis, pneumonia in mink, and cutaneous lesions in hybrid falcons. Given the potential multidrug resistance of A. baumannii, treatment of diseased animals is often supportive and should preferably be based on in vitro antimicrobial susceptibility testing results. It should be noted that animal isolates show high genetic diversity and are in general distinct in their sequence types and resistance patterns from those found in humans. However, it cannot be excluded that animals may occasionally play a role as a reservoir of A. baumannii. Thus, it is of importance to implement infection control measures in veterinary hospitals to avoid nosocomial outbreaks with multidrug-resistant A. baumannii.
Collapse
|
25
|
Bahador A, Farshadzadeh Z, Raoofian R, Mokhtaran M, Pourakbari B, Pourhajibagher M, Hashemi FB. Association of virulence gene expression with colistin-resistance in Acinetobacter baumannii: analysis of genotype, antimicrobial susceptibility, and biofilm formation. Ann Clin Microbiol Antimicrob 2018; 17:24. [PMID: 29859115 PMCID: PMC5984448 DOI: 10.1186/s12941-018-0277-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Acinetobacter baumannii causes difficult-to-treat nosocomial infections, which often lead to morbidity due to the development of antimicrobial drug resistance and expression of virulence genes. Data regarding the association of resistance to colistin, a last treatment option, and the virulence gene expression of A. baumannii is scarce. Methods We evaluated the MLVA genotype, antimicrobial resistance, and biofilm formation of 100 A. baumannii isolates from burn patients, and further compared the in vitro and in vivo expression of four virulence genes among five colistin-resistant A. baumannii (Cst-R-AB) isolates. Five Cst-R-AB isolates were tested; one from the present study, and four isolated previously. Results Our results showed that reduced expression of recA, along with increased in vivo expression of lpsB, dnaK, and blsA; are associated with colistin resistance among Cst-R-AB isolates. Differences in virulence gene expressions among Cst-R-AB isolates, may in part explain common discrepant in vitro vs. in vivo susceptibility data during treatment of infections caused by Cst-R-AB. Conclusions Our findings highlight the intricate relationship between colistin-resistance and virulence among A. baumannii isolates, and underscore the importance of examining the interactions between virulence and antimicrobial resistance toward efforts to control the spread of multidrug-resistant A. baumannii (MDR-AB) isolates, and also to reduce disease severity in burn patients with MDR-AB infection. Electronic supplementary material The online version of this article (10.1186/s12941-018-0277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.,Innovative Research Center, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Masoumeh Mokhtaran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Babak Pourakbari
- Pediatrics Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina Ave., 100 Keshavarz Blvd, Tehran, 14167-53955, Iran.
| |
Collapse
|
26
|
Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin Microbiol Rev 2017; 30:827-860. [PMID: 28592405 DOI: 10.1128/cmr.00112-16] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future.
Collapse
|
27
|
Kuo HY, Chao HH, Liao PC, Hsu L, Chang KC, Tung CH, Chen CH, Liou ML. Functional Characterization of Acinetobacter baumannii Lacking the RNA Chaperone Hfq. Front Microbiol 2017; 8:2068. [PMID: 29163381 PMCID: PMC5663733 DOI: 10.3389/fmicb.2017.02068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The RNA chaperone Hfq is involved in the riboregulation of diverse genes via small RNAs. Recent studies have demonstrated that Hfq contributes to the stress response and the virulence of several pathogens, and the roles of Hfq vary among bacterial species. Here, we attempted to elucidate the role of Hfq in Acinetobacter baumannii ATCC 17978. In the absence of hfq, A. baumannii exhibited retarded cell growth and was highly sensitive to environmental stress, including osmotic and oxidative pressure, pH, and temperature. Compared to the wild-type, the Hfq mutant had reduced outer membrane vesicles secretion and fimbriae production as visualized by atomic force microscopy. The absence of hfq reduced biofilm formation, airway epithelial cell adhesion and invasion, and survival in macrophage. Further, the hfq mutant induced significantly higher IL-8 levels in airway epithelial cells, which would promote bacterial clearance by the host. In addition to results similar to those reported for other bacteria, our findings demonstrate that Hfq is required in the regulation of the iron-acquisition system via downregulating the bauA and basD genes, the stress-related outer membrane proteins carO, A1S_0820, ompA, and nlpE, and the stress-related cytosolic proteins uspA and groEL. Our data indicate that Hfq plays a critical role in environmental adaptation and virulence in A. baumannii by modulating stress responses, surface architectures, and virulence factors. This study is the first to illustrate the functional role of Hfq in A. baumannii.
