1
|
Wang X, Lu Z, Dou L, Ma L, He T, Gao C, Zhao X, Tao J, Luo L, Li Q, Wang Y, Shen Y, Shen J, Wang Z, Wen K. Modified Carba PBP test for rapid detection and differentiation between different classes of carbapenemases in Enterobacterales. Mikrochim Acta 2024; 192:7. [PMID: 39636434 DOI: 10.1007/s00604-024-06859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
An advanced biochemical assay named modified Carba PBP test was innovated to identify and differentiate distinct categories of clinically significant carbapenemases (Ambler classes A, B, and D) within the Enterobacterales. The mechanism of mCarba PBP hinges on two core attributes: (i) the hydrolysis of the meropenem substrate by various carbapenemases, (ii) the immobilized penicillin and free meropenem in their affinity to interact with a limited quantity of penicillin-binding protein (PBP). Specific inhibitors for class A (phenylboronic acid, PBA) and class B (ethylenediaminetetraacetic acid, EDTA) were employed to inhibit the hydrolysis activity of carbapenemase and facilitate the classification of carbapenemase classes within 25 min. A comprehensive evaluation was undertaken using 94 clinical Enterobacterales isolates, comprising 75 carbapenemase-producing strains and 19 non-carbapenemase-producing strains. Its overall specificity and sensitivity were 100% and 97.3%, respectively, including detection of all types of OXA-48-like carbapenemases. For precise carbapenemase type identification, the assay exhibited remarkable sensitivities for class A, class B, and class D detection at 94.7%, 100%, and 100%, respectively. This user-friendly test presents a promising tool for carbapenemase identification, refining the selection of β-lactam/β-endoenzyme inhibitor combinations for effectively treating infections due to carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhimin Lu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Licai Ma
- Beijing WDWK Biotechnology Co. Ltd, Beijing, 100095, People's Republic of China
| | - Tong He
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenxi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiangjun Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jin Tao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yingbo Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Fu Y, Zhu Y, Zhao F, Yao B, Yu Y, Zhang J, Chen Q. In vitro Synergistic and Bactericidal Effects of Aztreonam in Combination with Ceftazidime/ Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam Against Dual-Carbapenemase-Producing Enterobacterales. Infect Drug Resist 2024; 17:3851-3861. [PMID: 39247757 PMCID: PMC11380864 DOI: 10.2147/idr.s474150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Our aim was to elucidate the resistance mechanisms and assess the combined synergistic and bactericidal activities of aztreonam in combination with ceftazidime/avibactam (CZA), meropenem/vaborbactam (MEV), and imipenem/relebactam (IMR) against Enterobacterales strains producing dual carbapenemases. Methods Species identification, antimicrobial susceptibility testing and determination of carbapenemase type were performed for these strains. Plasmid sizes, plasmid conjugation abilities and the localization of carbapenemase genes were investigated. Whole-genome sequencing was performed for all strains and their molecular characteristics were analyzed. In vitro synergistic and bactericidal activities of the combination of aztreonam with CZA, MEV and IMR against these strains were determined using checkerboard assay and time-kill curve assay. Results A total of 12 Enterobacterales strains producing dual-carbapenemases were collected, including nine K. pneumoniae, two P. rettgeri, and one E. hormaechei. The most common dual-carbapenemase gene pattern observed was bla (KPC-2+NDM-5) (n=4), followed by bla KPC-2+IMP-26 (n=3), bla (KPC-2+NDM-1) (n=2), bla (KPC-2+IMP-4) (n=1), bla (NDM-1+IMP-4) (n=1) and bla (KPC-2+KPC-2) (n=1). In each strain, the carbapenemase genes were found to be located on two distinct plasmids which were capable of conjugating from the original strain to the receipt strain E. coli J53. The results of the checkerboard synergy analysis consistently revealed good synergistic effects of the combination of ATM with CZA, MEV and IMR. Except for one strain, all strains exhibited significant synergistic activity and bactericidal activity between 2 and 8 hours. Conclusion Dual-carbapenemase-producing Enterobacterales posed a significant threat to clinical anti-infection treatment. However, the combination of ATM with innovative β-lactam/β-lactamase inhibitor compounds had proven to be an effective treatment option.
Collapse
Affiliation(s)
- Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yufeng Zhu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Hangzhou Xixi Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Zhejiang University Sir Run Run Shaw Alar Hospital, Alar, Xinjiang province, People's Republic of China
| | - Bingyan Yao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qiong Chen
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Yao H, Wang Y, Peng Y, Huang Z, Gan G, Wang Z. A Real-World Pharmacovigilance Study of Ceftazidime/Avibactam: Data Mining of the Food and Drug Administration Adverse Event Reporting System Database. J Clin Pharmacol 2024; 64:820-827. [PMID: 38375685 DOI: 10.1002/jcph.2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Ceftazidime/avibactam (CAZ/AVI) is a combination of a well-known third-generation, broad-spectrum cephalosporin with a new beta-lactamase inhibitor that has been approved for the treatment of various infectious diseases (especially multidrug-resistant Gram-negative bacterial infections) by the Food and Drug Administration (FDA). The current study extensively assessed CAZ/AVI-related adverse events (AEs) in the real world through data mining of the FDA Adverse Event Reporting System (FAERS) database to better understand toxicities. The signals of CAZ/AVI-related AEs were quantified using disproportionality analyses, including the reporting odds ratio, the proportional reporting ratio, the Bayesian confidence propagation neural network, and the multi-item gamma Poisson shrinker algorithms. Out of 10,114,815 records retrieved from the FAERS database, 628 cases were identified, where CAZ/AVI was implicated as the primary suspect drug. A total of 61 preferred terms with significant disproportionality that simultaneously met the criteria of all four algorithms were retained. Several unexpected safety signals may also occur, including melena, hypernatremia, depressed level of consciousness, brain edema, petechiae, delirium, and shock hemorrhagic. The median onset time for AEs associated with CAZ/AVI was 4 days, with most cases occurring within 3 days after CAZ/AVI initiation.
Collapse
Affiliation(s)
- Haiping Yao
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University, Hubei, P. R. China
- College of Pharmacy, Hubei University of Chinese Medicine, Hubei, P. R. China
| | - Yanyan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University, Hubei, P. R. China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University, Hubei, P. R. China
| | - Zhixiong Huang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University, Hubei, P. R. China
| | - Guoping Gan
- College of Pharmacy, Hubei University of Chinese Medicine, Hubei, P. R. China
| | - Zhu Wang
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Hubei, P. R. China
| |
Collapse
|
4
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
5
|
Xu H, Lin C, Tang H, Li R, Xia Z, Zhu Y, Liu Z, Shen J. A Method for Detecting Five Carbapenemases in Bacteria Based on CRISPR-Cas12a Multiple RPA Rapid Detection Technology. Infect Drug Resist 2024; 17:1599-1614. [PMID: 38699075 PMCID: PMC11063466 DOI: 10.2147/idr.s429707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 05/05/2024] Open
Abstract
Introduction As the last line of defense for clinical treatment, Carbapenem antibiotics are increasingly challenged by multi-drug resistant bacteria containing carbapenemases. The rapid spread of these multidrug-resistant bacteria is the greatest threat to severe global health problems. Methods To solve the problem of rapid transmission of this multidrug-resistant bacteria, we have developed a rapid detection technology using CRPSPR-Cas12a gene editing based on multiple Recombinase polymerase amplification. This technical method can directly isolate the genes of carbapenemase-containing bacteria from samples, with a relatively short detection time of 30 minutes. The instrument used for the detection is relatively inexpensive. Only a water bath can complete the entire experiment of Recombinase polymerase amplification and trans cleavage. This reaction requires no lid during the entire process while reducing a large amount of aerosol pollution. Results The detection sensitivity of this method is 1.5 CFU/mL, and the specificity is 100%. Discussion This multi-scene detection method is suitable for screening populations in wild low-resource environments and large-scale indoor crowds. It can be widely used in hospital infection control and prevention and to provide theoretical insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huaming Xu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Chunhui Lin
- The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Hao Tang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Rongrong Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Zhaoxin Xia
- The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yi Zhu
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Zhen Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Russo A, Serraino R, Serapide F, Trecarichi EM, Torti C. New advances in management and treatment of cardiac implantable electronic devices infections. Infection 2024; 52:323-336. [PMID: 37996646 PMCID: PMC10955036 DOI: 10.1007/s15010-023-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Cardiac implantable electronic devices (CIED) are increasingly used worldwide, and infection of these devices remains one of the most feared complications.CIED infections (CDIs) represent a challenge for physicians and the healthcare system in general as they require prolonged hospitalization and antibiotic treatment and are burdened by high mortality and high costs, so management of CDIs must be multidisciplinary.The exact incidence of CDIs is difficult to define, considering that it is influenced by various factors mainly represented by the implanted device and the type of procedure. Risk factors for CDIs could be divided into three categories: device related, patient related, and procedural related and the etiology is mainly sustained by Gram-positive bacteria; however, other etiologies cannot be underestimated. As a matter of fact, the two cornerstones in the treatment of these infections are device removal and antimicrobial treatment. Finally, therapeutic drug monitoring and PK/PD correlations should be encouraged in all patients with CDIs receiving antibiotic therapy and may result in a better clinical outcome and a reduction in antibiotic resistance and economic costs.In this narrative review, we look at what is new in the management of these difficult-to-treat infections.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Riccardo Serraino
