1
|
Beenken KE, Campbell MJ, Smeltzer MS. The ability of sarA to limit protease production plays a key role in the pathogenesis of Staphylococcus aureus osteomyelitis irrespective of the functional status of agr. Infect Immun 2025; 93:e0047324. [PMID: 39611695 PMCID: PMC11784413 DOI: 10.1128/iai.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
We demonstrate that mutation of the staphylococcal accessory regulator A (sarA) in the USA300 strain LAC limits virulence in a murine osteomyelitis model to a greater extent than mutation of the accessory gene regulator (agr) and that it does so irrespective of the functional status of agr. Protease production was decreased in the agr mutant but increased in sarA and sarA/agr mutants to a degree that limited biofilm formation. Extracellular protein A (eSpa) and full-length extracellular nuclease (Nuc1) were absent in the conditioned medium (CM) from sarA and sarA/agr mutants, and their abundance was restored in both mutants by eliminating protease production. Cytotoxicity of CM for osteoblasts and osteoclasts was also reduced in both mutants. Cytotoxicity was restored in a protease-deficient sarA mutant but not in the protease-deficient sarA/agr mutant. Reduced cytotoxicity was correlated with the reduced abundance of full-length α-toxin, LukF, and LukS in sarA and sarA/agr mutants. The abundance of these toxins in their full-length form was increased in the protease-deficient sarA mutant by comparison to LAC, demonstrating that mutation of sarA increases the production of these toxins but increased protease production limits their abundance in full-length and presumably functional forms. Most importantly, eliminating protease production enhanced the virulence of sarA and sarA/agr mutants, but had no impact in the agr mutant. We conclude that a key factor in the attenuation of LAC sarA and sarA/agr mutants in osteomyelitis is the increased production of extracellular proteases and its impact on virulence factors that contribute to biofilm formation and cytotoxicity.IMPORTANCEThe persistent emergence of antibiotic-resistant strains has rekindled interest in anti-virulence strategies to combat S. aureus infections. Numerous reports describe anti-virulence strategies focusing on key regulatory elements that globally influence virulence factor production, the two most commonly targeted being the accessory gene regulator (agr) and the staphylococcal accessory regulator A (sarA). We demonstrate that mutation of sarA limits virulence to a greater extent than mutation of agr and that this can be attributed to increased protease production in both sarA and sarA/agr mutants. This illustrates the critical role of sarA in protease-mediated post-translational regulation in S. aureus. It also suggests that an inhibitor of sarA would be more effective than an inhibitor of agr in overcoming the therapeutic recalcitrance of osteomyelitis and that such an inhibitor would remain effective even in the context of agr mutants known to arise in vivo during the transition from acute to chronic infection.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Beenken KE, Campbell MJ, Byrum SD, Edmondson RD, Mackintosh SG, Tackett AJ, Smeltzer MS. Staphylococcus aureus Proteins Implicated in the Reduced Virulence of sarA and sarA/agr Mutants in Osteomyelitis. Microorganisms 2025; 13:181. [PMID: 39858949 PMCID: PMC11767506 DOI: 10.3390/microorganisms13010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Using a murine osteomyelitis model, we recently demonstrated that Staphylococcus aureus sarA and sarA/agr mutants generated in the USA300 strain LAC are attenuated to a greater extent than an isogenic agr mutant and that this can be attributed to a significant extent to the increased production of extracellular proteases in both mutants. Based on this, we used a mass-based proteomics approach to compare the proteomes of LAC, its isogenic agr, sarA, and sarA/agr mutants, and isogenic derivatives of all four of these strains unable to produce the extracellular proteases aureolysin, SspA, SspB, ScpA, or SplA-F. This allowed us to identify proteins that were present in reduced amounts in sarA, and sarA/agr mutants owing to the increased production of extracellular proteases. A total of 1039 proteins were detected in conditioned media (CM) from overnight cultures of LAC, and protease-mediated degradation was shown to contribute to the reduced abundance of 224 of these (21.6%) in CM from the sarA and sarA/agr mutants. Among these were specific proteins previously implicated in the pathogenesis and therapeutic recalcitrance of S. aureus osteomyelitis. This demonstrates that the ability of sarA to limit protease production plays a key role in post-translational remodeling of the S. aureus proteome to a degree that can be correlated with reduced virulence in our osteomyelitis model, and that it does so irrespective of the functional status of agr. This also suggests that at least some of these 224 proteins may be viable targets for prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Rick D. Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| |
Collapse
|
3
|
Luo H, Ni L, Chen T, Huang L, Zhang X, Li X, Liao X, Shen R, Luo Z, Xie X. Intraspecific cooperation allows the survival of Staphylococcus aureus staff: a novel strategy for disease relapse. BMC Infect Dis 2024; 24:1092. [PMID: 39354412 PMCID: PMC11445958 DOI: 10.1186/s12879-024-10001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The contribution of interspecies interactions between coinfecting pathogens to chronic refractory infection by affecting pathogenicity is well established. However, little is known about the impact of intraspecific interactions on infection relapse, despite the cross-talk of different strains within one species is more common in clinical infection. We reported a case of chronic refractory pulmonary infection relapse, caused by two methicillin-sensitive S. aureus (MSSA) strains (SA01 and SA02) and revealed a novel strategy for relapse via intraspecific cooperation. METHODS The hemolytic ability, growth curve, biofilm formation, virulence genes and response of G. mellonella larvae to S. aureus infection were analysed to confirm this hypothesis. RESULTS SA02 hemolytic activity was inhibited by SA01, along with the expression of hemolysin genes and the virulence factor Hla. Additionally, SA01 significantly enhanced the biofilm formation of SA02. AIP-RNAIII may be a possible pathway for this interaction. Compared with mono-infection, a worse outcome (decreased larval survival and increased microbial burden) of the two MSSA strains coinfected with G. mellonella confirmed that intraspecific interactions indeed enhanced bacterial survival in vivo. CONCLUSION The intraspecific interaction of S. aureus could lead to chronic refractory infection via pathogenicity changes.
