1
|
Ahmad JN, Sebo P. cAMP signaling of Bordetella adenylate cyclase toxin blocks M-CSF triggered upregulation of iron acquisition receptors on differentiating CD14 + monocytes. mSphere 2024; 9:e0040724. [PMID: 39078132 PMCID: PMC11351043 DOI: 10.1128/msphere.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Bordetella pertussis infects the upper airways of humans and disarms host defense by the potent immuno-subversive activities of its pertussis (PT) and adenylate cyclase (CyaA) toxins. CyaA action near-instantly ablates the bactericidal activities of sentinel CR3-expressing myeloid phagocytes by hijacking cellular signaling pathways through the unregulated production of cAMP. Moreover, CyaA-elicited cAMP signaling also inhibits the macrophage colony-stimulating factor (M-CSF)-induced differentiation of incoming inflammatory monocytes into bactericidal macrophages. We show that CyaA/cAMP signaling via protein kinase A (PKA) downregulates the M-CSF-elicited expression of monocyte receptors for transferrin (CD71) and hemoglobin-haptoglobin (CD163), as well as the expression of heme oxygenase-1 (HO-1) involved in iron liberation from internalized heme. The impact of CyaA action on CD71 and CD163 levels in differentiating monocytes is largely alleviated by the histone deacetylase inhibitor trichostatin A (TSA), indicating that CyaA/cAMP signaling triggers epigenetic silencing of genes for micronutrient acquisition receptors. These results suggest a new mechanism by which B. pertussis evades host sentinel phagocytes to achieve proliferation on airway mucosa.IMPORTANCETo establish a productive infection of the nasopharyngeal mucosa and proliferate to sufficiently high numbers that trigger rhinitis and aerosol-mediated transmission, the pertussis agent Bordetella pertussis deploys several immunosuppressive protein toxins that compromise the sentinel functions of mucosa patrolling phagocytes. We show that cAMP signaling elicited by very low concentrations (22 pM) of Bordetella adenylate cyclase toxin downregulates the iron acquisition systems of CD14+ monocytes. The resulting iron deprivation of iron, a key micronutrient, then represents an additional aspect of CyaA toxin action involved in the inhibition of differentiation of monocytes into the enlarged bactericidal macrophage cells. This corroborates the newly discovered paradigm of host defense evasion mechanisms employed by bacterial pathogens, where manipulation of cellular cAMP levels blocks monocyte to macrophage transition and replenishment of exhausted phagocytes, thereby contributing to the formation of a safe niche for pathogen proliferation and dissemination.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Thuy Nga DT, Thi Bich Thuy P, Ainai A, Takayama I, Huong DT, Saitoh A, Nakagawa S, Minh Dien T, Nakajima N, Saitoh A. Association Between Real-time Polymerase Chain Reaction Cycle Threshold Value and Clinical Severity in Neonates and Infants Infected With Bordetella pertussis. Pediatr Infect Dis J 2022; 41:388-393. [PMID: 35093999 DOI: 10.1097/inf.0000000000003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Polymerase chain reaction (PCR) is highly sensitive and is thus the standard method for diagnosing pertussis. Real-time PCR is widely used because of its accuracy and the simplicity of the simultaneous cycle threshold (Ct) value, which represents the copy numbers of the target gene. Little is known of the association of Ct value with pertussis severity in neonates and infants. METHODS This study determined Ct values in neonates and infants diagnosed with pertussis by real-time PCR using nasopharyngeal samples at Vietnam National Children's Hospital in Hanoi in 2017 and 2019. The association of disease severity and clinical parameters were analyzed using univariate and multivariate analyses. RESULTS We evaluated 108 patients with pertussis [median age: 63 days, interquartile range (IQR): 41-92 days]. Only 6/108 (6%) received at least 1 dose of a pertussis-containing vaccine. Among them, 24 (22.2%) had severe disease requiring care in a pediatric intensive care unit, 16 (13.8%) required mechanical ventilation, and 3 (2.6%) died. The median Ct value was lower in patients with severe disease (19.0, IQR: 16.5-22.0, n = 24) than in those without severe disease (25.5, IQR: 20.0-30.0, n = 84) (P = 0.002). Logistic regression analyses demonstrated that PCR Ct value [odds ratio (OR): 1.783, 95% confidence interval (CI): 1.013-3.138, P = 0.045], age (OR: 3.118, 95% CI: 1.643-5.920, P = 0.001), and white blood cell counts (OR: 0.446, 95% CI: 0.261-0.763, P = 0.003) remained significantly associated with severe disease. CONCLUSIONS Real-time PCR Ct values for pertussis might be useful as a predictor of severe disease in neonates and infants.