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
7
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
8
|
Zhang S, Mi P, Wang J, Li P, Luo K, Liu S, Al-Shamiri MM, Lei J, Lai S, Han B, Chen Y, Han L, Han S. The optimized carbapenem inactivation method for objective and accurate detection of carbapenemase-producing Acinetobacter baumannii. Front Microbiol 2023; 14:1185450. [PMID: 37520356 PMCID: PMC10372451 DOI: 10.3389/fmicb.2023.1185450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The modified carbapenem inactivation method (mCIM) recommended by the Clinical and Laboratory Standards Institute is not applicable for detecting carbapenemases in Acinetobacter baumannii. Four currently reported phenotypic detection methods, namely, the modified Hodge test, the mCIM, the adjusted mCIM, and the simplified carbapenem inactivation method (sCIM), did not perform well in our 90 clinical A. baumannii isolates. Thus, the minimal inhibitory concentrations (MICs) of carbapenems and the existence and expression of carbapenemase-encoding genes were detected to explain the results. According to the E-test, which was more accurate than the VITEK 2 system, 80.0 and 41.1% were resistant to imipenem (IPM) and meropenem (MEM), respectively, and 14.4 and 53.3% exhibited intermediate resistance, respectively. Five β-lactamase genes were found, of which blaOXA-51-like, blaTEM, and blaOXA-23-like were detected more frequently in 85 non-susceptible strains. The expression of blaOXA-23-like was positively correlated with the MIC values of IPM and MEM. Therefore, an improved approach based on the mCIM, designated the optimized CIM (oCIM), was developed in this study to detect carbapenemases more accurately and reproducibly. The condition was improved by evaluating the factors of A. baumannii inoculum, incubation broth volume, and MEM disk incubation time. Obvious high sensitivity (92.94%) and specificity (100.00%) were obtained using the oCIM, which was cost-effective and reproducible in routine laboratory work.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin’e Lei
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Simin Lai
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Ragueh AA, Aboubaker MH, Mohamed SI, Rolain JM, Diene SM. Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Antibiotics (Basel) 2023; 12:1132. [PMID: 37508230 PMCID: PMC10376901 DOI: 10.3390/antibiotics12071132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Introduction: The antimicrobial resistance (AMR) of bacteria is increasing rapidly against all classes of antibiotics, with the increasing detection of carbapenem-resistant isolates. However, while growing prevalence has been reported around the world, data on the prevalence of carbapenem resistance in developing countries are fairly limited. In this study, we investigated and determined the resistance rate to carbapenems among multidrug-resistant Gram-negative bacteria (MDR-GNB) isolated in Djibouti and characterized their resistance mechanisms. Results: Of the 256 isolates, 235 (91.8%) were identified as Gram-negative bacteria (GNB). Of these GNBs, 225 (95.7%) isolates exhibited a multidrug resistance phenotype, and 20 (8.5%) isolates were resistant to carbapenems, including 13 Escherichia coli, 4 Acinetobacter baumannii, 2 Klebsiella pneumoniae and 1 Proteus mirabilis. The most predominant GNB in this hospital setting were E. coli and K. pneumoniae species. Carbapenemase genes such as blaOXA-48 and blaNDM-5 were identified, respectively, in six and four E. coli isolates, whereas the carbapenemase blaNDM-1 was identified in three E. coli, two K. pneumoniae, one P. mirabilis and one A. baumannii. Moreover, three A. baumannii isolates co-hosted blaOXA-23 and blaNDM-1. Materials and Methods: A total of 256 clinical strains collected between 2019 and 2020 were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Antibiotic susceptibility testing was performed using disk diffusion and E-test methods. Real-time polymerase chain reaction (RT-PCR), standard PCR and sequencing were used to investigate genes encoding for extended-spectrum-β-lactamases, carbapenemases and colistin resistance genes. Conclusions: We report, for the first time, the presence of MDR-GNB clinical isolates and the emergence of carbapenem-resistant isolates in Djibouti. In addition to performing antimicrobial susceptibility testing, we recommend phenotypic and molecular screening to track the spread of carbapenemase genes among clinical GNB isolates.
Collapse
Affiliation(s)
- Ayan Ali Ragueh
- Campus Balbala Croisement RN2-RN5, Université de Djibouti, Djibouti 1904, Djibouti
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Universite, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| | | | - Sitani Idriss Mohamed
- Laboratoire de Biologie et de Biochimie Clinique de L'hôpital Général Peltier, 1323, Avenue Maréchal, Djibouti 1119, Djibouti
| | - Jean-Marc Rolain
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Universite, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| | - Seydina M Diene
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Universite, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| |
Collapse
|
10
|
Beshah D, Desta AF, Woldemichael GB, Belachew EB, Derese SG, Zelelie TZ, Desalegn Z, Tessema TS, Gebreselasie S, Abebe T. High burden of ESBL and carbapenemase-producing gram-negative bacteria in bloodstream infection patients at a tertiary care hospital in Addis Ababa, Ethiopia. PLoS One 2023; 18:e0287453. [PMID: 37368908 DOI: 10.1371/journal.pone.0287453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bloodstream infection due to beta-lactamase and carbapenemase-producing gram-negative bacteria poses a substantial challenge to the effectiveness of antimicrobial treatments. Therefore, this study aimed to investigate the magnitude of beta-lactamase, carbapenemase-producing gram-negative bacteria, and associated risk factors of bloodstream infections in patients at a tertiary care hospital, in Addis Ababa, Ethiopia. METHODS An institutional-based cross-sectional study was conducted with convenience sampling techniques from September 2018 to March 2019. Blood cultures were analyzed from 1486 bloodstream infection suspected patients across all age groups. The blood sample was collected using two BacT/ALERT blood culture bottles for each patient. Gram stain, colony characteristics, and conventional biochemical tests were used to classify the gram-negative bacteria at the species level. Antimicrobial susceptibility testing was carried out to screen beta-lactam and carbapenem drug-resistant bacteria. The E-test was conducted for extended-spectrum-beta-lactamase and AmpC-beta-lactamase-producers. A modified and EDTA-modified carbapenem inactivation method was conducted for carbapenemase and metallo-beta-lactamases producers. Data collected using structured questionnaires and medical records were reviewed, encoded, and cleaned using EpiData V3.1. software. The cleaned data were exported and analyzed using SPSS version 24 software. Descriptive statistics and multivariate logistic registration models were used to describe and assess factors associated with acquiring drug-resistant bacteria infection. A p-value <0.05 was considered statistically significant. RESULT Among 1486 samples, 231 gram-negative bacteria were identified; of these, 195(84.4%) produce drug-hydrolyzing enzymes, and 31(13.4%) produce more than one drug-hydrolyzing enzyme. We found 54.0% and 25.7% of the gram-negative bacteria to be extended-spectrum-beta-lactamase and carbapenemase-producing, respectively. The extended-spectrum-beta-lactamase plus AmpC-beta-lactamase-producing bacteria account for 6.9%. Among the different isolates Klebsiella pneumonia 83(36.7%) was the highest drug-hydrolyzing enzyme-producing bacteria. Acinetobacter spp 25(53.2%) was the most carbapenemase producer. Extended-spectrum-beta-lactamase and carbapenemase-producing bacteria were high in this study. A significant association between age groups and extended-spectrum-beta-lactamase producer bacterial infection was seen, with a high prevalence in neonates (p = <0.001). Carbapenemase showed a significant association with patients admitted to the intensive care unit (p = 0.008), general surgery (p = 0.001), and surgical intensive care unit (p = 0.007) departments. Delivery of neonates by caesarean section, and insertion of medical instruments into the body were exposing factors for carbapenem-resistant bacterial infection. Chronic illnesses were associated with an extended-spectrum-beta-lactamase-producing bacterial infection. Klebsiella pneumonia and Acinetobacter species showed the greatest rates of extensively drug-resistant (37.3%) and pan-drug-resistance (76.5%), respectively. According to the results of this study, the pan-drug-resistance prevalence was found to be alarming. CONCLUSION Gram-negative bacteria were the main pathogens responsible for drug-resistant bloodstream infections. A high percentage of extended-spectrum-beta-lactamase and carbapenemase-producer bacteria were found in this study. Neonates were more susceptible to extended-spectrum-beta-lactamase and AmpC-beta-lactamase-producer bacteria. Patients in general surgery, caesarean section delivery, and intensive care unit were more susceptible to carbapenemase-producer bacteria. The suction machines, intravenous lines, and drainage tubes play an important role in the transmission of carbapenemase and metallo-beta-lactamase-producing bacteria. The hospital management and other stakeholders should work on infection prevention protocol implementation. Moreover, special attention should be given to all types of Klebsiella pneumoniae and pan-drug resistance Acinetobacter spp transmission dynamics, drug resistance genes, and virulence factors.