Collapse
Affiliation(s)
- Hua Luo
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lijia Ni
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tongling Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaofan Zhang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xuexue Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyan Liao
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Shen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaoying Xie
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Arya R, Kim T, Youn JW, Bae T, Kim KK. Identification of an antivirulence agent targeting the master regulator of virulence genes in Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1268044. [PMID: 38029271 PMCID: PMC10644738 DOI: 10.3389/fcimb.2023.1268044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of bactericidal antibiotic-resistant strains has increased the demand for alternative therapeutic agents, such as antivirulence agents targeting the virulence regulators of pathogens. Staphylococcus aureus exoprotein expression (sae) locus, the master regulator of virulence gene expression in multiple drug-resistant S. aureus, is a promising therapeutic target. In this study, we screened a small-molecule library using a SaeRS green fluorescent protein (GFP)-reporter that responded to transcription controlled by the sae locus. We identified the compound, N-(2-methylcyclohexyl)-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SKKUCS), as an efficient repressor of sae-regulated GFP activity. SKKUCS inhibited hemolysin production and reduced α-hemolysin-mediated cell lysis. Moreover, SKKUCS substantially reduced the expression levels of various virulence genes controlled by the master regulators, sae, and the accessory gene regulator (agr), demonstrating its potential as an antivirulence reagent targeting the key virulence regulators. Furthermore, autokinase inhibition assay and molecular docking suggest that SKKUCS inhibits the kinase activity of SaeS and potentially targets the active site of SaeS kinase, possibly inhibiting ATP binding. Next, we evaluated the efficacy and toxicity of SKKUCS in vivo using murine models of staphylococcal intraperitoneal and skin infections. Treatment with SKKUCS markedly increased animal survival and significantly decreased the bacterial burden in organs and skin lesion sizes. These findings highlight SKKUCS as a potential antivirulence drug for drug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Rekha Arya
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Joo Won Youn
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| |
Collapse
|
5
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Shen L, Zhang J, Chen Y, Rao L, Wang X, Zhao H, Wang B, Xiao Y, Yu J, Xu Y, Shi J, Han W, Song Z, Yu F. Small-Molecule Compound CY-158-11 Inhibits Staphylococcus aureus Biofilm Formation. Microbiol Spectr 2023; 11:e0004523. [PMID: 37166296 PMCID: PMC10269684 DOI: 10.1128/spectrum.00045-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen and brings about many community-acquired, hospital-acquired, and biofilm-associated infections worldwide. It tends to form biofilms, triggering the release of toxins and initiating resistance mechanisms. As a result of the development of S. aureus tolerance to antibiotics, there are few drugs can availably control biofilm-associated infections. In this study, we synthesized a novel small-molecule compound CY-158-11 (C22H14Cl2NO2Se2) and proved its inhibitory effect on the biofilm formation of S. aureus at a subinhibitory concentration (1/8 MIC). The subinhibitory concentration of CY-158-11 not only did not affect the growth of bacteria but also had no toxicity to A549 cells or G. mellonella. Total biofilm biomass was investigated by crystal violet staining, and the results were confirmed by SYTO 9 and PI staining through confocal laser scanning microscopy. Moreover, CY-158-11 effectively prevented initial attachment and repressed the production of PIA instead of autolysis. RT-qPCR analysis also exhibited significant suppression of the genes involved in biofilm formation. Taken together, CY-158-11 exerted its inhibitory effects against the biofilm formation in S. aureus by inhibiting cell adhesion and the expression of icaA related to PIA production. IMPORTANCE Most bacteria exist in the form of biofilms, often strongly adherent to various surfaces, causing bacterial resistance and chronic infections. In general, antibacterial drugs are not effective against biofilms. The small-molecule compound CY-158-11 inhibited the biofilm formation of S. aureus at a subinhibitory concentration. By hindering adhesion and PIA-mediated biofilm formation, CY-158-11 exhibits antibiofilm activity toward S. aureus. These findings point to a novel therapeutic agent for combating intractable S. aureus-biofilm-related infections.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Sato Y, Hatayama N, Tanzawa S, Kimura Y, Wakabayashi Y, Kitazawa T, Seki N, Yoshino Y. Staphylococcus haemolyticus attenuates the antibacterial effect of teicoplanin via aggregates and biofilms. Microb Pathog 2023; 180:106152. [PMID: 37178725 DOI: 10.1016/j.micpath.2023.106152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES This study aimed to determine the inhibitory and bactericidal effects of teicoplanin (TEC) on TEC-susceptible Staphylococcus haemolyticus isolated from a patient with cancer in whom infection persisted despite TEC therapy. We also focused on the biofilm-forming ability of the isolate in vitro. METHODS S. haemolyticus clinical isolate (strain 1369A) and its control strain, ATCC 29970 were cultured in Luria-Bertani (LB) broth with TEC. The inhibitory and bactericidal effects of TEC on planktonic, adherent, biofilm-dispersed, and biofilm-embedded cells of these strains were analyzed by using a biofilm formation/viability assay kit. The expression of biofilm-related genes was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Biofilm formation was determined by using scanning electron microscopy (SEM). RESULTS The clinical isolate of S. haemolyticus had enhanced ability to bacterial growth, adherence, aggregation, and biofilm formation, thus the inhibitory and bactericidal effects of TEC on planktonic, adherent, biofilm-dispersed, and biofilm-embedded cells of the isolate were attenuated. Additionally, TEC induced cell aggregation, biofilm formation, and some biofilm-related gene expression of the isolate. CONCLUSION The clinical isolate of S. haemolyticus is resistant to TEC treatment due to cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigeru Tanzawa
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshitaka Kimura
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshitaka Wakabayashi
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Takatoshi Kitazawa
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
8
|
Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121714. [PMID: 36551372 PMCID: PMC9774152 DOI: 10.3390/antibiotics11121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.