Collapse
Affiliation(s)
- Do Thi Thuy Nga
- From the Division of General Internal Medicine, The Center for Tropical Diseases, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Phung Thi Bich Thuy
- Department of Molecular Biology for Infectious Disease, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ikuyo Takayama
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Do Thu Huong
- Department of Molecular Biology for Infectious Disease, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Aya Saitoh
- Department of Nursing, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Nakagawa
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tran Minh Dien
- Surgical Intensive Care Unit, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Chaurasia R, Marroquin AS, Vinetz JM, Matthias MA. Pathogenic Leptospira Evolved a Unique Gene Family Comprised of Ricin B-Like Lectin Domain-Containing Cytotoxins. Front Microbiol 2022; 13:859680. [PMID: 35422779 PMCID: PMC9002632 DOI: 10.3389/fmicb.2022.859680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is a globally important neglected zoonotic disease. Previous data suggest that a family of virulence-modifying (VM) proteins (PF07598) is a distinctive feature of group I pathogenic Leptospira that evolved as important virulence determinants. Here, we show that one such VM protein, LA3490 (also known as Q8F0K3), is expressed by Leptospira interrogans serovar Lai, as a secreted genotoxin that is potently cytotoxic to human cells. Structural homology searches using Phyre2 suggested that VM proteins are novel R-type lectins containing tandem N-terminal ricin B-chain-like β-trefoil domains. Recombinant LA3490 (rLA3490) and an N-terminal fragment, t3490, containing only the predicted ricin B domain, bound to the terminal galactose and N-acetyl-galactosamine residues, asialofetuin, and directly competed for asialofetuin-binding sites with recombinant ricin B chain. t3490 alone was sufficient for binding, both to immobilized asialofetuin and to the HeLa cell surface but was neither internalized nor cytotoxic. Treatment of HeLa cells with rLA3490 led to cytoskeleton disassembly, caspase-3 activation, and nuclear fragmentation, and was rapidly cytolethal. rLA3490 had DNase activity on mammalian and bacterial plasmid DNA. The combination of cell surface binding, internalization, nuclear translocation, and DNase functions indicate that LA3490 and other VM proteins evolved as novel forms of the bacterial AB domain-containing toxin paradigm.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alan S Marroquin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Michael A Matthias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Sanchez-Alvarez K, Rosales-Mendoza S, Reyes-Barrera KL, Moreno-Fierros L, Soria-Guerra RE, Castillo-Collazo R, Monreal-Escalente E, Alpuche-Solis AG. Antibodies induced by oral immunization of mice with a recombinant protein produced in tobacco plants harboring Bordetella pertussis epitopes. PLANT CELL, TISSUE AND ORGAN CULTURE 2021; 147:85-96. [PMID: 34276113 PMCID: PMC8272453 DOI: 10.1007/s11240-021-02107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Bordetella pertusis causes whooping cough or pertussis, disease that has not been eradicated and is reemerging despite the availability and massive application for decades of vaccines, such as Boostrix® which is an acellular vaccine harboring two regions of S1 subunit of the pertussis toxin, one region of filamentous hemagglutinin and one region of pertactin. In 2008, the World Health Organization estimated 16 million new cases and 95% occurred in developing countries with 195,000 children's deaths. We attempt to improve the vaccine against whooping cough and reduce its production costs by obtaining plants and bacteria expressing a heterologous protein harboring pertactin, pertussis toxin, and filamentous hemagglutinin epitopes from B. pertussis and assessing its immunogenicity after oral administration to mice. First, we designed a synthetic gene that encodes a multiepitope, then it was cloned into a vector for transient transformation by infiltration of tobacco plants with low amounts of nicotine; the codon bias-optimized construct was also cloned into an Escherichia coli expression vector. Recombinant proteins from E. coli cells (PTF) and tobacco leaves (PTF-M3') were purified by nickel affinity with a yield of 0.740 mg of recombinant protein per g dry weight. Purified recombinant proteins were administered orally to groups of Balb/c mice using the Boostrix® vaccine and vehicle (PBS) as positive and negative controls, respectively. A higher mucosal and systemic antibody responses were obtained in mice receiving the PTF and PTF-M3' proteins than Boostrix® or PBS. These findings prove the concept that oral administration of multiepitope recombinant proteins expressed in plants may be a potential edible vaccine. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11240-021-02107-1.