Collapse
Affiliation(s)
- Han-Yueh Kuo
- Department of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Hao Chao
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Cheng Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Long Hsu
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chi-Hua Tung
- Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
| | - Chang-Hua Chen
- Division of Infectious Disease, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Center of Infection Prevention and Control, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| |
Collapse
|
28
|
Yan DZ, Gan YT, Zhou H, Liu J, Li X. Draft Genome Sequence of Cyclohexylamine-Degrading Strain Acinetobacter sp. YT-02 Isolated. Curr Microbiol 2017; 75:284-287. [PMID: 29063968 DOI: 10.1007/s00284-017-1377-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Acinetobacter sp. YT-02, a Gram-negative bacterium isolated from the activated sludge from a sodium N-cyclohexylsulfamate production plant, has the ability to degrade cyclohexylamine. It was classified as a member of Acinetobacter sp., a Gram-negative bacterium, sharing a 16S rRNA gene sequence identity of 99% with Acinetobacter guangdongensis strain 1NM-4. It could degrade 10 mmol/L cyclohexylamine within 22 h. Based on the identified metabolite, the metabolic pathway of cyclohexylamine could be postulated as it was degraded via cyclohexanone. Draft genome sequence of this strain (2,993, 647 bp of chromosome length) is presented here. We further identified the genes encoding the enzymes involved in cyclohexylamine oxidation to cyclohexanone and the subsequent downstream metabolic pathway of cyclohexanone oxidation. Strain YT-02 has the potentiality to be applied in the treatment of the pollutant cyclohexylamine, and it could also be treated as a research material to study the degradation mechanism of cyclohexylamine.
Collapse
Affiliation(s)
- Da-Zhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, No.68 Xuefu South Road, Changqing Garden, Wuhan, 430023, Hubei Province, China.
| | - Ya-Ting Gan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, No.68 Xuefu South Road, Changqing Garden, Wuhan, 430023, Hubei Province, China
| | - Hui Zhou
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, No.68 Xuefu South Road, Changqing Garden, Wuhan, 430023, Hubei Province, China
| | - Jun Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, No.68 Xuefu South Road, Changqing Garden, Wuhan, 430023, Hubei Province, China
| | - Xin Li
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, No.68 Xuefu South Road, Changqing Garden, Wuhan, 430023, Hubei Province, China
| |
Collapse
|
29
|
Singh HN, Rajeswari MR. DNA-triplex Forming Purine Repeat Containing Genes in Acinetobacter baumannii and Their Association with Infection and Adaptation. Front Cell Infect Microbiol 2017; 7:250. [PMID: 28670571 PMCID: PMC5472653 DOI: 10.3389/fcimb.2017.00250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Himanshu N Singh
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
30
|
Rumbo-Feal S, Pérez A, Ramelot TA, Álvarez-Fraga L, Vallejo JA, Beceiro A, Ohneck EJ, Arivett BA, Merino M, Fiester SE, Kennedy MA, Actis LA, Bou G, Poza M. Contribution of the A. baumannii A1S_0114 Gene to the Interaction with Eukaryotic Cells and Virulence. Front Cell Infect Microbiol 2017; 7:108. [PMID: 28421168 PMCID: PMC5376624 DOI: 10.3389/fcimb.2017.00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
Genetic and functional studies showed that some components of the Acinetobacter baumannii ATCC 17978 A1S_0112-A1S_0119 gene cluster are critical for biofilm biogenesis and surface motility. Recently, our group has shown that the A1S_0114 gene was involved in biofilm formation, a process related with pathogenesis. Confirming our previous results, microscopy images revealed that the ATCC 17978 Δ0114 derivative lacking this gene was unable to form a mature biofilm structure. Therefore, other bacterial phenotypes were analyzed to determine the role of this gene in the pathogenicity of A. baumannii ATCC 17978. The interaction of the ATCC 17978 parental strain and the Δ0114 mutant with A549 human alveolar epithelial cells was quantified revealing that the A1S_0114 gene was necessary for proper attachment to A549 cells. This dependency correlates with the negative effect of the A1S_0114 deletion on the expression of genes coding for surface proteins and pili-assembly systems, which are known to play a role in adhesion. Three different experimental animal models, including vertebrate and invertebrate hosts, confirmed the role of the A1S_0114 gene in virulence. All of the experimental infection assays indicated that the virulence of the ATCC 17978 was significantly reduced when this gene was inactivated. Finally, we discovered that the A1S_0114 gene was involved in the production of a small lipopeptide-like compound herein referred to as acinetin 505 (Ac-505). Ac-505 was isolated from ATCC 17978 spent media and its chemical structure was interpreted by mass spectrometry. Overall, our observations provide novel information on the role of the A1S_0114 gene in A. baumannii's pathobiology and lay the foundation for future work to determine the mechanisms by which Ac-505, or possibly an Ac-505 precursor, could execute critical functions as a secondary metabolite.