Collapse
|
9
|
Tan L, Huang Y, Shang W, Yang Y, Peng H, Hu Z, Wang Y, Rao Y, Hu Q, Rao X, Hu X, Li M, Chen K, Li S. Accessory Gene Regulator (agr) Allelic Variants in Cognate Staphylococcus aureus Strain Display Similar Phenotypes. Front Microbiol 2022; 13:700894. [PMID: 35295312 PMCID: PMC8919982 DOI: 10.3389/fmicb.2022.700894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The accessory gene regulator (agr) quorum-sensing system is an important global regulatory system of Staphylococcus aureus and contributes to its pathogenicity. The S. aureus agr system is divided into four agr groups based on the amino acid polymorphisms of AgrB, AgrD, and AgrC. The agr activation is group-specific, resulting in variations in agr activity and pathogenicity among the four agr groups. Strains with divergent agr system always have different phenotypes. In the present report, we, respectively, exchanged the agr system of a certain S. aureus with other three agr alleles and assessed the corresponding phenotypes of these congenic strains. Replacement of the agr system led to significant variations in hemolytic activity, protein expression, and virulence gene expression comparing with that of the parental strain. Interestingly, we found that the biological characteristics of these agr congenic strains in the same strain background were highly similar to each other, and the allele-dependent differences of the agr systems were weakened. These findings indicate that the allele-dependent agr predilections of S. aureus are determined by some factors in addition to the polymorphisms of AgrB, AgrD, and AgrC. Future studies may reveal the novel mechanism to improve our understanding of the agr network.
Collapse
Affiliation(s)
- Li Tan
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yuyang Huang
- Queen Mary College, Nanchang University, Nanchang, China
| | - Weilong Shang
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yi Yang
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Huagang Peng
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhen Hu
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yuting Wang
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yifan Rao
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Qiwen Hu
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xiancai Rao
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xiaomei Hu
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ming Li
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Kaisen Chen
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Kaisen Chen,
| | - Shu Li
- College of Basic Medical Sciences, Army Medical University, Chongqing, China
- Shu Li,
| |
Collapse
|
10
|
Rom JS, Beenken KE, Ramirez AM, Walker CM, Echols EJ, Smeltzer MS. Limiting protease production plays a key role in the pathogenesis of the divergent clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence 2021; 12:584-600. [PMID: 33538230 PMCID: PMC7872036 DOI: 10.1080/21505594.2021.1879550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/17/2020] [Accepted: 01/10/2021] [Indexed: 01/13/2023] Open
Abstract
Using the USA300, methicillin-resistant Staphylococcus aureus strain LAC, we previously examined the impact of regulatory mutations implicated in biofilm formation on protease production and virulence in a murine sepsis model. Here we examined the impact of these mutations in the USA200, methicillin-sensitive strain UAMS-1. Mutation of agr, mgrA, rot, sarA and sigB attenuated the virulence of UAMS-1. A common characteristic of codY, rot, sigB, and sarA mutants was increased protease production, with mutation of rot having the least impact followed by mutation of codY, sigB and sarA, respectively. Protein A was undetectable in conditioned medium from all four mutants, while extracellular nuclease was only present in the proteolytically cleaved NucA form. The abundance of high molecular weight proteins was reduced in all four mutants. Biofilm formation was reduced in codY, sarA and sigB mutants, but not in the rot mutant. Eliminating protease production partially reversed these phenotypes and enhanced biofilm formation. This was also true in LAC codY, rot, sarA and sigB mutants. Eliminating protease production enhanced the virulence of LAC and UAMS-1 sarA, sigB and rot mutants in a murine sepsis model but did not significantly impact the virulence of the codY mutant in either strain. Nevertheless, these results demonstrate that repressing protease production plays an important role in defining critical phenotypes in diverse clinical isolates of S. aureus and that Rot, SigB and SarA play critical roles in this regard.
Collapse
Affiliation(s)
- Joseph S. Rom
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Christopher M. Walker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ethan J. Echols
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
11
|
Creutz I, Busche T, Layer F, Bednarz H, Kalinowski J, Niehaus K. Evaluation of virulence potential of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates from a German refugee cohort. Travel Med Infect Dis 2021; 45:102204. [PMID: 34785377 DOI: 10.1016/j.tmaid.2021.102204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) seem to be highly transmissible, often infect otherwise healthy humans and frequently occur in hospital outbreaks. METHODS Refugees, living in accommodations in Germany were screened for nasal carriage of S. aureus. The isolates were investigated regarding resistance and virulence, phenotypically and by whole genome data analysis. RESULTS 5.6% (9/161) of the refugees are carriers of S. aureus. 2.5% (4/161) are MRSA carriers. Among the refugees, spa-types t021, t084, t304, t991 and t4983 were detected, as well as the new spa-types t18794 and t18795. t304 and t991 are assumed to be local spa-types from the middle east. The isolates are less resistant and marginal biofilm formers. Each isolate has a remarkable set of virulence genes, although genes, encoding for proteins strongly associated with invasive S. aureus infections, like Panton-Valentine leucocidin, were not detected. CONCLUSION The detection of strains from the middle east, supports the assumption that strains co-travel with the refugees and persist despite a transition of the host's living conditions. Whole genome data analysis does not permit to finally evaluate a germ's virulence. Nevertheless, an impression of the virulence potential of the strains, regarding skills in colonization, resistance, immune evasion, and host cell damaging can be pictured.
Collapse
Affiliation(s)
- Ines Creutz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany; FlüGe Graduate School, School of Public Heath, Bielefeld University, Bielefeld, Germany.
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Franziska Layer
- Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany.