Collapse
Affiliation(s)
- Daniel Beshah
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Diagnostic Laboratory, Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke Desta
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay Woldemichael
- Microbial Cellular and Molecular Biology Department, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Esmael Besufikad Belachew
- Department of Biology, College of Natural and Computational Sciences, Mizan-Tepi University, Tepi, Ethiopia
| | - Solomon Gizaw Derese
- Department of Diagnostic Laboratory, Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tizazu Zenebe Zelelie
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Solomon Gebreselasie
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Padovani M, Bertelli A, Corbellini S, Piccinelli G, Gurrieri F, De Francesco MA. In Vitro Activity of Cefiderocol on Multiresistant Bacterial Strains and Genomic Analysis of Two Cefiderocol Resistant Strains. Antibiotics (Basel) 2023; 12:antibiotics12040785. [PMID: 37107147 PMCID: PMC10135176 DOI: 10.3390/antibiotics12040785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cefiderocol is a new siderophore cephalosporin that is effective against multidrug-resistant Gram-negative bacteria, including carbapenem-resistant strains. The aim of this study was to evaluate the activity of this new antimicrobial agent against a collection of pathogens using broth microdilution assays and to analyze the possible mechanism of cefiderocol resistance in two resistant Klebsiella pneumoniae isolates. One hundred and ten isolates were tested, comprising 67 Enterobacterales, two Acinetobacter baumannii, one Achromobacter xylosoxidans, 33 Pseudomonas aeruginosa and seven Stenotrophomonas maltophilia. Cefiderocol showed good in vitro activity, with an MIC < 2 μg/mL, and was able to inhibit 94% of the tested isolates. We observed a resistance rate of 6%. The resistant isolates consisted of six Klebsiella pneumoniae and one Escherichia coli, leading to a resistance rate of 10.4% among the Enterobacterales. Whole-genome sequencing analysis was performed on two cefiderocol-resistant Klebsiella pneumoniae isolates to investigate the possible mutations responsible for the observed resistance. Both strains belonged to ST383 and harbored different resistant and virulence genes. The analysis of genes involved in iron uptake and transport showed the presence of different mutations located in fhuA, fepA, iutA, cirA, sitC, apbC, fepG, fepC, fetB, yicI, yicJ, and yicL. Furthermore, for the first time, to the best of our knowledge, we described two Klebsiella pneumoniae isolates that synthesize a truncated fecA protein due to the transition from G to A, leading to a premature stop codon in the amino acid position 569, and a TonB protein carrying a 4-amino acid insertion (PKPK) after Lysine 103. In conclusion, our data show that cefiderocol is an effective drug against multidrug-resistant Gram-negative bacteria. However, the higher resistance rate observed in Enterobacterales underlines the need for active surveillance to limit the spread of these pathogens and to avoid the risks associated with the emergence of resistance to new drugs.
Collapse
Affiliation(s)
- Michela Padovani
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Anna Bertelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Silvia Corbellini
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Giorgio Piccinelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Francesca Gurrieri
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
12
|
Jean SS, Liu IM, Hsieh PC, Kuo DH, Liu YL, Hsueh PR. Off-label use versus formal recommendations of conventional and novel antibiotics for the treatment of infections caused by multidrug-resistant bacteria. Int J Antimicrob Agents 2023; 61:106763. [PMID: 36804370 DOI: 10.1016/j.ijantimicag.2023.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
The infections caused by multidrug- and extensively drug-resistant (MDR, XDR) bacteria, including Gram-positive cocci (GPC, including methicillin-resistant Staphylococcus aureus, MDR-Streptococcus pneumoniae and vancomycin-resistant enterococci) and Gram-negative bacilli (GNB, including carbapenem-resistant [CR] Enterobacterales, CR-Pseudomonas aeruginosa and XDR/CR-Acinetobacter baumannii complex) can be quite challenging for physicians with respect to treatment decisions. Apart from complicated urinary tract and intra-abdominal infections (cUTIs, cIAIs), bloodstream infections and pneumonia, these difficult-to-treat bacteria also cause infections at miscellaneous sites (bones, joints, native/prosthetic valves and skin structures, etc.). Antibiotics like dalbavancin, oritavancin, telavancin and daptomycin are currently approved for the treatment of acute bacterial skin and skin structural infections (ABSSSIs) caused by GPC. Additionally, ceftaroline, linezolid and tigecycline have been formally approved for the treatment of community-acquired pneumonia and ABSSSI. Cefiderocol and meropenem-vaborbactam are currently approved for the treatment of cUTIs caused by XDR-GNB. The spectra of ceftazidime-avibactam and imipenem/cilastatin-relebactam are broader than that of ceftolozane-tazobactam, but these three antibiotics are currently approved for the treatment of hospital-acquired pneumonia, cIAIs and cUTIs caused by MDR-GNB. Clinical investigations of other novel antibiotics (including cefepime-zidebactam, aztreonam-avibactam and sulbactam-durlobactam) for the treatment of various infections are ongoing. Nevertheless, evidence for adequate antibiotic regimens against osteomyelitis, arthritis and infective endocarditis due to several GPC and MDR-GNB is still mostly lacking. A comprehensive review of PubMed publications was undertaken and the formal indications and off-label use of important conventional and novel antibiotics against MDR/XDR-GPC and GNB isolates cultured from miscellaneous sites are presented in this paper.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dai-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Public Health, Taoyuan City Government, Taoyuan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Jing X, Hu Y, Wu T, Zhang X, Luo S, Wang W, Min X, Sun R, Zeng J. A rapid method for detecting and distinguishing metallo-β-lactamase-and serine carbapenemase-producing Enterobacteriales using MALDI-TOF MS. Front Microbiol 2023; 13:1096987. [PMID: 36713184 PMCID: PMC9880429 DOI: 10.3389/fmicb.2022.1096987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Carbapenemase-producing Enterobacteriales (CPE) are a major health threat worldwide, and therefore the development of rapid detection methods is needed. Here, we established a method to distinguish metallo-β-lactamase and serine carbapenemases using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with ethylenediaminetetraacetic acid (EDTA) and phenylboronic acid (PB). Methods To assess the specificity and sensitivity of the method, 110 carbapenemase-producing and 72 carbapenemase-negative Enterobacteriales isolates were collected, among which 51 strains produced only metallo-β-lactamase, 55 strains only serine carbapenemases, and four strains both metallo-β-lactamase and serine carbapenemases. In the proposed MALDI-TOF MS method, imipenem (IPM) and the bacterial strains to be tested were mixed, EDTA and/or PB was added, and the mixture was incubated for 4 h. The carbapenemase type was confirmed by the IPM waveform spectrum before and after incubation. Results Based on the presence, absence, and recovery of the IPM-cyano-4-hydroxy-cinnamic acid-specific waveform peak near 479 m/z, the detection sensitivity and specificity of the method were 98.2 and 100%, respectively. Discussion Although CPE detection by MALDI-TOF MS has been studied previously, our method distinguishes between metallo-β-lactamase and serine carbapenemases, which will be very helpful for the clinical selection of antibiotics.
Collapse
Affiliation(s)
- Xiaopeng Jing
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Yanyan Hu
- Clinical Microbiology Laboratory, School of Medicine, 2nd Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Tingting Wu
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Xing Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Shaofeng Luo
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Wei Wang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Xiaochun Min
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Ruiling Sun
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China,*Correspondence: Ji Zeng,
| |
Collapse
|
14
|
Aghamohammad S, Rohani M. Antibiotic resistance and the alternatives to conventional antibiotics: The role of probiotics and microbiota in combating antimicrobial resistance. Microbiol Res 2022; 267:127275. [PMID: 36493661 DOI: 10.1016/j.micres.2022.127275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
From the introduction of the first antibiotic to the present day, the emergence of antibiotic resistance has been a difficult problem for medicine. Regardless of the type of antibiotic resistance, the presence of resistant isolates in clinical and even asymptomatic fecal carriers becomes a difficult public health problem. Therefore, the use of new antimicrobial combination therapies or alternative agents with antimicrobial activity that have the least side effects, including plant-, metal-, and nanoparticle-based agents, could be crucial and useful. Recently, the use of probiotics as a hypothetical candidate to combat infectious disease control and antimicrobial resistance has received notable attention. Considering the alteration of the microbiota in fecal carriers and also in patients with resistant bacterial isolates, the use of probiotics could have an appropriate effect on the balance of the microbial population. In this review, we have attempted to discuss the history of antimicrobial resistance and provide an overview of microbiota change and the use of probiotics as new agents with antimicrobial activity associated with the emergence of resistant isolates.
Collapse
Affiliation(s)
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Wu AYJ, Chang H, Wang NY, Sun FJ, Liu CP. Clinical and molecular characteristics and risk factors for patients acquiring carbapenemase-producing and non-carbapenemase-producing carbapenem-nonsusceptible-Enterobacterales bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1229-1238. [PMID: 34824020 DOI: 10.1016/j.jmii.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND/PURPOSE Carbapenem-nonsusceptible Enterobacterales (CNSE) are a growing global threat. Carbapenemases are often produced by plasmids, which allow rapid transmission. This study aimed to investigate (1) the bacterial type (2) resistant genes (3) antimicrobial susceptibility and (4) risk factors for acquisition of carbapenemase-producing carbapenem-nonsusceptible Enterobacterales (CP-CNSE) and non-carbapenemase-producing carbapenem-nonsusceptible Enterobacterales (non-CP-CNSE) bacteremia. METHODS There were a total of 113 isolates of Enterobacterales from 2013 to 2018. After excluding nonblood isolates and including only one sample from each patient, 99 isolates were analyzed and the medical charts of these patients were reviewed. Carbapenemase genes, β-lactamase genes and antimicrobial susceptibility of the isolates were determined. Multilocus sequence typing (MLST) was performed on CP-CNSE isolates. RESULTS CP-CNSE carried more blaSHV (P = 0.004) and were more resistant to imipenem than non-CP-CNSE (P < 0.001). In the univariate analyses, we found that CP-CNSE bloodstream infection was associated with patient <65 years of age (odds ratio, 3.90; 95% confidence interval [CI], 1.16 to 13.10; P = 0.027), mechanical ventilation at the time of bloodstream infection (BSI) (odds ratio, 3.85; 95% CI, 1.16-12.78; P = 0.028) and exposure to piperacillin/tazobactam (odds ratio, 3.96; 95% CI, 1.09-14.38; P = 0.037). However, on multivariate analyses, no independent predictor for CP-CNSE was identified in this study. CONCLUSION CP-CNSE carried more blaSHV and were more resistant to imipenem when compared to non-CP-CNSE. No independent predictor for CP-CNSE was identified after multivariate analysis. This is the first study conducted in Taiwan comparing risk factors between CP-CNSE and non-CP-CNSE from both clinical and molecular aspects.