Collapse
Affiliation(s)
- Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain.,Departamento de Microbiología y Parasitología, Universidad de Santiago de CompostelaSantiago de Compostela, Spain.,Department of Microbiology, Miami UniversityOxford, OH, USA
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, USA
| | - Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Juan A Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Emily J Ohneck
- Department of Microbiology, Miami UniversityOxford, OH, USA
| | | | - María Merino
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | | | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, USA
| | - Luis A Actis
- Department of Microbiology, Miami UniversityOxford, OH, USA
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| |
Collapse
|
31
|
Dubey G, Kollah B, Gour VK, Shukla AK, Mohanty SR. Diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas. 3 Biotech 2016; 6:257. [PMID: 28330329 PMCID: PMC5135702 DOI: 10.1007/s13205-016-0546-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022] Open
Abstract
Plant-microbial interaction in rhizosphere plays vital role in shaping plant’s growth and ecosystem function. Most of the rhizospheric microbial diversity studies are restricted to bacteria. In natural ecosystem, archaea also constitutes a major component of the microbial population. However, their diversity is less known compared to bacteria. Experiments were carried out to examine diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas (J. curcas). Samples were collected from three locations varying widely in the soil physico-chemical properties. Diversity was estimated by terminal restriction fragment length polymorphism (TRFLP) targeting 16S rRNA gene of bacteria and archaea. Fifteen bacterial and 17 archaeal terminal restriction fragments (TRFs) were retrieved from J. curcas rhizosphere. Bacterial indicative TRFs were Actinobacteria, Firmicutes, Acidobacteria, Verrumicrobiaceae, and Chlroflexi. Major archaeal TRFs were crenarchaeota, and euryarchaeota. In case of bacteria, relative fluorescence was low for TRF160 and high for TRF51, TRF 420. Similarly, for archaea relative fluorescence of TRF 218, and TRF 282 was low and high for TRF 278, TRF468 and TRF93. Principal component analysis (PCA) of bacterial TRFs designated PC 1 with 46.83% of variation and PC2 with 31.07% variation. Archaeal TRFs designated 90.94% of variation by PC1 and 9.05% by PC2. Simpson index varied from 0.530 to 0.880 and Shannon index from 1.462 to 3.139 for bacteria. For archaea, Simpson index varied from 0.855 to 0.897 and Shannon index varied from 3.027 to 3.155. Study concluded that rhizosphere of J. curcas constituted of diverse set of both bacteria and archaea, which might have promising plant growth promoting activities.
Collapse
Affiliation(s)
- Garima Dubey
- Indian Institute of Soil Science, Nabibagh, Bhopal, 462038, India
| | - Bharati Kollah
- Indian Institute of Soil Science, Nabibagh, Bhopal, 462038, India
| | - Vijay Kumar Gour
- Department of Plant Breeding and Genetics, J.N. Agricultural University, Krishinagar, Jabalpur, 482004, India
| | | | | |
Collapse
|
32
|
Fiester SE, Arivett BA, Schmidt RE, Beckett AC, Ticak T, Carrier MV, Ghosh R, Ohneck EJ, Metz ML, Sellin Jeffries MK, Actis LA. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii. PLoS One 2016; 11:e0167068. [PMID: 27875572 PMCID: PMC5119829 DOI: 10.1371/journal.pone.0167068] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606Tplc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during growth in the infected host.