| | - Hanna Bednarz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
12
|
Wang B, Wei PW, Wan S, Yao Y, Song CR, Song PP, Xu GB, Hu ZQ, Zeng Z, Wang C, Liu HM. Ginkgo biloba exocarp extracts inhibit S. aureus and MRSA by disrupting biofilms and affecting gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113895. [PMID: 33524512 DOI: 10.1016/j.jep.2021.113895] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. fruit, also known as Bai Guo, Ya Jiao Zi (in pinyin Chinese), and ginkgo nut (in English), has been used for many years as an important material in Chinese traditional medicine to treat coughs and asthma and as a disinfectant, as described in the Compendium of Materia Medica (Ben Cao Gang Mu, pinyin in Chinese), an old herbal book. Ginkgo nuts are used to treat phlegm-associated asthma, astringent gasp, frequent urination, gonorrhoea and turgidity; consumed raw to reduce phlegm and treat hangovers; and used as a disinfectant and insecticide. A similar record was also found in Sheng Nong's herbal classic (Shen Nong Ben Cao Jing, pinyin in Chinese). Recent research has shown that Ginkgo biloba L. exocarp extract (GBEE) can unblock blood vessels and improve brain function and exhibits antitumour and antibacterial activities. AIM OF STUDY To investigate the inhibitory effect of Ginkgo biloba L. exocarp extract (GBEE) on methicillin-resistant S. aureus (MRSA) biofilms and assess its associated molecular mechanism. MATERIALS AND METHODS The antibacterial effects of GBEE on S. aureus and MRSA were determined using the broth microdilution method. The growth curves of bacteria treated with or without GBEE were generated by measuring the CFU (colony forming unit) of cultures at different time points. The effects of GBEE on bacterial biofilm formation and mature biofilm disruption were determined by crystal violet staining. Quantitative polymerase chain reaction (qPCR) was used to measure the effects of GBEE on the gene expression profiles of MRSA biofilm-related factors at 6, 8, 12, 16 and 24 h. RESULTS The minimum inhibitory concentration (MIC) of GBEE on S. aureus and MRSA was 4 μg/mL, and the minimum bactericidal concentration (MBC) was 8 μg/ml. Moreover, GBEE (4-12 μg/mL) inhibited S. aureus and MRSA biofilm formation in a dose-dependent manner. Interestingly, GBEE also destroyed mature biofilms of S. aureus and MRSA at 12 μg/ml. The expression of the MRSA biofilm-associated factor icaA and sarA were downregulated after 6 h of treatment with GBEE, while sigB was downregulated after 12 h. MeanwhileMeanwhile, icaR was upregulated at 12 h. In addition, GBEE also downregulated the virulence gene hld and inhibited the synthesis of staphyloxanthin. CONCLUSIONS GBEE has excellent antibacterial effects against S. aureus and MRSA and inhibits their biofilm-forming ability by altering related gene expression.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China.
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shan Wan
- Department of Microbial Immunology, The First Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Ping-Ping Song
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, China
| | - Guo-Bo Xu
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zu-Quan Hu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China
| | - Zhu Zeng
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, 550025, Guizhou, China
| | - Cong Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, China.
| |
Collapse
|
13
|
Lisowska-Łysiak K, Lauterbach R, Międzobrodzki J, Kosecka-Strojek M. Epidemiology and Pathogenesis of Staphylococcus Bloodstream Infections in Humans: a Review. Pol J Microbiol 2021; 70:13-23. [PMID: 33815523 PMCID: PMC8330453 DOI: 10.33073/pjm-2021-005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2021] [Accepted: 01/12/2021] [Indexed: 01/19/2023] Open
Abstract
Staphylococci are among the most frequent human microbiota components associated with the high level of bloodstream infection (BSI) episodes. In predisposed patients, there is a high risk of transformation of BSI episodes to sepsis. Both bacterial and host factors are crucial for the outcomes of BSI and sepsis. The highest rates of BSI episodes were reported in Africa, where these infections were up to twice as high as the European rates. However, there remains a great need to analyze African data for comprehensive quantification of staphylococcal BSI prevalence. The lowest rates of BSI exist in Australia. Asian, European, and North American data showed similar frequency values. Worldwide analysis indicated that both Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are the most frequent BSI agents. In the second group, the most prevalent species was Staphylococcus epidermidis, although CoNS were not identified at the species level in many studies. The lack of a significant worldwide decrease in BSI episodes indicates a great need to implement standardized diagnostic methods and research etiological factors using advanced genetic methods.
Collapse
Affiliation(s)
- Klaudia Lisowska-Łysiak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ryszard Lauterbach
- Department of Neonatology, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Structural Determinants of Substrate Specificity of SplF Protease from Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22042220. [PMID: 33672341 PMCID: PMC7926377 DOI: 10.3390/ijms22042220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.
Collapse
|
15
|
Iwata Y, Sakai N, Yoneda I, Senda Y, Sakai-Takemori Y, Oshima M, Nakagawa-Yoneda S, Ogura H, Sato K, Minami T, Kitajima S, Toyama T, Yamamura Y, Miyagawa T, Hara A, Shimizu M, Furuichi K, Matsushima K, Wada T. D-Serine inhibits the attachment and biofilm formation of methicillin-resistant Staphylococcus aureus. Biochem Biophys Res Commun 2021; 537:50-56. [PMID: 33385805 DOI: 10.1016/j.bbrc.2020.12.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Although therapeutic agents for methicillin-resistant Staphylococcus aureus (MRSA) are clinically available, MRSA infection is still a life-threatening disease. Bacterial attachment and biofilm formation contribute significantly to the initiation of MRSA infection. Controlling MRSA's attachment and biofilm formation might reduce the frequency of MRSA infection. According to recent data, some amino acids can reduce MRSA's attachment on plates; however, their precise inhibitory mechanisms remain unclear. Therefore, we explored the effect of the amino acids on bacterial adhesion and biofilm formation in vitro and in vivo MRSA infection models. METHODS We tested the inhibitory effect of amino acids on MRSA and Escherichia coli (E. coli) in the attachment assay. Moreover, we evaluated the therapeutic potential of amino acids on the in vivo catheter infection model. RESULTS Among the amino acids, D-Serine (D-Ser) was found to reduce MRSA's ability to attach on plate assay. The proliferation of MRSA was not affected by the addition of D-Ser; thus, D-Ser likely only played a role in preventing attachment and biofilm formation. Then, we analyzed the expression of genes related to attachment and biofilm formation. D-Ser was found to reduce the expressions of AgrA, SarS, IcaA, DltD, and SdrD. Moreover, the polyvinyl chloride catheters treated with D-Ser had fewer MRSA colonies. D-Ser treatment also reduced the severity of infection in the catheter-induced peritonitis model. Moreover, D-Ser reduced the attachment ability of E. coli. CONCLUSION D-Ser inhibits the attachment and biofilm formation of MRSA by reducing the expression of the related genes. Also, the administration of D-Ser reduces the severity of catheter infection in the mouse model. Therefore, D-Ser may be a promising therapeutic option for MRSA as well as E. coli infection.