Collapse
Affiliation(s)
- Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Nai-Yu Wang
- Section of Microbiology, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Ju Sun
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Section of Microbiology, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
16
|
A Broad-Host-Range Plasmid Outbreak: Dynamics of IncL/M Plasmids Transferring Carbapenemase Genes. Antibiotics (Basel) 2022; 11:antibiotics11111641. [DOI: 10.3390/antibiotics11111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
IncL/M broad-host-range conjugative plasmids are involved in the global spread of blaOXA-48 and the emergence of blaNDM-1. The aim of this study was to evaluate the transmission potential of plasmids encoding the emergent NDM-1 carbapenemase compared to the pandemic OXA-48. The conjugation rate and fitness cost of IncM2 and IncL plasmids encoding these carbapenemase genes were tested using a variety of host bacteria. Genomic analysis of uropathogenic Escherichia coli SAP1756 revealed that blaNDM-1 was encoded on an IncM2 plasmid, which also harboured blaTEM-1, bleMBL and sul1 and was highly similar to plasmids isolated from the same geographical area. Conjugation experiments demonstrated that NDM-1 and OXA-48-carrying plasmids transfer successfully between different Enterobacterales species, both in vitro and in vivo. Interestingly, E. coli isolates tested as recipients belonging to phylogroups A, B1, D and F were able to receive IncM2 plasmid pSAP1756, while phylogroups B2, C, E and G were not permissive to its acquisition. In general, the IncL OXA-48-carrying plasmids tested transferred at higher rates than IncM2 harbouring NDM-1 and imposed a lower burden to their host, possibly due to the inactivation of the tir fertility inhibition gene and reflecting their worldwide dissemination. IncM2 plasmids carrying blaNDM-1 are considered emergent threats that need continuous monitoring. In addition to sequencing efforts, phenotypic analysis of conjugation rates and fitness cost are effective methods for estimating the pandemic potential of antimicrobial resistance plasmids.
Collapse
|
17
|
Deng J, Liao Q, Zhang W, Wu S, Liu Y, Xiao Y, Kang M. Molecular epidemiology characteristics and detecting transmission of carbapenemase-producing enterobacterales in southwestern China. J Infect Public Health 2022; 15:1047-1052. [PMID: 36041382 DOI: 10.1016/j.jiph.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate the genotype and clinical characteristics of carbapenem-resistant Enterobacteriaceae (CRE) strains in southwest China and provide information on the treatment stopping the spread of the infection. METHODS The clinical information of CRE isolates was collected from 19 hospitals in 12 cities across Sichuan Province, China, between June 2018 and April 2019. The isolates were detected by DNA sequencing of genes encoding carbapenem enzymes and multilocus sequence types (MLSTs). RESULTS A total of 166 nonrepetitive CRE isolates were isolated during the study period from sputum, blood, urine, and other samples. Klebsiella pneumoniae carbapenemase (KPC) was dominant in Klebsiella pneumoniae (53.9%), followed by New Delhi metallo-β-lactamase (NDM) (42.1%). A total of 43 STs were detected. The most common ST of K. pneumoniae was ST11, and that of Escherichia coli was ST410. Pairwise single nucleotide polymorphism (SNP) distances and the likelihood of local transmission by epidemiology were plotted for each species. About 65% of these pairs had ≤ 20 pairwise SNPs. CONCLUSION A large number of CRE strains carried carbapenemase. Although NDM-ST12 K. pneumoniae should not be disregarded, KPC-ST11is the predominant strain. Thus, the possibility of transmission between E. coli and K. pneumoniae could not be ignored.
Collapse
Affiliation(s)
- Jin Deng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Liu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - YuLing Xiao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
19
|
Jean SS, Lee YL, Hsu CW, Hsueh PR. In vitro susceptibilities of isolates of potentially naturally inducible chromosomal AmpC-producing metallo-β-lactamase-negative carbapenem-resistant Enterobacterales species to ceftazidime-avibactam: Data from the Antimicrobial Testing Leadership and Surveillance Programme, 2012-2019. Int J Antimicrob Agents 2022; 60:106617. [PMID: 35718266 DOI: 10.1016/j.ijantimicag.2022.106617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/28/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
In total, 74,570 potentially naturally inducible chromosomal AmpC-producing (PNIC-AmpC) Enterobacterales isolates included in the Antimicrobial Testing Leadership and Surveillance Programme were obtained worldwide from 2012 to 2019 (22,503 from 2012 to 2014 and 52,067 from 2015 to 2019). One hundred seventeen and 711 isolates obtained in 2012-2014 and 2015-2019, respectively, were carbapenem-resistant Enterobacterales (PNIC-AmpC-CRE). The minimum inhibitory concentrations of ceftazidime-avibactam for these isolates against were determined using the broth microdilution method. Genes encoding different Ambler classes of β-lactamases were investigated using multiplex PCR. After 97 isolates harboring genes encoding metallo-β-lactamases (MβL) were excluded, 731 PNIC-AmpC MβL-negative CRE isolates (101 from 2012 to 2014 and 630 from 2015 to 2019) were included in this study. Enterobacter cloacae complex species, Escherichia coli, and Citrobacter freundii complex species accounted for 36.3% (n = 265), 30.4% (n = 222), and 11.8% (n = 86), respectively, followed by Providencia species (n = 72), Serratia species (n = 52), and Klebsiella aerogenes (n = 34). The resistance rates to ceftazidime-avibactam for the overall PNIC-AmpC MβL-negative CRE isolates differed markedly between the two periods (35.6% vs. 63.3%, P < 0.001). Similar trends were observed for the MβL-negative-CR-E. cloacae complex species (47.4% vs. 65.2%; P = 0.046) and MβL-negative-CR-E. coli (16.2% vs. 63.8%; P < 0.001) but not for MβL-negative-CR-C. freundii complex species (40% vs. 62%; P = 0.153). Amongst the PNIC-AmpC MβL-negative CRE isolates, resistance rates to ceftazidime-avibactam worsened. Caution should be taken when empirically prescribing ceftazidime-avibactam for infections caused by PNIC-AmpC-CRE before susceptibility data are available.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-Wang Hsu
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
20
|
Erdem F, Díez-Aguilar M, Oksuz L, Kayacan C, Abulaila A, Oncul O, Morosini MI, Cantón R, Aktas Z. Time kill-assays of antibiotic combinations for multidrug resistant clinical isolates of OXA-48 carbapenemase producing Klebsiella pneumoniae. Acta Microbiol Immunol Hung 2022; 69:215-219. [PMID: 35895557 DOI: 10.1556/030.2022.01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022]
Abstract
Treatment of infections caused by OXA-48 carbapenemase producing multidrug-resistant isolates often necessitates combination therapy. In vitro effect of different antibiotic combinations against multidrug-resistant (MDR) Klebsiella pneumoniae isolates were evaluated in this study. Meropenem-tobramycin (MER+TOB), meropenem-ciprofloxacin (MER+CIP), colistin-meropenem (COL+MER), colistin-ciprofloxacin (COL+CIP) and colistin-tobramycin (COL+TOB) combinations were tested by time kill-assays. Each antibiotic alone and in combination at their Cmax values were tested against 4 clinical K. pneumoniae isolates at 1, 2, 4, 6, 8, 12 and 24 h. Effect of colistin and its associations were also assessed at 30 min. Bactericidal activity was defined as ≥3log10 CFU mL-1 decrease compared with initial inoculum. Synergy was defined as ≥2log10CFU mL-1 decrease by the combination compared with the most active single agent. Presence of bla OXA-48, bla NDM, bla VIM, bla IMP, bla KPC and bla CTX-M-1 genes was screened by PCR using specific primers. The bla OXA-48 gene was identified together with bla CTXM-1 group gene in all isolates. COL+MER demonstrated to be synergistic and bactericidal. MER+TOB showed synergistic and bactericidal effect on two strains although, regrowth was seen on other two strains at 24 h. MER+CIP exhibited indifferent effect on the strains. Combination therapy could be a potential alternative to treat MDR K. pneumoniae infections. This combination might prevent resistance development and secondary effects of colistin monotherapy. MER+TOB and MER+CIP might have an isolate-dependent effect, that may not always result in synergism.