Collapse
Affiliation(s)
- Steven E. Fiester
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Robert E. Schmidt
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Amber C. Beckett
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Tomislav Ticak
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Mary V. Carrier
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Rajarshi Ghosh
- Biology Department, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Maeva L. Metz
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | | | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sultana ST, Call DR, Beyenal H. Maltodextrin enhances biofilm elimination by electrochemical scaffold. Sci Rep 2016; 6:36003. [PMID: 27782161 PMCID: PMC5080540 DOI: 10.1038/srep36003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at -600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density.
Collapse
Affiliation(s)
- Sujala T. Sultana
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, 99164, WA, USA
| | - Haluk Beyenal
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
34
|
Phylogenetic signal in phenotypic traits related to carbon source assimilation and chemical sensitivity in Acinetobacter species. Appl Microbiol Biotechnol 2016; 101:367-379. [PMID: 27734121 DOI: 10.1007/s00253-016-7866-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
A common belief is that the phylogeny of bacteria may reflect molecular functions and phenotypic characteristics, pointing towards phylogenetic conservatism of traits. Here, we tested this hypothesis for a large set of Acinetobacter strains. Members of the genus Acinetobacter are widespread in nature, demonstrate a high metabolic diversity and are resistant to several environmental stressors. Notably, some species are known to cause opportunistic human infections. A total of 133 strains belonging to 33 species with validly published names, two genomic species and species of an as-yet unknown taxonomic status were analyzed using the GENIII technology of Biolog, which allows high-throughput phenotyping. We estimated the strength and significance of the phylogenetic signal of each trait across phylogenetic reconstructions based on partial RNA polymerase subunit B (rpoB) and core genome sequences. Secondly, we tested whether phylogenetic distance was a good predictor of trait differentiation by Mantel test analysis. And finally, evolutionary model fitting was used to determine if the data for each phenotypic character was consistent with a phylogenetic or an essentially random model of trait distribution. Our data revealed that some key phenotypic traits related to substrate assimilation and chemical sensitivity are linked to the phylogenetic placement of Acinetobacter species. The strongest phylogenetic signals found were for utilization of different carbon sources such as some organic acids, amino acids and sugars, thus suggesting that in the diversification of Acinetobacter carbon source assimilation has had a relevant role. Future work should be aimed to clarify how such traits have shaped the remarkable ability of this bacterial group to dominate in a wide variety of habitats.
Collapse
|
35
|
Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Appl Environ Microbiol 2016; 82:6174-6188. [PMID: 27520808 DOI: 10.1128/aem.01813-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria.
Collapse
|
36
|
Pi B, Yu D, Hua X, Ruan Z, Yu Y. Genomic and transcriptome analysis of triclosan response of a multidrug-resistant Acinetobacter baumannii strain, MDR-ZJ06. Arch Microbiol 2016; 199:223-230. [PMID: 27665456 DOI: 10.1007/s00203-016-1295-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
During the last decade, an increasing amount of attention has focused on the potential threat of triclosan to both the human body and environmental ecology. However, the role of triclosan in the development of drug resistance and cross resistance is still in dispute ascribed to largely unknown of triclosan resistance mechanism. In this work, Acinetobacter baumannii MDR-ZJ06, a multidrug-resistant strain, was induced by triclosan, and the genomic variation and transcriptional levels were investigated, respectively. The comparative transcriptomic analysis found that several general protective mechanisms were enhanced under the triclosan condition, including responses to reactive oxygen species and cell membrane damage. Meanwhile, all of the detected fifteen single nucleotide polymorphisms were not directly associated triclosan tolerance. In summary, this work revealed the crucial role of the general stress response in A. baumannii under a triclosan stress condition, which informs a more comprehensive understanding of the role of triclosan in the spread of drug-resistant bacteria.