Collapse
Affiliation(s)
- Yasunori Iwata
- Division of Infection Control, Japan; Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan.
| | - Norihiko Sakai
- Division of Blood Purification, Kanazawa University Hospital, Japan; Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Ikuko Yoneda
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | | | | | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | | | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Taichiro Minami
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Shinji Kitajima
- Division of Blood Purification, Kanazawa University Hospital, Japan; Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, University of Tokyo, Tokyo, Japan; Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan
| |
Collapse
|
16
|
Romp E, Arakandy V, Fischer J, Wolz C, Siegmund A, Löffler B, Tuchscherr L, Werz O, Garscha U. Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cell Mol Life Sci 2020; 77:3841-3858. [PMID: 31807813 PMCID: PMC11105070 DOI: 10.1007/s00018-019-03393-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
Massive neutrophil infiltration is an early key event in infectious inflammation, accompanied by chemotactic leukotriene (LT)B4 generation. LTB4 biosynthesis is mediated by 5-lipoxygenase (5-LOX), but which pathogenic factors cause 5-LOX activation during bacterial infections is elusive. Here, we reveal staphylococcal exotoxins as 5-LOX activators. Conditioned medium of wild-type Staphylococcus aureus but not of exotoxin-deficient strains induced 5-LOX activation in transfected HEK293 cells. Two different staphylococcal exotoxins mimicked the effects of S. aureus-conditioned medium: (1) the pore-forming toxin α-hemolysin and (2) amphipathic α-helical phenol-soluble modulin (PSM) peptides. Interestingly, in human neutrophils, 5-LOX activation was exclusively evoked by PSMs, which was prevented by the selective FPR2/ALX receptor antagonist WRW4. 5-LOX activation by PSMs was confirmed in vivo as LT formation in infected paws of mice was impaired in response to PSM-deficient S. aureus. Conclusively, exotoxins from S. aureus are potent pathogenic factors that activate 5-LOX and induce LT formation in neutrophils.
Collapse
Affiliation(s)
- Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vandana Arakandy
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, 72076, Tuebingen, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany.
| |
Collapse
|
17
|
Vasudevan S, Durai RD, Chellappan DR, Narayanan VHB, Prabu PC, Solomon AP. A polymer-based anti-quorum catheter coating to challenge MDR Staphylococcus aureus: in vivo and in vitro approaches. J Antimicrob Chemother 2020; 74:1618-1626. [PMID: 30863862 DOI: 10.1093/jac/dkz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND MDR Staphylococcus aureus is a major aetiological agent of catheter-associated infections. A quorum sensing targeted drug development approach proves to be an effective alternative strategy to combat such infections. METHODS Intravenous catheters were coated with polymethacrylate copolymers loaded with the antivirulent compound 2-[(methylamino)methyl]phenol (2MAMP). The in vitro drug release profile and kinetics were established. The anti-biofilm effect of the coated catheters was tested against clinical isolates of MDR S. aureus. The in vivo studies were carried out using adult male Wistar rats by implanting coated catheters in subcutaneous pockets. Histopathological analysis was done to understand the immunological reactions induced by 2MAMP. RESULTS A uniform catheter coating of thickness 0.1 mm was achieved with linear sustained release of 2MAMP for 6 h. The coating formulation was cytocompatible. The in vitro and in vivo anti-adherence studies showed reduced bacterial accumulation in coated catheters after 48 h. The histopathological results confirmed that the coated catheter did not bring about any adverse inflammatory response. CONCLUSIONS The developed anti-quorum-coated catheter that is non-toxic and biocompatible has the potential to be used in other medical devices, thereby preventing catheter-associated infections.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ramya Devi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | | - Vedha Hari B Narayanan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - P C Prabu
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
18
|
Michalik M, Samet A, Podbielska-Kubera A, Savini V, Międzobrodzki J, Kosecka-Strojek M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Ann Clin Microbiol Antimicrob 2020; 19:26. [PMID: 32498711 PMCID: PMC7271473 DOI: 10.1186/s12941-020-00367-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
This review article shows that coagulase-negative staphylococci (CoNS) are widely responsible for laryngological diseases. General characteristics of CoNS infections are shown in the introduction, and the pathogenicity in terms of virulence determinants, biofilm formation and genetic regulation mechanisms of these bacteria is presented in the first part of the paper to better display the virulence potential of staphylococci. The PubMed search keywords were as follows: CoNS and: nares infections, nasal polyps, rhinosinusitis, necrosing sinusitis, periprosthetic joint infection, pharyngitis, osteomyelitis of skull and neck bones, tonsillitis and recurrent tonsillitis. A list of laryngological infections and those related to skull and neck bones was presented with descriptions of the following diseases: rhinosinusitis, necrotizing sinusitis, nasal polyps, nares and nasal skin infections, periprosthetic joint infections, osteomyelitis, pharyngitis, and tonsillitis. Species identification and diagnostic problems challenging for diagnosticians are presented. Concluding remarks regarding the presence of CoNS in humans and their distribution, particularly under the effect of facilitating factors, are mentioned.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Savini
- Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara, PE, Italy
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
19
|
The Impacts of msaABCR on sarA-Associated Phenotypes Are Different in Divergent Clinical Isolates of Staphylococcus aureus. Infect Immun 2020; 88:IAI.00530-19. [PMID: 31740526 PMCID: PMC6977130 DOI: 10.1128/iai.00530-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
The staphylococcal accessory regulator (sarA) plays an important role in Staphylococcus aureus infections, including osteomyelitis, and the msaABCR operon has been implicated as an important factor in modulating expression of sarA Thus, we investigated the contribution of msaABCR to sarA-associated phenotypes in the S. aureus clinical isolates LAC and UAMS-1. Mutation of msaABCR resulted in reduced production of SarA and a reduced capacity to form a biofilm in both strains. Biofilm formation was enhanced in a LAC msa mutant by restoring the production of SarA, but this was not true in a UAMS-1 msa mutant. Similarly, extracellular protease production was increased in a LAC msa mutant but not a UAMS-1 msa mutant. This difference was reflected in the accumulation and distribution of secreted virulence factors and in the impact of extracellular proteases on biofilm formation in a LAC msa mutant. Most importantly, it was reflected in the relative impact of mutating msa as assessed in a murine osteomyelitis model, which had a significant impact in LAC but not in UAMS-1. In contrast, mutation of sarA had a greater impact on all of these in vitro and in vivo phenotypes than mutation of msaABCR, and it did so in both LAC and UAMS-1. These results suggest that, at least in osteomyelitis, it would be therapeutically preferable to target sarA rather than msaABCR to achieve the desired clinical result, particularly in the context of divergent clinical isolates of S. aureus.