Collapse
Affiliation(s)
- Fatma Erdem
- 1 Department of Medical Microbiology, Adana City Training and Research Hospital, Department of Medical Microbiology, Adana, Turkey
| | - María Díez-Aguilar
- 2 Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Lutfiye Oksuz
- 7 Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Cigdem Kayacan
- 3 Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydın University, Turkey
| | - Ayham Abulaila
- 4 Department of Clinical Microbiology, Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Oral Oncul
- 5 Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - María Isabel Morosini
- 6 Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rafael Cantón
- 6 Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Zerrin Aktas
- 7 Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| |
Collapse
|
21
|
Tiwari A, Paakkanen J, Österblad M, Kirveskari J, Hendriksen RS, Heikinheimo A. Wastewater Surveillance Detected Carbapenemase Enzymes in Clinically Relevant Gram-Negative Bacteria in Helsinki, Finland; 2011-2012. Front Microbiol 2022; 13:887888. [PMID: 35722284 PMCID: PMC9201422 DOI: 10.3389/fmicb.2022.887888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance profiling of pathogens helps to identify the emergence of rare or new resistance threats and prioritize possible actions to be taken against them. The analysis of wastewater (WW) can reveal the circulation of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) among the catchment communities. Here, we analyzed WW influent samples to determine the prevalence of carbapenemase genes-carrying Gram-negative bacteria (Carba-GNB) in Helsinki, Finland. This study set important historical reference points from the very early stage of the carbapenemase era, during the period 2011-2012. A total of 405 bacterial isolates grown on CHROMagarKPC (n = 195) and CHROMagarESBL (n = 210) from WW influent samples were collected between October 2011 and August 2012 and were analyzed. The bacterial DNA from the isolates was extracted, and the prevalence of carbapenemases genes bla KPC, bla NDM, bla GES, bla OXA-48, bla IMP, bla IMI, and bla VIM were screened with multiplexed PCR. All carbapenemase-positive isolates were identified taxonomically to species or genus level with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The nucleic acid extraction was successful for 399 isolates, of which 59 (14.8%) were found to carry carbapenemase genes. A total of 89.8% of the carbapenemase positive isolates (53 out of 59) were obtained from CHROMagarKPC plates and only 10.2% (six out of 59) were obtained from CHROMagar ESBL plates. Among the Carba-GNB isolates, 86.4% were bla GES (51 out of 59), 10.2% were bla KPC (six out of 59), and 3.4% were bla VIM (two out of 59). The most common carba-gene, bla GES, was carried by 10 different bacterial species, including Aeromonas spp., Enterobacter spp., and Kluyvera spp.; the bla KPC gene was carried by Escherichia coli, Klebsiella pneumoniae, and Kluyvera cryocescens; and the bla VIM gene was carried by Aeromonas hydrophila/caviae and Citrobacter amalonaticus. This study emphasizes that wastewater surveillance (WWS) can be an additional tool for monitoring antimicrobial resistance (AMR) at the population level.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | | | - Monica Österblad
- Antimicrobial Resistance Unit, Finnish Institute for Health and Welfare, Turku, Finland
| | | | - Rene S. Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics, Kongens Lyngby, Denmark
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinajöki, Finland
| |
Collapse
|
22
|
Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Niki M, Nishio H, Kida K, Ohama M, Nakamura A, Nishi I. Evaluation of the VITEK2 AST-XN17 card for the detection of carbapenemase-producing Enterobacterales in isolates primarily producing metallo β-lactamase. Eur J Clin Microbiol Infect Dis 2022; 41:723-732. [PMID: 35211803 PMCID: PMC9033686 DOI: 10.1007/s10096-022-04424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Carbapenemase-producing Enterobacterales (CPE) are not always resistant to carbapenem antimicrobial susceptibility testing (AST) and can be difficult to detect. With the newly created VITEK2 AST-XN17 card, the types of antibiotics measured in AST can be increased. In this study, we evaluated the detectability of CPE using the results of AST with multiple antimicrobial agents with additional measurements of the AST-XN17 card. In addition, we evaluated the CPE detectability of comments on CPE using the VITEK2 Advance Expert System (AES). In total, 169 Enterobacterales samples, including 76 non-CPE and 93 CPE, collected from multiple medical institutions in the Kinki region of Japan, were used in this investigation. AST with VITEK2 was performed by adding the AST-XN17 card in addition to the AST-N268 or AST-N404 card. Measurement results were identified using cutoff values, primarily Clinical and Laboratory Standards Institute breakpoints, and the CPE detection capability of each antibiotic was evaluated in several terms, including sensitivity and specificity. The drugs highly sensitive to CPE detection were faropenem (FRPM) > 2 µg/mL at 100% and meropenem > 0.25 µg/mL at 98.9%; the highest specificity to CPE detection was for avibactam/ceftazidime (AVI/CAZ) > 8 µg/mL at 100%. The sensitivity and specificity of each card in the AES output were 86.2% and 94.7% for AST-N404 and AST-XN17 and 91.5% and 90.8% for AST-N268 and AST-XN17, respectively. AST using the VITEK2 AST-XN17 card is a useful test method of screening for CPE.
Collapse
Affiliation(s)
- Tomokazu Kuchibiro
- Department of Clinical Laboratory, Naga Municipal Hospital, 1282 Uchita, Kinokawa, Wakayama, 649-6414, Japan.
| | - Masaru Komatsu
- Department of Clinical Laboratory Science, Tenri Health Care University, Nara, Japan
| | - Katsutoshi Yamasaki
- Department of Medical Life Science, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Tatsuya Nakamura
- Department of Medical Technology and Sciences Facility of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Makoto Niki
- Department of Infection Control and Prevention, Osaka City University Hospital, Osaka, Japan
| | - Hisaaki Nishio
- Department of Clinical Laboratory, Shiga Medical Center for Children, Shiga, Japan
| | - Kaneyuki Kida
- Clinical Laboratory, Japanese Red Cross Otsu Hospital, Shiga, Japan
| | - Masanobu Ohama
- Clinical Laboratory, Japanese Red Cross Otsu Hospital, Shiga, Japan
| | - Akihiro Nakamura
- Department of Clinical Laboratory Science, Tenri Health Care University, Nara, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
23
|
An Outer Membrane Protein YiaD Contributes to Adaptive Resistance of Meropenem in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0017322. [PMID: 35377216 PMCID: PMC9045393 DOI: 10.1128/spectrum.00173-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that can develop various resistance mechanisms to many antibiotics. However, little is known about how it evolves from an antibiotic sensitive to a resistant phenotype. In this study, we investigated the transition of outer membrane proteins (OMPs) under antibiotic stress and identified YiaD as an OMP marker involved in the development of adaptive resistance to meropenem (MEM) in A. baumannii. Following stimulation of a carbapenem-sensitive strain AB5116 with sub-MIC of MEM, yiaD showed significantly decreased expression, and this decrease continued with prolonged stimulation for 8 h. The downregulation of yiaD was not only observed in clinically sensitive strains but also in 45 carbapenem-resistant isolates that produced the β-lactamases TEM and OXA-23. However, the extent of the reduction of yiaD expression in resistant strains was less than that in sensitive strains. Lack of yiaD resulted in a 4-fold increase in the MIC of AB5116 to MEM. The same level of depressed susceptibility induced by yiaD deletion was observed in both a growth curve test and a survival rate assay. Moreover, the colony shape became enlarged and irregular after loss of yiaD, and the biofilm formation ability of A. baumannii was influenced by YiaD. These results suggest that YiaD could respond to the stimulus of MEM in A. baumannii with a downregulation trend that kept pace with the prolonged stimulation time, indicating that it participates in various routes to benefit MEM resistance evolution in both carbapenem-sensitive and -resistant A. baumannii strains. IMPORTANCEAcinetobacter baumannii can develop various resistance mechanisms to carbapenems. However, the factors involved in the evolutionary process that leads from transition to the sensitive to resistant phenotype are not clear. The outer membrane protein YiaD of A. baumannii was downregulated under the stress of meropenem (MEM), and its expression level was continuously reduced with prolonged stimulation time. The downregulation of yiaD was not only observed in sensitive strains but also in carbapenem-resistant isolates producing the β-lactamases TEM and OXA-23. However, the extent of yiaD reduction was less in resistant strains than in sensitive strains. Lack of yiaD resulted in an increased MEM MIC, enlarged and irregular colonies, and decreased biofilm formation ability. These results suggest that YiaD responds to MEM stimulus in A. baumannii and participates in the adaptive resistance of MEM in both carbapenem-sensitive and -resistant strains.
Collapse
|
24
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
25
|
Zalas-Więcek P, Prażyńska M, Pojnar Ł, Pałka A, Żabicka D, Orczykowska-Kotyna M, Polak A, Możejko-Pastewka B, Głowacka EA, Pieniążek I, Pawlik M, Grys M, Bogiel M. Ceftazidime/Avibactam and Other Commonly Used Antibiotics Activity Against Enterobacterales and Pseudomonas aeruginosa Isolated in Poland in 2015–2019. Infect Drug Resist 2022; 15:1289-1304. [PMID: 35370409 PMCID: PMC8965333 DOI: 10.2147/idr.s344165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Infections caused by resistant Gram-negative bacteria are becoming increasingly common and now pose a serious public health threat worldwide, because they are difficult to treat due to few treatment options and they are associated with high morbidity and mortality. The combination of ceftazidime with the beta-lactamase inhibitor avibactam – seems to be the right choice in this situation. The aim of the study was to evaluate the activity of ceftazidime/avibactam and other commonly used antibiotics against Enterobacterales and Pseudomonas aeruginosa strains isolated within last years in Poland. Patients and Methods This study analyzed the antibiotic susceptibility of 1607 Enterobacterales isolates and 543 nonfermenting P. aeruginosa strains collected between 2015 and 2019 in 4 medical laboratories participating in the ATLAS (Antimicrobial Testing Leadership And Surveillance) program in Poland. Unduplicated clinically significant Enterobacterales and P. aeruginosa strains were collected from patients with respiratory, skin and musculoskeletal, genitourinary, abdominal, bloodstream or other infections (ear, eye). Results The ceftazidime/avibactam combination demonstrates the highest activity against Enterobacterales (98.9%), in both adults and children, including strains presenting MDR (multidrug-resistant) (97.5%) and ESBL (extended spectrum β-lactamase) (96.3%) phenotypes. The activity of ceftazidime/avibactam increased to 100% when only MBL (metallo-β-lactamase)-negative subset of Enterobacterales was considered. This combination also achieved the second highest activity result (89.3%) after colistin in P. aeruginosa, including isolates of MDR (65.9%) and carbapenem-resistant (CR) phenotypes (54.8%). When MBL-positive isolates were excluded, susceptibility rate of P. aeruginosa increased to 94.7%. It is worth to note that susceptibility of the examined P. aeruginosa strains to ceftazidime/avibactam was very high in children (93.3%), especially in a pediatric intensive care unit (94.2%). Conclusion Enterobacterales and P. aeruginosa included in this analysis presented high susceptibility rates to ceftazidime/avibactam. Ceftazidime/avibactam showed the highest activity against Enterobacterales strains among all antibiotics studied, both for the total population as well as for MDR phenotype and ESBL phenotype. Ceftazidime/avibactam also achieved the second highest activity result against P. aeruginosa strains (including MDR and CR phenotypes). These results are much higher when excluding MBL-positive isolates that exhibit intrinsic resistance to ceftazidime/avibactam.