Collapse
Affiliation(s)
- Borui Pi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310036, Zhejiang, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310036, Zhejiang, China
| | - Zhi Ruan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310036, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, 310036, Zhejiang, China.
| |
Collapse
|
37
|
Hassan A, Naz A, Obaid A, Paracha RZ, Naz K, Awan FM, Muhmmad SA, Janjua HA, Ahmad J, Ali A. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics 2016; 17:732. [PMID: 27634541 PMCID: PMC5025611 DOI: 10.1186/s12864-016-2951-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets. RESULTS The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control. CONCLUSION The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration of computational vaccinology strategies would facilitate in tackling the rapid dissemination of resistant A.baumannii strains. The scarcity of effective antibiotics and the global expansion of sequencing data making this approach desirable in the development of effective vaccines against A. baumannii and other bacterial pathogens.
Collapse
Affiliation(s)
- Afreenish Hassan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Syed Aun Muhmmad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
- Department of Computer Science and Information Technology, Stratford University, Falls Church, VA 22043 USA
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
38
|
Al Atrouni A, Hamze M, Rafei R, Eveillard M, Joly-Guillou ML, Kempf M. Diversity of Acinetobacter species isolated from different environments in Lebanon: a nationwide study. Future Microbiol 2016; 11:1147-56. [DOI: 10.2217/fmb-2016-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the extrahospital reservoirs of Acinetobacter spp. in Lebanon. Materials & methods: Two thousand three hundred and sixty-one samples from different ecological niches were analyzed by culture methods. Species identification was confirmed by rpoB-gene sequencing. Multilocus sequence typing was used to characterize the Acinetobacter baumannii clones. Results & conclusion: Acinetobacter spp. were detected in 14% of environmental samples and 8% of food samples. Furthermore, 9% of animals and 3.4% of humans were colonized. Non-baumannii Acinetobacter were the most common species isolated and newly susceptible A. baumannii clones were detected. Interestingly, 21 isolates were not identified at the species level and were considered as putative novel species. To our knowledge, this is the largest epidemiological study investigating the epidemiology of Acinetobacter spp. outside hospitals.
Collapse
Affiliation(s)
- Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Matthieu Eveillard
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| | - Marie-Laure Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| | - Marie Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
39
|
Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis Photodyn Ther 2016; 15:202-12. [PMID: 27444886 DOI: 10.1016/j.pdpdt.2016.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Widespread resistance to antimicrobial agents has led to a dearth of therapeutic choices in treating Acinetobacter baumannii infections, leading to new strategies for treatment being needed. We evaluated the effects of photodynamic therapy (PDT) as an alternative antimicrobial modality on the virulence features of cell-surviving PDT. MATERIALS AND METHODS To determine the sublethal PDT (sPDT), a colistin-resistant, extensively drug-resistant A. baumannii (CR-XDR-AB) clinical isolate and A. baumannii and ATCC 19606 strains, photosensitized with toluidine blue O (TBO), were irradiated with light emitting diodes, following bacterial viability measurements. The biofilm formation ability, outer membrane (OM) integrity, and antimicrobial susceptibility profiles were assessed for cell-surviving PDT. The effects of sPDT on the expression of virulent genes were evaluated by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS sPDT resulted in the reduction of the biofilm formation capacity, and its metabolic activity in strains. The OM permeability and efflux pump inhibition of the sPDT-treated CR-XDR-AB cells were increased; however, there was no significant change in OM integrity in ATCC 19606 strain after sPDT. sPDT reduced the minimum inhibitory concentrations of the most tested antimicrobials by ≥2-fold in CR-XDR-AB. lpsB, blsA, and dnaK were upregulated after the strains were treated with sPDT; however, a reduction in the expression of csuE, epsA, and abaI was observed in the treated strains after sPDT. CONCLUSION The susceptibility of CR-XDR-AB to a range of antibiotics was enhanced following sPDT. The virulence of strains is reduced in cells surviving PDT with TBO, and this may have potential implications of PDT for the treatment of A. baumannii infections.