Collapse
|
20
|
Liao X, Jiang G, Wang J, Wang J. Retracted Article: Functional disruption of staphylococcal accessory regulator A from Staphylococcus aureus by silver ions. RSC Adv 2020; 10:33221-33226. [PMID: 35515077 PMCID: PMC9056660 DOI: 10.1039/d0ra06357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
It was identified that SarA in S. aureus is a target of Ag+, which further expanded the antibacterial mechanism of Ag+.
Collapse
Affiliation(s)
- Xiangwen Liao
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Guijuan Jiang
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Jing Wang
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| | - Jintao Wang
- School of Pharmacy
- Jiangxi Science & Technology Normal University
- Nanchang
- China
| |
Collapse
|
21
|
Su S, Yin P, Li J, Chen G, Wang Y, Qu D, Li Z, Xue X, Luo X, Li M. In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa. J Infect Public Health 2019; 13:791-799. [PMID: 31813834 DOI: 10.1016/j.jiph.2019.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The development of bacterial biofilm can cause severe chronic infections and antibiotic resistance. Therefore, it poses a significant threat to public health. Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are two major pathogens that can cause biofilm-associated infections, which leads to the urgent necessity of developing new agents with biofilm-forming inhibitory ability. METHODS A series of pyran derivatives were synthesized and characterized, and their in vitro anti-biofilm activity against S. aureus and P. aeruginosa were measured by minimal biofilm inhibitory concentration assay and FITC dye staining. The in vivo antibiofilm therapeutical effects were evaluated in S. aureus induced tissue cage infection mice model and P. aeruginosa induced urinary tract catheter infection rat model. RESULTS Several pyran derivatives showed the in vitro anti-biofilm activity against S. aureus and P. aeruginosa, and the activity of these compounds was not mediated through the accessory gene regulator (agr) quorum sensing system of S. aureus. One of these pyran derivatives, namely 2-amino-4-(2,6-dichlorophenyl)-3-cyano-5-oxo-4H,5H-pyrano[3,2c]chromene, exhibited significant inhibitory biofilm-formation activity in S. aureus tissue cage infection mice model and in the P. aeruginosa-infected urinary tract catheters of experimental rats. CONCLUSIONS The data indicated that this pyran derivative is a possible lead compound that can be used for the development of novel anti-biofilm agents against S. aureus and P. aeruginosa infection.
Collapse
Affiliation(s)
- Shan Su
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Pengshuo Yin
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Guanghui Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yikun Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Di Qu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhoupeng Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China; Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
22
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio 2019; 10:mBio.00880-19. [PMID: 31186320 PMCID: PMC6561022 DOI: 10.1128/mbio.00880-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Lactam antibiotics are widely applied to treat infectious diseases. However, certain poor disease outcomes caused by β-lactams remain poorly understood. In this study, we have identified a cluster of lipoprotein-like genes (lpl, sa2275–sa2273) that is upregulated in the major clinically prevalent MRSA clones in response to subinhibitory concentrations of β-lactam induction. The major highlight of this work is that β-lactams stimulate the expression of SarA, which directly binds to the lpl cluster promoter region and upregulates lpl expression in MRSA. Deletion of lpl significantly decreases proinflammatory cytokine levels in vitro and in vivo. The β-lactam-induced Lpls enhance host inflammatory responses by triggering the Toll-like-receptor-2-mediated expressions of interleukin-6 and tumor necrosis factor alpha. The β-lactam-induced Lpls are important virulence factors that enhance MRSA pathogenicity. These data elucidate that subinhibitory concentrations of β-lactams can exacerbate the outcomes of MRSA infection through induction of lpl controlled by the global regulator SarA. Methicillin-resistant Staphylococcus aureus (MRSA) resists nearly all β-lactam antibiotics that have a bactericidal activity. However, whether the empirically used β-lactams enhance MRSA pathogenicity in vivo remains unclear. In this study, we showed that a cluster of lipoprotein-like genes (lpl, sa2275 to sa2273 [sa2275–sa2273]) was upregulated in MRSA in response to subinhibitory concentrations of β-lactam induction. The increasing expression of lpl by β-lactams was directly controlled by the global regulator SarA. The β-lactam-induced Lpls stimulated the production of interleukin-6 and tumor necrosis factor alpha in RAW 264.7 macrophages. The lpl deletion mutants (N315Δlpl and USA300Δlpl) decreased the proinflammatory cytokine levels in vitro and in vivo. Purified lipidated SA2275-his proteins could trigger a Toll-like-receptor-2 (TLR2)-dependent immune response in primary mouse bone marrow-derived macrophages and C57BL/6 mice. The bacterial loads of N315Δlpl in the mouse kidney were lower than those of the wild-type N315. The β-lactam-treated MRSA exacerbated cutaneous infections in both BALB/c and C57BL/6 mice, presenting increased lesion size; destroyed skin structure; and easily promoted abscess formation compared with those of the untreated MRSA. However, the size of abscesses caused by the β-lactam-treated N315 was negligibly different from those caused by the untreated N315Δlpl in C57BL/6 TLR2−/− mice. Our findings suggest that β-lactams must be used carefully because they might aggravate the outcome of MRSA infection compared to inaction in treatment.
Collapse
|
24
|
Li J, Liu D, Tian X, Koseki S, Chen S, Ye X, Ding T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr 2018; 59:S153-S161. [PMID: 30501508 DOI: 10.1080/10408398.2018.1541865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious bacterial pathogen that induces high mortality and morbidity. Due to the emergence of multiple resistance, antibiotic treatments are rapidly becoming ineffective for the related infections. Natural products, especially those derived from plants, have been proven to be effective agents with unique antibacterial properties through different mechanisms. This review interprets the resistance mechanisms of MRSA with the aim to conquer public health threat. Further, recent researches about plant antimicrobials that showed remarkable antibacterial activity against MRSA are recorded, including the crude plant extracts and purified plant-derived bioactive compounds. Novel anti-MRSA modalities of plant antimicrobials such as alteration in efflux pump, inhibition of pyruvate kinase, and disturbance of quorum sensing in MRSA are also summarized which may be promising alternatives to antibacterial drug development in future.