Collapse
Affiliation(s)
- Karla Sanchez-Alvarez
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Karen L. Reyes-Barrera
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Leticia Moreno-Fierros
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, 54090 Tlalnepantla, México
| | - Ruth E. Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Rosalba Castillo-Collazo
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Elizabeth Monreal-Escalente
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Angel G. Alpuche-Solis
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| |
Collapse
|
5
|
Wanlapakorn N, Maertens K, Vongpunsawad S, Puenpa J, Tran TMP, Hens N, Van Damme P, Thiriard A, Raze D, Locht C, Poovorawan Y, Leuridan E. Quantity and Quality of Antibodies After Acellular Versus Whole-cell Pertussis Vaccines in Infants Born to Mothers Who Received Tetanus, Diphtheria, and Acellular Pertussis Vaccine During Pregnancy: A Randomized Trial. Clin Infect Dis 2021; 71:72-80. [PMID: 31418814 DOI: 10.1093/cid/ciz778] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The blunting effect of pertussis immunization during pregnancy on infant antibody responses induced by whole-cell pertussis (wP) vaccination is not well-defined. METHODS This randomized controlled trial (NCT02408926) followed term infants born to mothers vaccinated with tetanus, diphtheria, and acellular pertussis (Tdap) vaccine during pregnancy in Thailand. Infants received either acellular pertussis (aP)- or wP-containing vaccine at 2, 4, 6, and 18 months of age. A comparison group comprised wP-vaccinated children born to mothers not vaccinated during pregnancy. Antibodies against pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (PRN) were evaluated using commercial enzyme-linked immunosorbent assays. Functionality of antibodies against Bordetella pertussis was measured using Bordetella pertussis growth inhibition assay. RESULTS After maternal Tdap vaccination, 158 infants vaccinated with aP-containing vaccines possessed higher antibody levels (P < .001) against all tested B. pertussis antigens postpriming compared to 157 infants receiving wP-containing vaccines. At 1 month postbooster, only anti-FHA and anti-PRN antibodies were still significantly higher (P < .001) in the aP group. Significantly higher anti-PT and anti-FHA (P < .001), but not anti-PRN immunoglobulin G, were observed among 69 wP-vaccinated infants born to control mothers compared with wP-vaccinated infants of Tdap-vaccinated mothers after primary and booster vaccination. The antibody functionality was higher in all wP-vaccinated infants at all times. CONCLUSIONS Maternal Tdap vaccination inhibited more pertussis-specific responses in wP-vaccinated infants compared to aP-vaccinated infants, and the control group of unvaccinated women had highest PT-specific responses, persisting until after the booster dose. Antibody functionality was better in the wP groups. CLINICAL TRIALS REGISTRATION NCT02408926.Infant whole-cell pertussis (wP) vaccine responses are blunted after maternal Tdap vaccination. Pertussis antibody titers are higher in acellular pertussis (aP)- than wP-vaccinated infants of immunized mothers, yet quality of antibodies, measured as serum-mediated bacterial growth inhibition, is better after wP than aP vaccination.
Collapse
Affiliation(s)
- Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thao Mai Phuong Tran
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Anaïs Thiriard
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Dominique Raze
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Camille Locht
- Université de Lille, Centre National de la Recherche Scientifique , Inserm, Centre Hospitalier Régional Universitaire Lille, Institut Pasteur de Lille, U1019-UMR8204, Center for Infection and Immunity of Lille, France
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Elke Leuridan
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| |
Collapse
|
6
|
Zhang Y, Li Y, Chen Z, Liu X, Peng X, He Q. Determination of serum neutralizing antibodies reveals important difference in quality of antibodies against pertussis toxin in children after infection. Vaccine 2021; 39:1826-1830. [PMID: 33678454 DOI: 10.1016/j.vaccine.2021.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine neutralizing antibodies to pertussis toxin (PTNAs) in children with suspected pertussis and to compare results of PTNAs and anti-PT IgG antibodies. METHODS 172 hospitalized children with suspected pertussis were included. Pertussis was confirmed by culture, PCR and/or serology. PTNAs were determined by Chinese hamster ovary (CHO) cell assay. RESULTS A correlation between titers of PTNAs and anti-PT IgG levels was noticed in 172 patients (Spearman R = 0.68, P < 0.001). Subjects with same concentrations of anti-PT IgG antibodies could have different titers of PTNAs and the maximum difference observed reached to 1024 times in ELISA-confirmed patients. Moreover, subjects with same titers of PTNAs could have different concentrations of anti-PT IgG antibodies. CONCLUSIONS Our results indicated that in some children high concentrations of anti-PT IgG antibodies do not always mean effective PTNAs induced after infection, stressing the importance of detecting PTNAs after infection and vaccination. Clinical trial registry: Not applicable.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yarong Li
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China.