Collapse
Affiliation(s)
- Patrycja Zalas-Więcek
- Department of Microbiology, Ludwik Rydygier Collegium Medicum; Department of Clinical Microbiology, University Hospital No. 1, Bydgoszcz, Poland
| | - Małgorzata Prażyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum; Department of Clinical Microbiology, University Hospital No. 1, Bydgoszcz, Poland
| | - Łukasz Pojnar
- Department of Microbiology, University Hospital, Cracow, Poland
| | - Anna Pałka
- Department of Microbiology, University Hospital, Cracow, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | | | - Aleksandra Polak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | | | | | | | | | - Maciej Grys
- Arcana Institute, a Certara Company, Cracow, Poland
| | - Monika Bogiel
- Pfizer Polska Sp. z o.o., Warsaw, Poland
- Correspondence: Monika Bogiel, Pfizer Polska sp. z o.o., Żwirki i Wigury 16B, Warszawa, 02-092, Poland, Tel +48 885557081, Fax +48 223356111, Email
| |
Collapse
|
26
|
Del Rio A, Muresu N, Sotgiu G, Saderi L, Sechi I, Cossu A, Usai M, Palmieri A, Are BM, Deiana G, Cocuzza C, Martinelli M, Calaresu E, Piana AF. High-Risk Clone of Klebsiella pneumoniae Co-Harbouring Class A and D Carbapenemases in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052623. [PMID: 35270321 PMCID: PMC8909938 DOI: 10.3390/ijerph19052623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is endemic globally, causing severe infections in hospitalized patients. Surveillance programs help monitor and promptly identify the emergence of new clones. We reported the rapid spread of a novel clone of K. pneumoniae co-harbouring class A and D carbapenemases in colonized patients, and the potential risk factors involved in the development of infections. Methods: Rectal swabs were used for microbiological analyses and detection of the most common carbapenemase encoding genes by real-time PCR (i.e., blaKPC, blaOXA-48, blaNDM, blaVIM, and blaIMP). All strains co-harbouring KPC and OXA-48 genes were evaluated. For each patient, the following variables were collected: age, sex, length and ward of stay, device use, and outcome. Clonality of CR-Kp was assessed by preliminary pulsed field gel electrophoresis (PFGE), followed by multi-locus sequence typing (MLST) analyses. Results: A total of 127 isolates of K. pneumoniae co-harbouring KPC and OXA-48 were collected between September 2019 and December 2020. The median age (IQR) of patients was 70 (61–77). More than 40% of patients were admitted to intensive care unit (ICU). Around 25% of patients developed an invasive infection, the majority of which were respiratory tract infections (17/31; 54.8%). ICU stay and invasive infection increased the risk of mortality (OR: 5.39, 95% CI: 2.42–12.00; OR 6.12, 95% CI: 2.55–14.69, respectively; p-value ≤ 0.001). The antibiotic susceptibility test showed a resistance profile for almost all antibiotics considered. Monoclonal origin was confirmed by PFGE and MLST showing a similar restriction pattern and belonging to ST-512. Conclusions: We report the spread and the marked antibiotic resistance profiles of K. pneumoniae strains co-producing KPC and OXA-48. Further study could clarify the roles of clinical and microbiological variables in the development of invasive infection and increasing risk of mortality, in colonized patients.
Collapse
Affiliation(s)
- Arcadia Del Rio
- Biomedical Science PhD School, Biomedical Science Department, University of Sassari, 07100 Sassari, Italy; (A.D.R.); (G.D.)
| | - Narcisa Muresu
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence: ; Tel.: +39-079-229959
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Illari Sechi
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Andrea Cossu
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Manuela Usai
- Department of Humanistic and Social Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Palmieri
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Bianca Maria Are
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Giovanna Deiana
- Biomedical Science PhD School, Biomedical Science Department, University of Sassari, 07100 Sassari, Italy; (A.D.R.); (G.D.)
| | - Clementina Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Marianna Martinelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Enrico Calaresu
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Andrea Fausto Piana
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| |
Collapse
|
27
|
Carbapenem-resistant IMP-1-producing Pseudocitrobacter vendiensis emerging in a hemodialysis unit. Braz J Microbiol 2022; 53:251-254. [PMID: 35032310 PMCID: PMC8882528 DOI: 10.1007/s42770-021-00638-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023] Open
Abstract
Hemodialysis patients are at high risk for bloodstream infections associated with highest morbidity and mortality rates. Bacterial species not commonly related to such infections has been hardly identified by traditional methods. Pseudocitrobacter is a novel genus of the order Enterobacterales that is associated with carbapenemase genes and nosocomial infection. In this context, we have investigated nine cases of bloodstream infections by carbapenem-resistant Gram-negative bacilli in patients assisted at a hemodialysis unit in Brazil. The infections were caused by a metallo-β-lactamase (IMP-1)-producing clone (> 90% XbaI-PFGE similarity) of Pseudocitrobacter vendiensis, displaying a multidrug-resistant profile to broad-spectrum cephalosporins, carbapenems, chloramphenicol, and trimethoprim-sulfamethoxazole. S1-PFGE and Southern blot hybridization revealed that blaIMP-1 was carried by a 200-kb IncC/ST3 plasmid. Patients were successfully treated with amikacin, and strict disinfection procedures and hand washing protocols were reinforced. We report the emergence of P. vendiensis, a recently described species of the genus, in bloodstream infections of patients undergoing hemodialysis. Considering the epidemic potential of carbapenemase-producing Enterobacterales in hospital settings, surveillance of this emerging pathogen is of utmost importance.
Collapse
|
28
|
Bao J, Xie L, Ma Y, An R, Gu B, Wang C. Proteomic and Transcriptomic Analyses Indicate Reduced Biofilm-Forming Abilities in Cefiderocol-Resistant Klebsiella pneumoniae. Front Microbiol 2022; 12:778190. [PMID: 35046911 PMCID: PMC8762213 DOI: 10.3389/fmicb.2021.778190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
The advent of cefiderocol provides hope for the clinical treatment of multi-drug resistant gram-negative bacteria (GNB), especially those with carbapenem resistance. Resistance of Klebsiella pneumoniae to cefiderocol can be enhanced by acclimatization. In the present study, we collected cefiderocol resistant K. pneumoniae isolates during a 36-day acclimatization procedure while increasing the cefiderocol concentration in the culture medium. Strains were studied for changes in their biological characteristics using proteomics and transcriptomics. A decrease in biofilm formation ability was the main change observed among the induced isolates. Downregulation of genes involved in biofilm formation including hdeB, stpA, yhjQ, fba, bcsZ, uvrY, bcsE, bcsC, and ibpB were the main factors that reduced the biofilm formation ability. Moreover, downregulation of siderophore transporter proteins including the iron uptake system component efeO, the tonB-dependent receptor fecA, and ferric iron ABC transporter fbpA may be among the determining factors leading to cefiderocol resistance and promoting the reduction of biofilm formation ability of K. pneumoniae. This is the first study to investigate cefiderocol resistance based on comprehensive proteomic and transcriptomic analyses.
Collapse
Affiliation(s)
- Jinfeng Bao
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lu Xie
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| | - Yating Ma
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| | - Ran An
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chengbin Wang
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| |
Collapse
|
29
|
Carbapenemase-producing Enterobacterales infections: Recent advances in diagnosis and treatment. Int J Antimicrob Agents 2022; 59:106528. [DOI: 10.1016/j.ijantimicag.2022.106528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
30
|
Mandal AK, Talukder S, Hasan MM, Tasmim ST, Parvin MS, Ali MY, Islam MT. Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farmworkers, and farm sewage in Bangladesh. Vet Med Sci 2021; 8:187-199. [PMID: 34729951 PMCID: PMC8788966 DOI: 10.1002/vms3.664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) has become an emerging threat worldwide, and developing countries such as Bangladesh are considered to be at greater risk of disseminating the resistant bacteria between human-animal interfaces. OBJECTIVES The present study was carried out to determine the prevalence and AMR profile of Escherichia coli isolated from broiler chickens, the environment, and farmworkers. This study also aimed to identify the risk factors associated with multidrug-resistant (MDR) E. coli infection in broiler chickens. In addition, the presence of carbapenem resistance gene (NDM-1) was assessed. METHODS A total of 114 E. coli isolates, recovered from 150 samples (cloacal swabs = 50, farm sewage = 50, and hand washed water of farmworkers = 50) collected from 50 broiler farms, were identified by biochemical examination and polymerase chain reaction (PCR) assay. Antimicrobial susceptibility test was performed for 10 antibiotics by disk diffusion test. Carbapenem resistance gene (NDM-1) was detected by PCR. Risk factors were identified through multivariable logistic regression. RESULTS The highest prevalence of E. coli was recorded in broiler chickens (86%) and the lowest in farmworkers (66%). For MDR E. coli infection, 'winter season', 'absence of specific shoes for staff', and 'use of antibiotics without veterinarian's prescription' were the significant risk factors. High resistance of the E. coli isolates was observed against levofloxacin (81.6%), doxycycline (78.1%), cefotaxime (78.1%), and ciprofloxacin (70.2%). About 76% of the isolates demonstrated MDR. None of the isolates were positive for the NDM-1 gene. CONCLUSIONS The high level and similar pattern of antibiotic resistance in E. coli isolates from broiler chickens, farmworkers, and sewage in poultry farms indicates a good possibility of spreading the antibiotic-resistant E. coli in such settings.