Collapse
|
40
|
Candida albicans Airway Colonization Facilitates Subsequent Acinetobacter baumannii Pneumonia in a Rat Model. Antimicrob Agents Chemother 2016; 60:3348-54. [PMID: 27001817 DOI: 10.1128/aac.02180-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of the study was to determine the effects of Candida albicans respiratory tract colonization on Acinetobacter baumannii pneumonia in a rat model. Rats were colonized with C. albicans by instillation of 3 × 10(6) CFU into their airways, while sterile saline was instilled in the control group. The colonized rats were further divided into two groups: treated with amphotericin B or not. The rats were subsequently infected with A. baumannii (10(8) CFU by tracheobronchial instillation). A. baumannii lung CFU counts, cytokine lung levels, and rates of A. baumannii pneumonia were compared between groups. In vitro expression of A. baumannii virulence genes was measured by reverse transcription (RT)-PCR after 24-hour incubation with C. albicans or with Mueller-Hinton (MH) broth alone. Rats with Candida colonization developed A. baumannii pneumonia more frequently and had higher A. baumannii CFU burdens and heavier lungs than controls. After A. baumannii infection, lung interleukin 17 (IL-17) concentrations were lower and gamma interferon (IFN-γ) concentrations were higher in Candida-colonized rats than in controls. Candida-colonized rats treated with amphotericin B had a decreased rate of A. baumannii pneumonia and lower IFN-γ levels but higher IL-17 levels than untreated rats. Expression of basC, barB, bauA, ptk, plc2, and pld2 was induced while expression of ompA and abaI was suppressed in A. baumannii cultured in the presence of C. albicans C. albicans colonization facilitated the development of A. baumannii pneumonia in a rat model. Among Candida-colonized rats, antifungal treatment lowered the incidence of A. baumannii pneumonia. These findings could be due to modification of the host immune response and/or expression of A. baumannii virulence genes by Candida spp.
Collapse
|
41
|
Rossi E, Longo F, Barbagallo M, Peano C, Consolandi C, Pietrelli A, Jaillon S, Garlanda C, Landini P. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 2016; 11:335-49. [PMID: 26934424 DOI: 10.2217/fmb.15.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. MATERIALS & METHODS We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. RESULTS Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. CONCLUSION We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.
Collapse
Affiliation(s)
- Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Francesca Longo
- Department of Biosciences, Università degli Studi di Milano, Italy
| | | | - Clelia Peano
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Clarissa Consolandi
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Alessandro Pietrelli
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Sebastian Jaillon
- Humanitas Clinical & Research Center Institute, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Humanitas Clinical & Research Center Institute, Rozzano, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Italy
| |
Collapse
|
42
|
Tiwari M, Roy R, Tiwari V. Screening of Herbal-Based Bioactive Extract Against Carbapenem-Resistant Strain of Acinetobacter baumannii. Microb Drug Resist 2016; 22:364-71. [PMID: 26910023 DOI: 10.1089/mdr.2015.0270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acinetobacter baumannii is grouped in the ESKAPE pathogens by Infectious Disease Society of America, which is linked to high degree of morbidity, mortality, and increased costs. The high level of acquired and intrinsic resistance mechanisms of these bacteria makes it an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In this study, methanolic extracts of six medicinal plants were subjected to phytochemical screening and their antimicrobial activity was tested against two strains of A. baumannii (ATCC 19606, carbapenem-sensitive strain, and RS 307, carbapenem-resistant strain). Synergistic effect of the plant extracts and antibiotics was also tested. Bael or Aegle marmelos contains tannin, phenol, terpenoids, glycoside, alkaloids, coumarine, steroid, and quinones. Flowers of madar or Calotropis procera possess tannin, phenol, terpenoids, glycoside, quinone, anthraquinone, anthocyanin, coumarin, and steroid. An inhibitory growth curve was seen for both the bacterial strains when treated with A. marmelos, Curcuma longa, and leaves and flowers of C. procera. Antibiotics alone showed a small zone of inhibition, but when used with herbal extracts they exhibited larger zone of inhibition. Synergistic effect of A. marmelos and imipenem was the best against both the strains of A. baumannii. From this study, it can be concluded that extracts from A. marmelos and leaves and flowers of C. procera exhibited the most effective antibacterial activity. These herbal extracts may be used to screen the bioactive compound against the carbapenem-resistant strain of A. baumannii.