Collapse
Affiliation(s)
- Jiao Li
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xiaojun Tian
- c School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - Shigenobu Koseki
- d Graduate School of Agricultural Science , Hokkaido University , Sapporo , Japan
| | - Shiguo Chen
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Tian Ding
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| |
Collapse
|
25
|
Mahapa A, Mandal S, Sinha D, Sau S, Sau K. Determining the Roles of a Conserved α-Helix in a Global Virulence Regulator from Staphylococcus aureus. Protein J 2018; 37:103-112. [PMID: 29464485 DOI: 10.1007/s10930-018-9762-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1-α5), three β-strands (β1-β3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, β2, and β3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, PO-HIT, Dist-Purba, Medinipur, 721657, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India.
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, PO-HIT, Dist-Purba, Medinipur, 721657, West Bengal, India.
| |
Collapse
|
26
|
Alanine substitution mutations in the DNA binding region of a global staphylococcal virulence regulator affect its structure, function, and stability. Int J Biol Macromol 2018; 113:1221-1232. [DOI: 10.1016/j.ijbiomac.2018.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
|
27
|
Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq). Appl Environ Microbiol 2017; 83:AEM.01643-17. [PMID: 29030437 DOI: 10.1128/aem.01643-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them.IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species.
Collapse
|
28
|
Kaur G, Balamurugan P, Princy SA. Inhibition of the Quorum Sensing System (ComDE Pathway) by Aromatic 1,3-di-m-tolylurea (DMTU): Cariostatic Effect with Fluoride in Wistar Rats. Front Cell Infect Microbiol 2017; 7:313. [PMID: 28748175 PMCID: PMC5506180 DOI: 10.3389/fcimb.2017.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm) without affecting bacterial growth. In the present study, RT-qPCR analysis showed the target specific molecular mechanism of DMTU. In vivo treatment with DMTU, alone or in combination with fluoride, resulted in inhibition of caries (biofilm development of Streptococcus mutans) using a Wistar rat model for dental caries. The histopathological analysis reported the development of lesions on dentine in infected subjects whereas the dentines of treated rodents were found to be intact and healthy. Reduction in inflammatory markers in rodents' blood and liver samples was observed when treated with DMTU. Collectively, data speculate that DMTU is an effective anti-biofilm and anti-inflammatory agent, which may improve the cariostatic properties of fluoride.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
29
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
30
|
Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease. mBio 2016; 7:mBio.00528-16. [PMID: 27353753 PMCID: PMC4937210 DOI: 10.1128/mbio.00528-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus produces numerous virulence factors, each contributing different mechanisms to bacterial pathogenesis in a spectrum of diseases. Alpha toxin (AT), a cytolytic pore-forming toxin, plays a key role in skin and soft tissue infections and pneumonia, and a human anti-AT monoclonal antibody (MAb), MEDI4893*, has been shown to reduce disease severity in dermonecrosis and pneumonia infection models. However, interstrain diversity and the complex pathogenesis of S. aureus bloodstream infections suggests that MEDI4893* alone may not provide adequate protection against S. aureus sepsis. Clumping factor A (ClfA), a fibrinogen binding protein, is an important virulence factor facilitating S. aureus bloodstream infections. Herein, we report on the identification of a high-affinity anti-ClfA MAb, 11H10, that inhibits ClfA binding to fibrinogen, prevents bacterial agglutination in human plasma, and promotes opsonophagocytic bacterial killing (OPK). 11H10 prophylaxis reduced disease severity in a mouse bacteremia model and was dependent on Fc effector function and OPK. Additionally, prophylaxis with 11H10 in combination with MEDI4893* provided enhanced strain coverage in this model and increased survival compared to that obtained with the individual MAbs. The MAb combination also reduced disease severity in murine dermonecrosis and pneumonia models, with activity similar to that of MEDI4893* alone. These results indicate that an MAb combination targeting multiple virulence factors provides benefit over a single MAb neutralizing one virulence mechanism by providing improved efficacy, broader strain coverage, and protection against multiple infection pathologies. Alternative strategies to broad-spectrum antibiotics are required to combat the antibiotic resistance epidemic. Previous attempts at active or passive immunization against Staphylococcus aureus targeting single antigens have failed in clinical trials despite positive preclinical data. To provide broad disease and isolate coverage, an effective immunization strategy likely must target multiple virulence mechanisms of the pathogen. Herein, we tested a multimechanistic MAb combination targeting alpha toxin (AT) and clumping factor A (ClfA) that neutralizes AT-mediated cytotoxicity, blocks fibrinogen binding by ClfA, prevents bacterial agglutination, targets the bacteria for opsonophagocytic killing, and provides broad isolate coverage in a lethal-bacteremia model. Although each MAb alone was effective in bacteremia against some individual isolates, the MAb combination provided improved protection against other isolates. These results illustrate the importance of targeting multiple virulence mechanisms and highlight the potential for an MAb combination targeting AT and ClfA to effectively prevent S. aureus disease.
Collapse
|
31
|
Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016; 8:E153. [PMID: 27187475 PMCID: PMC4885068 DOI: 10.3390/toxins8050153] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
Collapse
Affiliation(s)
- Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
- UFR Sciences du vivant, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France.
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| |
Collapse
|
32
|
Mandal S, Mahapa A, Biswas A, Jana B, Polley S, Sau K, Sau S. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus. PLoS One 2016; 11:e0151426. [PMID: 26989900 PMCID: PMC4798592 DOI: 10.1371/journal.pone.0151426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022] Open
Abstract
Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.