Collapse
Affiliation(s)
- Amit Kumar Mandal
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Syeda Tanjina Tasmim
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Livestock Services, Dhaka, Bangladesh
| | - Md Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
31
|
Jean SS, Lee YL, Liu PY, Lu MC, Ko WC, Hsueh PR. Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting Gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:463-473. [PMID: 34503920 DOI: 10.1016/j.jmii.2021.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To explore the in vitro antimicrobial susceptibility among clinically important Gram-negative bacteria (GNB) in Taiwan. METHODS From 2016 through 2018, a total of 5458 GNB isolates, including Escherichia coli (n = 1545), Klebsiella pneumoniae (n = 1255), Enterobacter species (n = 259), Pseudomonas aeruginosa (n = 1127), Acinetobacter baumannii complex (n = 368), and Stenotrophomonas maltophilia (n = 179), were collected. The susceptibility results were summarized by the breakpoints of minimum inhibitory concentration (MIC) of CLSI 2020, EUCAST 2020 (for colistin), or published articles (for ceftolozane/tazobactam). The resistance genes among multidrug-resistant (MDR) or extensively drug-resistant (XDR)-GNB were investigated by multiplex PCR. RESULTS Significantly higher rates of non-susceptibility (NS) to ertapenem and carbapenemase production, predominantly KPC and OXA-48-like beta-lactamase, were observed in Enterobacterales isolates causing respiratory tract infection than those causing complicated urinary tract or intra-abdominal infection (12.7%/3.44% vs. 5.7%/0.76% or 7.7%/0.97%, respectively). Isolates of Enterobacter species showed higher rates of phenotypic extended-spectrum β-lactamase and NS to ertapenem than E. coli or K. pneumoniae isolates. Although moderate activity (54-83%) was observed against most potential AmpC-producing Enterobacterales isolates, ceftolozane/tazobactam exhibited poor in vitro (44.7-47.4%) activity against phenotypic AmpC Enterobacter cloacae isolates. Additionally, 251 (22.3%) P. aeruginosa isolates exhibited the carbapenem-NS phenotype, and their MDR and XDR rate was 63.3% and 33.5%, respectively. Fifteen (75%) of twenty Burkholderia cenocepacia complex isolates were inhibited by ceftolozane/tazobactam at MICs of ≤4 μg/mL. CONCLUSIONS With the increase in antibiotic resistance in Taiwan, it is imperative to periodically monitor the susceptibility profiles of clinically important GNB.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine, Department of Emergency Medicine and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Yu Liu
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40:2053-2068. [PMID: 34169446 DOI: 10.1007/s10096-021-04296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing threat to human health worldwide. CRE often carry multiple resistance genes that limit treatment options and require longer durations of therapy, are more costly to treat, and necessitate therapies with increased toxicities when compared with carbapenem-susceptible strains. Here, we provide an overview of the mechanisms of resistance in CRE, the epidemiology of CRE infections worldwide, and available treatment options for CRE. We review recentlyapproved agents for the treatment of CRE, including ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and novel aminoglycosides and tetracyclines. We also discuss recent advances in phage therapy and antibiotics that are currently in development targeted to CRE. The potential for the development of resistance to these therapies remains high, and enhanced antimicrobial stewardship is imperative both to reduce the spread of CRE worldwide and to ensure continued access to efficacious treatment options.
Collapse
Affiliation(s)
- Kathleen Tompkins
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - David van Duin
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Perrotta F, Perrini MP. Successful Treatment of Klebsiella pneumoniae NDM Sepsis and Intestinal Decolonization with Ceftazidime/Avibactam Plus Aztreonam Combination in a Patient with TTP Complicated by SARSCoV-2 Nosocomial Infection. ACTA ACUST UNITED AC 2021; 57:medicina57050424. [PMID: 33924769 PMCID: PMC8145860 DOI: 10.3390/medicina57050424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Among them, metallo-β-lactamases (MBLs)-producing Klebsiella pneumoniae are of global concern today. The ceftazidime/avibactam combination and the ceftazidime/avibactam + aztreonam combination currently represent the most promising antibiotic strategies to stave off these kinds of infections. We describe the case of a patient affected by thrombotic thrombocytopenic purpura (TTP) admitted in our ICU after developing a hospital-acquired SARS-CoV-2 interstitial pneumonia during his stay in the hematology department. His medical conditions during his ICU stay were further complicated by a K. Pneumoniae NDM sepsis. To our knowledge, the patient had no risk factors for multidrug-resistant bacteria exposure or contamination during his stay in the hematology department. During his stay in the ICU, we treated the sepsis with a combination therapy of ceftazidime/avibactam + aztreonam. The therapy solved his septic state, allowing for a progressive improvement in his general condition. Moreover, we noticed that the negativization of the hemocultures was also associated to a decontamination of his known rectal colonization. The ceftazidime/avibactam + aztreonam treatment could not only be a valid therapeutic option for these kinds of infections, but it could also be considered as a useful tool in selected patients’ intestinal decolonizations.
Collapse
Affiliation(s)
- Francesco Perrotta
- Department of Anesthesia and Intensive Care Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy;
| | - Marco Paolo Perrini
- Department of Anesthesia and Intensive Care Unit, Università degli Studi di Foggia, Azienda Ospedaliero Universitaria Ospedali Riuniti di Foggia, 1, 71122 Viale Pinto, FG, Italy
- Correspondence:
| |
Collapse
|
34
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
35
|
Garza-González E, Bocanegra-Ibarias P, Bobadilla-del-Valle M, Ponce-de-León-Garduño LA, Esteban-Kenel V, Silva-Sánchez J, Garza-Ramos U, Barrios-Camacho H, López-Jácome LE, Colin-Castro CA, Franco-Cendejas R, Flores-Treviño S, Morfín-Otero R, Rojas-Larios F, Mena-Ramírez JP, Fong-Camargo MG, Morales-De-la-Peña CT, García-Mendoza L, Choy-Chang EV, Aviles-Benitez LK, Feliciano-Guzmán JM, López-Gutiérrez E, Gil-Veloz M, Barajas-Magallón JM, Aguirre-Burciaga E, López-Moreno LI, Martínez-Villarreal RT, Canizales-Oviedo JL, Cetina-Umaña CM, Romero-Romero D, Bello-Pazos FD, Barlandas-Rendón NRE, Maldonado-Anicacio JY, Bolado-Martínez E, Galindo-Méndez M, Perez-Vicelis T, Alavez-Ramírez N, Méndez-Sotelo BJ, Cabriales-Zavala JF, Nava-Pacheco YC, Moreno-Méndez MI, García-Romo R, Silva-Gamiño AR, Avalos-Aguilera AM, Santiago-Calderón MA, López-García M, Velázquez-Acosta MDC, Cobos-Canul DI, Vázquez-Larios MDR, Ortiz-Porcayo AE, Guerrero-Núñez AE, Valero-Guzmán J, Rosales-García AA, Ostos-Cantú HL, Camacho-Ortiz A. Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species: Results from the infivar network. PLoS One 2021; 16:e0248614. [PMID: 33730101 PMCID: PMC7968647 DOI: 10.1371/journal.pone.0248614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Aim This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum β-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico. Material and methods A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, Acinetobacter baumannii complex, and Pseudomonas aeruginosa in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant Enterobacteriaceae, ESBL or carbapenem-resistant E. coli, and K. pneumoniae, carbapenem-resistant A. baumannii complex, and P. aeruginosa. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes. Results Among blood isolates, A. baumannii complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, E. cloacae complex showed higher resistance to carbapenems. A. baumannii complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among K. pneumoniae isolates, blaTEM, blaSHV, and blaCTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was blaCTX-M-15. Among Enterobacteriaceae, the most frequently detected carbapenemase-encoding gene was blaNDM-1 (81.5%), followed by blaOXA-232 (14.8%) and blaoxa-181(7.4%), in A. baumannii was blaOXA-24 (76%) and in P. aeruginosa, was blaIMP (25.3%), followed by blaGES and blaVIM (13.1% each). Conclusion Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL blaCTX-M-15 exists in both E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Elvira Garza-González
- Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Paola Bocanegra-Ibarias
- Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | - Verónica Esteban-Kenel
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | | | | | - Luis Esaú López-Jácome
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Samantha Flores-Treviño
- Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara E Instituto de Patología Infecciosa, Guadalajara, Jalisco, Mexico
| | | | - Juan Pablo Mena-Ramírez
- Hospital General de Zona 21 Tepatitlán De Morelos, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | | | | | | | | | | | | | | | - Mariana Gil-Veloz
- Hospital Regional de Alta Especialidad del Bajío, Guanajuato, Guanajuato, Mexico
| | | | | | | | | | - Jorge Luis Canizales-Oviedo
- Centro Universitario de Salud, Universidad Autónoma de Nuevo León. Laboratorio Pueblo Nuevo, Monterrey Nuevo León, Mexico
| | | | - Daniel Romero-Romero
- Laboratorio de Análisis Bioquímico Clínicos "Louis Pasteur" Toluca, Estado de México, Mexico
| | | | | | | | | | | | - Talia Perez-Vicelis
- Hospital Regional "Bicentenario de la Independencia” ISSSTE, Tultitlán, Estado de México, Mexico
| | - Norma Alavez-Ramírez
- Hospital Regional "Bicentenario de la Independencia” ISSSTE, Tultitlán, Estado de México, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adrián Camacho-Ortiz
- Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
- * E-mail:
| |
Collapse
|
36
|
Liao Q, Yuan Y, Li Q, Wu S, Liu Y, Zhang W, Xiao Y, Kang M. Comparing three different phenotypic methods for accurate detection of carbapenemase-producing Enterobacterales. J Infect Chemother 2021; 27:794-799. [PMID: 33468425 DOI: 10.1016/j.jiac.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Early identification of carbapenemase-producing Enterobacterales (CPE) is highly essential to prevent their dissemination within health care settings. OBJECTIVE This study aimed to compare 3 reported phenotypic assays for detecting carbapenemase-producing Enterobacterales (CPE). METHODS 151 Enterobacterales isolates were collected, the sensitivity and specificity of each test was determined, with molecular genotype serving as the gold standard. The phenotypic evaluations were performed using EDTA-synergistic carbapenem inactivation method (esCIM), EDTA-carbapenem inactivation method (eCIM), and enzyme inhibitor enhancement experiment (EIE). RESULTS The concordance rate was 98% for the EIE for the detection of KPC producer, and 100% for the esCIM and eCIM. Sensitivity differed among the 3 methods, and all assays had excellent sensitivity exceeding 90% for detecting metallo-β-lactamases (MBLs). The specificity of the eCIM, esCIM and EIE was 100%, 100% and 95%. Both eCIM and esCIM were unsatisfactory in detecting multi-enzyme strains (MBL and class A serine carbapenemase) (0/6). However, EIE increased the positive number to six (6/6). CONCLUSIONS The eCIM, esCIM and EIE can be used to accurately detect and distinguish carbapenemase and is suitable for routine use in most clinical microbiology laboratories.