Collapse
Affiliation(s)
- Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| | - Ranita Roy
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
43
|
An Amphipathic Undecapeptide with All d-Amino Acids Shows Promising Activity against Colistin-Resistant Strains of Acinetobacter baumannii and a Dual Mode of Action. Antimicrob Agents Chemother 2015; 60:592-9. [PMID: 26574005 DOI: 10.1128/aac.01966-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple strains of Acinetobacter baumannii have developed multidrug resistance (MDR), leaving colistin as the only effective treatment. The cecropin-α-melittin hybrid BP100 (KKLFKKILKYL-NH2) and its analogs have previously shown activity against a wide array of plant and human pathogens. In this study, we investigated the in vitro antibacterial activities of 18 BP100 analogs (four known and 14 new) against the MDR A. baumannii strain ATCC BAA-1605, as well as against a number of other clinically relevant human pathogens. Selected peptides were further evaluated against strains of A. baumannii that acquired resistance to colistin due to mutations of the lpxC, lpxD, pmrA, and pmrB genes. The novel analogue BP214 showed antimicrobial activity at 1 to 2 μM and a hemolytic 50% effective concentration (EC50) of >150 μM. The lower activity of its enantiomer suggests a dual, specific and nonspecific mode of action. Interestingly, colistin behaved antagonistically to BP214 when pmrAB and lpxC mutants were challenged.
Collapse
|
44
|
Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J Bacteriol 2015; 197:2027-35. [PMID: 25845845 DOI: 10.1128/jb.00131-15] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.
Collapse
|
45
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
46
|
Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol 2014; 30:2-15. [PMID: 25052812 DOI: 10.1111/omi.12072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 01/20/2023]
Abstract
Actinetobacter baumannii is an important nosocomial pathogen that can cause a wide range of serious conditions including pneumonia, meningitis, necrotizing fasciitis and sepsis. It is also a major cause of wound infections in military personnel injured during the conflicts in Afghanistan and Iraq, leading to its popular nickname of 'Iraqibacter'. Contributing to its success in clinical settings is resistance to environmental stresses such as desiccation and disinfectants. Moreover, in recent years there has been a dramatic increase in the number of A. baumannii strains with resistance to multiple antibiotic classes. Acinetobacter baumannii is an inhabitant of oral biofilms, which can act as a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii increases the risk of refractory periodontitis. Pathogenesis of the organism involves adherence, biofilm formation and iron acquisition. In addition, A. baumannii can induce apoptotic cell death in epithelial cells and kill hyphal forms of Candida albicans. Virulence factors that have been identified include pili, the outer membrane protein OmpA, phospholipases and extracellular polysaccharide. Acinetobacter baumannii can sense blue light through a blue-light sensing using flavin (BLUF) domain protein, BlsA. The resulting conformational change in BlsA leads to changes in gene expression, including virulence genes.
Collapse
Affiliation(s)
- A M Richards
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
47
|
Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol 2014; 5:512. [PMID: 25309531 PMCID: PMC4176082 DOI: 10.3389/fmicb.2014.00512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of RajasthanAjmer, India
| | | |
Collapse
|
48
|
Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii. Infect Immun 2014; 82:3417-25. [PMID: 24891106 DOI: 10.1128/iai.01600-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are nosocomial pathogens with overlapping sites of infection. This work reports that the two can coexist stably in mixed-culture biofilms. In a study intended to improve our understanding of the mechanism of their coexistence, it was found that pyocyanin, produced by P. aeruginosa that generally eliminates competition from other pathogens, led to the generation of reactive oxygen species (ROS) in A. baumannii cells, which in response showed a significant (P ≤ 0.05) increase in production of enzymes, specifically, catalase and superoxide dismutase (SOD). This work shows for the first time that the expression of catalase and SOD is under the control of a quorum-sensing system in A. baumannii. In support of this observation, a quorum-sensing mutant of A. baumannii (abaI::Km) was found to be sensitive to pyocyanin compared to its wild type and showed significantly (P ≤ 0.001) lower levels of the antioxidant enzymes, which increased on addition of 5 μM N-(3-hydroxydodecanoyl)-l-homoserine lactone. Likewise, in wild-type A. baumannii, there was a significant (P < 0.01) decrease in the level of anti-oxidant enzymes in the presence of salicylic acid, a known quencher of quorum sensing. In the presence of amikacin and carbenicillin, A. baumannii formed 0.07 and 0.02% persister cells, which increased 4- and 3-fold, respectively, in the presence of pyocyanin. These findings show that pyocyanin induces a protective mechanism in A. baumannii against oxidative stress and also increases its persistence against antibiotics which could be of clinical significance in the case of coinfections with A. baumannii and P. aeruginosa.
Collapse
|