Collapse
Affiliation(s)
- Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (KS); (SS)
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (KS); (SS)
| |
Collapse
|
33
|
Arya R, Princy SA. Exploration of Modulated Genetic Circuits Governing Virulence Determinants in Staphylococcus aureus. Indian J Microbiol 2015; 56:19-27. [PMID: 26843693 DOI: 10.1007/s12088-015-0555-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The expression of virulence genes in the human pathogen Staphylococcus aureus is strongly influenced by the multiple global regulators. The signal transduction cascade of these global regulators is accountable for recognizing and integrating the environmental cues to regulate the virulence regulon. While the production of virulent factors by individual global regulators are comparatively straightforward to define, auto-regulation of these global regulators and their impact on other regulators is more complex process. There are several reports on the production of virulent factors that are precisely regulated by switching processes of multiple global regulators including some prominent accessory regulators such as agr, sae and sar which allows S. aureus to coordinate the gene expression, and thus, provide organism an ability to act collectively. This review implicates the mechanisms involved in the global regulation of various virulence factors along with a comprehensive discussion on the differences between these signal transduction systems, their auto-induction and, coordination of classical and some comparatively new bacterial signal transduction systems.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| |
Collapse
|
34
|
Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. J Appl Genet 2015; 57:225-38. [PMID: 26294280 PMCID: PMC4830867 DOI: 10.1007/s13353-015-0309-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022]
Abstract
Nearly all bacterial species, including pathogens, have the ability to form biofilms. Biofilms are defined as structured ecosystems in which microbes are attached to surfaces and embedded in a matrix composed of polysaccharides, eDNA, and proteins, and their development is a multistep process. Bacterial biofilms constitute a large medical problem due to their extremely high resistance to various types of therapeutics, including conventional antibiotics. Several environmental and genetic signals control every step of biofilm development and dispersal. From among the latter, quorum sensing, cyclic diguanosine-5'-monophosphate, and small RNAs are considered as the main regulators. The present review describes the control role of these three regulators in the life cycles of biofilms built by Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica serovar Typhimurium, and Vibrio cholerae. The interconnections between their activities are shown. Compounds and strategies which target the activity of these regulators, mainly quorum sensing inhibitors, and their potential role in therapy are also assessed.
Collapse
Affiliation(s)
- Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Zofia Rudnicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Katarzyna Markowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
35
|
Balamurugan P, Hema M, Kaur G, Sridharan V, Prabu PC, Sumana MN, Princy SA. Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Front Microbiol 2015; 6:832. [PMID: 26322037 PMCID: PMC4531255 DOI: 10.3389/fmicb.2015.00832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Urinary Tract Infection (UTI) is a globally widespread human infection caused by an infestation of uropathogens. Eventhough, Escherichia coli is often quoted as being the chief among them, Staphylococcus aureus involvement in UTI especially in gestational UTI is often understated. Staphylococcal accessory regulator A (SarA) is a quorum regulator of S. aureus that controls the expression of various virulence and biofilm phenotypes. Since SarA had been a focussed target for antibiofilm agent development, the study aims to develop a potential drug molecule targeting the SarA of S. aureus to combat biofilm associated infections in which it is involved. In our previous studies, we have reported the antibiofilm activity of SarA based biofilm inhibitor, (SarABI) with a 50% minimum biofilm inhibitory concentration (MBIC50) value of 200 μg/mL against S. aureus associated with vascular graft infections and also the antibiofilm activity of the root ethanolic extracts of Melia dubia against uropathogenic E. coli. In the present study, in silico design of a hybrid molecule composed of a molecule screened from M. dubia root ethanolic extracts and a modified SarA based inhibitor (SarABI(M)) was undertaken. SarABI(M) is a modified form of SarABI where the fluorine groups are absent in SarABI(M). Chemical synthesis of the hybrid molecule, 4-(Benzylamino)cyclohexyl 2-hydroxycinnamate (henceforth referred to as UTI Quorum-Quencher, UTI(QQ)) was then performed, followed by in vitro and in vivo validation. The MBIC50 and MBIC90 of UTI(QQ) were found to be 15 and 65 μg/mL, respectively. Confocal laser scanning microscopy (CLSM) images witnessed biofilm reduction and bacterial killing in either UTI(QQ) or in combined use of antibiotic gentamicin and UTI (QQ) . Similar results were observed with in vivo studies of experimental UTI in rat model. So, we propose that the drug UTI(QQ) would be a promising candidate when used alone or, in combination with an antibiotic for staphylococcal associated UTI.
Collapse
Affiliation(s)
- P. Balamurugan
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - M. Hema
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - V. Sridharan
- Department of Chemistry, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P. C. Prabu
- Central Animal Facility, SASTRA UniversityThanjavur, India
| | - M. N. Sumana
- Department of Microbiology, JSS Medical College and JSS UniversityMysore, India
| | - S. Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
36
|
Kaur G, Rajesh S, Princy SA. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks. Indian J Microbiol 2015; 55:349-56. [PMID: 26543259 DOI: 10.1007/s12088-015-0534-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - Shrinidhi Rajesh
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 402 Tamil Nadu India
| |
Collapse
|
37
|
Arya R, Ravikumar R, Santhosh RS, Princy SA. SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front Microbiol 2015; 6:416. [PMID: 26074884 PMCID: PMC4447123 DOI: 10.3389/fmicb.2015.00416] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/20/2015] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - R Ravikumar
- Department of Chemistry, SASTRA University Thanjavur, India
| | - R S Santhosh
- Genetic Engineering Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| |
Collapse
|
38
|
Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS One 2015; 10:e0122168. [PMID: 25822635 PMCID: PMC4379015 DOI: 10.1371/journal.pone.0122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (KS)
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (SS); (KS)
| |
Collapse
|
39
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|
40
|
Gastrointestinal dissemination and transmission of Staphylococcus aureus following bacteremia. Infect Immun 2014; 83:372-8. [PMID: 25385792 DOI: 10.1128/iai.02272-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations that alter virulence and antibiotic susceptibility arise and persist during Staphylococcus aureus bacteremia. However, an experimental system demonstrating transmission following bacteremia has been lacking, and thus implications of within-host adaptation for between-host transmission are unknown. We report that S. aureus disseminates to the gastrointestinal tract of mice following intravenous injection and readily transmits to cohoused naive mice. Both intestinal dissemination and transmission were linked to the production of virulence factors based on gene deletion studies of the sae and agr two-component systems. Furthermore, antimicrobial selection for antibiotic-resistant S. aureus displaced susceptible S. aureus from the intestine of infected hosts, which led to the preferential transmission and dominance of antibiotic-resistant bacteria among cohoused untreated mice. These findings establish an animal model to investigate gastrointestinal dissemination and transmission of S. aureus and suggest that adaptation during the course of systemic infection has implications beyond the level of a single host.
Collapse
|