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaokang Peng
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China; Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol 2020; 11:2181. [PMID: 33013916 PMCID: PMC7516048 DOI: 10.3389/fimmu.2020.02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Circulating inflammatory monocytes are attracted to infected mucosa and differentiate into macrophage or dendritic cells endowed with enhanced bactericidal and antigen presenting capacities. In this brief Perspective we discuss the newly emerging insight into how the cAMP signaling capacity of Bordetella pertussis adenylate cyclase toxin manipulates the differentiation of monocytes and trigger dedifferentiation of the alveolar macrophages to facilitate bacterial colonization of human airways.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| |
Collapse
|
8
|
Forghani H, Jamshidi Makiani M, Zarei Jaliani H, Boustanshenas M, Zahraei SM. Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit of Pertussis Toxin. IRANIAN BIOMEDICAL JOURNAL 2020; 25:33-40. [PMID: 33129237 PMCID: PMC7748116 DOI: 10.29252/ibj.25.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background: Some resources have suggested that genetically inactivated PTs bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive PTS1 in a fusion form with N-terminal half of the LLO pore-forming toxin. Methods: Deposited pdb structure file of the PT was used to model an extra disulfide bond. Codon-optimized ORF of the PTS1 was used to make recombinant constructs of PTS1 and LLO-PTS1 in the pPSG-IBA35 vector. The recombinant PTS1 and LLO-PTS1 proteins were expressed in BL21 DE3 and SHuffle T7 strains of E. coli and purified by affinity chromatography. Cytotoxic effects of the recombinant proteins were examined in the MCF-7 cell line. Results: The purity of the products proved to be more than 85%, and the efficiency of the disulfide bond formation in SHuffle T7 strain was higher than BL21 DE3 strain. No cytotoxicity of the recombinant proteins was observed in MCF-7 cells. Soluble recombinant PTS1 and LLO-PTS1 proteins were produced in SHuffle T7 strain of E. coli with high efficiency of disulfide bonds formation. Conclusion: The LLO-PTS1 with corrected disulfide bonds was successfully expressed in E. coli SHuffleT7 strain. Due to the safety for human cells, this chimeric molecule can be an option to prevent pertussis disease if its immunostimulatory effects would be confirmed in the future.
Collapse
Affiliation(s)
- Hossein Forghani
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahin Jamshidi Makiani
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Infectious Disease Center for Communicable Disease Control, Ministry of Health and Medical Education, Iran
| |
Collapse
|
9
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Raeven RHM, van der Maas L, Pennings JLA, Fuursted K, Jørgensen CS, van Riet E, Metz B, Kersten GFA, Dalby T. Antibody Specificity Following a Recent Bordetella pertussis Infection in Adolescence Is Correlated With the Pertussis Vaccine Received in Childhood. Front Immunol 2019; 10:1364. [PMID: 31275314 PMCID: PMC6592373 DOI: 10.3389/fimmu.2019.01364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Bordetella (B.) pertussis resurgence affects not only the unvaccinated, but also the vaccinated population. Different vaccines are available, however, it is currently unknown whether the type of childhood vaccination has an influence on antibody responses following a B. pertussis infection later in life. Therefore, the study aim was to profile serum antibody responses in young adults with suspected B. pertussis infections, immunized during childhood with either whole-cell (wPV) or monocomponent acellular pertussis (aPV) vaccines. Serum anti-pertussis toxin (PTx) IgG antibody levels served as an indicator for a recent B. pertussis infection. Leftover sera from a diagnostic laboratory from 36 Danish individuals were included and divided into four groups based on immunization background (aPV vs. wPV) and serum anti-PTx IgG levels (– vs. +). Pertussis-specific IgG/IgA antibody levels and antigen specificity were determined by using multiplex immunoassays (MIA), one- and two-dimensional immunoblotting (1 & 2DEWB), and mass spectrometry. Besides enhanced anti-PTx levels, wPV(+) and aPV(+) groups showed increased IgG and IgA levels against pertactin, filamentous hemagglutinin, fimbriae 2/3, and pertussis outer membrane vesicles (OMV). In the wPV(–) and aPV(–) groups, only low levels of anti-OMV antibodies were detected. 1DEWB demonstrated that antibody patterns differed between groups but also between individuals with the same immunization background and anti-PTx levels. 2DWB analysis for serum IgG revealed 133 immunogenic antigens of which 40 were significantly different between groups allowing to differentiate wPV(+) and aPV(+) groups. Similarly, for serum IgA, 7 of 47 immunogenic protein spots were significantly different. This study demonstrated that B. pertussis infection-induced antibody responses were distinct on antigen level between individuals with either wPV or aPV immunization background. Importantly, only 2DEWB and not MIA could detect these differences indicating the potential of this method. Moreover, in individuals immunized with an aPV containing only PTx in childhood, the infection-induced antibody responses were not limited to PTx alone.
Collapse
Affiliation(s)
- René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | | | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Kurt Fuursted
- Statens Serum Institut, Infectious Disease Preparedness, Copenhagen, Denmark
| | | | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands.,Leiden Academic Center for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Infectious Disease Preparedness, Copenhagen, Denmark
| |
Collapse
|
11
|
Scanlon K, Skerry C, Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:35-51. [PMID: 31376138 DOI: 10.1007/5584_2019_403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bordetella pertussis produces several toxins that affect host-pathogen interactions. Of these, the major toxins that contribute to pertussis infection and disease are pertussis toxin, adenylate cyclase toxin-hemolysin and tracheal cytotoxin. Pertussis toxin is a multi-subunit protein toxin that inhibits host G protein-coupled receptor signaling, causing a wide array of effects on the host. Adenylate cyclase toxin-hemolysin is a single polypeptide, containing an adenylate cyclase enzymatic domain coupled to a hemolysin domain, that primarily targets phagocytic cells to inhibit their antibacterial activities. Tracheal cytotoxin is a fragment of peptidoglycan released by B. pertussis that elicits damaging inflammatory responses in host cells. This chapter describes these three virulence factors of B. pertussis, summarizing background information and focusing on the role of each toxin in infection and disease pathogenesis, as well as their role in pertussis vaccination.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Fatal Pertussis in the Neonatal Mouse Model Is Associated with Pertussis Toxin-Mediated Pathology beyond the Airways. Infect Immun 2017; 85:IAI.00355-17. [PMID: 28784932 DOI: 10.1128/iai.00355-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
In infants, Bordetella pertussis can cause severe disease, manifested as pronounced leukocytosis, pulmonary hypertension, and even death. The exact cause of death remains unknown, and no effective therapies for treating fulminant pertussis exist. In this study, a neonatal mouse model of critical pertussis is characterized, and a central role for pertussis toxin (PT) is described. PT promoted colonization, leukocytosis, T cell phenotypic changes, systemic pathology, and death in neonatal but not adult mice. Surprisingly, PT inhibited lung inflammatory pathology in neonates, a result which contrasts dramatically with observed PT-promoted pathology in adult mice. Infection with a PT-deficient strain induced severe pulmonary inflammation but not mortality in neonatal mice, suggesting that death in these mice was not associated with impaired lung function. Dissemination of infection beyond the lungs was also detected in neonatal mice, which may contribute to the observed systemic effects of PT. We propose that it is the systemic activity of pertussis toxin and not pulmonary pathology that promotes mortality in critical pertussis. In addition, we observed transmission of infection between neonatal mice, the first report of B. pertussis transmission in mice. This model will be a valuable tool to investigate causes of pertussis pathogenesis and identify potential therapies for critical pertussis.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and discuss recent findings and selected topics of interest in Bordetella pertussis virulence and pathogenesis and treatment of pertussis. It is not intended to cover issues on immune responses to B. pertussis infection or problems with currently used pertussis vaccines. RECENT FINDINGS Studies on the activities of various B. pertussis virulence factors include the immunomodulatory activities of filamentous hemagglutinin, fimbriae, and adenylate cyclase toxin. Recently emerging B. pertussis strains show evidence of genetic selection for vaccine escape mutants, with changes in vaccine antigen-expressing genes, some of which may have increased the virulence of this pathogen. Severe and fatal pertussis in young infants continues to be a problem, with several studies highlighting predictors of fatality, including the extreme leukocytosis associated with this infection. Treatments for pertussis are extremely limited, though early antibiotic intervention may be beneficial. Neutralizing pertussis toxin activity may be an effective strategy, as well as targeting two host proteins, pendrin and sphingosine-1-phosphate receptors, as novel potential therapeutic interventions. SUMMARY Pertussis is reemerging as a major public health problem and continued basic research is revealing information on bacterial virulence and disease pathogenesis, as well as potential novel strategies for vaccination and targets for therapeutic intervention.
Collapse
|
14
|
Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins (Basel) 2017; 9:toxins9100293. [PMID: 28934122 PMCID: PMC5666340 DOI: 10.3390/toxins9100293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/27/2023] Open
Abstract
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
Collapse
|
15
|
Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 2015; 73:ftv073. [PMID: 26394801 DOI: 10.1093/femspd/ftv073] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease.
Collapse
Affiliation(s)
- Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| |
Collapse
|