Collapse
Affiliation(s)
- Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Yuan
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Liu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Prunotto A, Bahr G, González LJ, Vila AJ, Dal Peraro M. Molecular Bases of the Membrane Association Mechanism Potentiating Antibiotic Resistance by New Delhi Metallo-β-lactamase 1. ACS Infect Dis 2020; 6:2719-2731. [PMID: 32865963 DOI: 10.1021/acsinfecdis.0c00341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resistance to last-resort carbapenem antibiotics is an increasing threat to human health, as it critically limits therapeutic options. Metallo-β-lactamases (MBLs) are the largest family of carbapenemases, enzymes that inactivate these drugs. Among MBLs, New Delhi metallo-β-lactamase 1 (NDM-1) has experienced the fastest and largest worldwide dissemination. This success has been attributed to the fact that NDM-1 is a lipidated protein anchored to the outer membrane of bacteria, while all other MBLs are soluble periplasmic enzymes. By means of a combined experimental and computational approach, we show that NDM-1 interacts with the surface of bacterial membranes in a stable, defined conformation, in which the active site is not occluded by the bilayer. Although the lipidation is required for a long-lasting interaction, the globular domain of NDM-1 is tuned to interact specifically with the outer bacterial membrane. In contrast, this affinity is not observed for VIM-2, a natively soluble MBL. Finally, we identify key residues involved in the membrane interaction with NDM-1, which constitute potential targets for developing therapeutic strategies able to combat resistance granted by this enzyme.
Collapse
Affiliation(s)
- Alessio Prunotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Haque F, Fisseha S, Athamanolap P, Tower R, Ortega J, Dominguez C, Maruca T, Torpey D, Myers R, Laksanalamai P. Reduction of the Carbapenemase Inactivation Method (CIM) assay time by real-time PCR. J Microbiol Methods 2020; 178:106072. [PMID: 33031896 DOI: 10.1016/j.mimet.2020.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Carbapenemase Inactivation Method (CIM) is a test to detect presence of the carbapenemase in Gram-negative bacteria. Determination of the carbapenemase production by inactivation of meropenem requires that a zone of control E. coli inhibition be measured approximately 6-24 h after plating. We have modified the CIM test by developing a rapid method which instead measures the growth of E. coli indicator strain ATCC 25922 using real-time PCR, referred to as a nucleic acid testing CIM (natCIM). Our natCIM, therefore reduces the detecting time from 6 to 24 h to approximately 4 h.
Collapse
Affiliation(s)
- F Haque
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - S Fisseha
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - P Athamanolap
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, 999 Phuttamonthon4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - R Tower
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - J Ortega
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - C Dominguez
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - T Maruca
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - D Torpey
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - R Myers
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America
| | - P Laksanalamai
- Maryland Department of Health, Laboratories Administration, 1770 Ashland Ave., Baltimore, MD 21205, United States of America.
| |
Collapse
|
39
|
Therapeutic Effect and Mechanisms of the Novel Monosulfactam 0073. Antimicrob Agents Chemother 2020; 64:AAC.00529-20. [PMID: 32718961 DOI: 10.1128/aac.00529-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/08/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.
Collapse
|
40
|
NitroSpeed-Carba NP Test for Rapid Detection and Differentiation between Different Classes of Carbapenemases in Enterobacterales. J Clin Microbiol 2020; 58:JCM.00932-20. [PMID: 32580949 DOI: 10.1128/jcm.00932-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
A biochemical test (NitroSpeed-Carba NP test) was developed to identify carbapenemase production in Enterobacterales and to discriminate between the different types of clinically significant carbapenemases (Ambler classes A, B, and D). It is based on two main features, namely, the hydrolysis by all β-lactamases, including carbapenemases of the nitrocefin substrate, and the capacity of ertapenem to prevent this hydrolysis for all β-lactamases except carbapenemases. Specific carbapenemase inhibitors of class A (avibactam, vaborbactam), class B (dipicolinic acid), and class D (avibactam) were used to inhibit the nitrocefin hydrolysis and to allow the identification of the carbapenemase types with a turnaround time of ca. 30 min. The test was evaluated with a collection of 248 clinical enterobacterial isolates, including 148 carbapenemase producers and 100 non-carbapenemase producers. Its overall sensitivity and specificity were 100% and 97%, respectively, including detection of all types of OXA-48-like carbapenemases. For the detection of the carbapenemase type, including strains that produce double carbapenemases, the sensitivity was 100%, 97%, and 100% for the detection of classes A, B, and D, respectively. This easy-to-implement test may contribute to optimization of the choice of the β-lactam/β-lactamase inhibitor combinations for treating infection due to carbapenemase producers.
Collapse
|
41
|
Li YY, Wang J, Wang R, Cai Y. Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:408. [PMID: 32527246 PMCID: PMC7291551 DOI: 10.1186/s12879-020-05133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To compare the efficacy and safety of double-carbapenem therapy (DCT) with other antibiotics for the treatment of multidrug resistant (MDR) Gram-negative bacterial infections. METHODS Cochrane Library, PubMed, Embase and Web of Science as well as Chinese databases were searched from database establishment to February 2019. All types of studies were included if they had evaluated efficacy and safety of DCT regimens in patients with MDR Gram-negative bacterial infections. Clinical response, microbiological response, adverse events and mortality were the main outcomes. The protocol was registered with PROSPERO No. CRD42019129979. RESULTS Three cohort or case-control studies consisting of 235 patients and 18 case series or case reports consisting of 90 patients were included. The clinical and microbiological responses were similar between DCT and other regimens in patients with carbapenem-resistant Enterobacteriaceae (CRE) infection. DCT achieved a lower mortality than comparators in patients with CRE infection (OR = 0.44, 95% CI = 0.24-0.82, P = 0.009). Ertapenem was the most reported antibiotic in DCT regimens in case series or case reports. Moreover, clinical and microbiological improvements were found in 59 (65.6%) and 63 (70%) in total 90 cases, respectively. CONCLUSIONS DCT was as effective as other antibiotics in treating MDR Gram-negative bacterial infections, with similar efficacy response and lower mortality. DCT could be an alternative therapeutic option in the treatment of MDR Gram-negative bacterial infections. High-quality randomized controlled trials were required to confirm the beneficial effects of DCT.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- PLA Medical School, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
42
|
Yang JH, Sheng WH, Hsueh PR. Antimicrobial susceptibility and distribution of extended-spectrum β-lactamases, AmpC β-lactamases and carbapenemases among Proteus, Providencia and Morganella isolated from global hospitalised patients with intra-abdominal and urinary tract infections: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2008-2011. J Glob Antimicrob Resist 2020; 22:398-407. [PMID: 32311502 DOI: 10.1016/j.jgar.2020.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The increasing trend of β-lactam resistance among Enterobacteriaceae is a worldwide problem. This study investigated isolates of the tribe Proteeae (Proteus, Providencia and Morganella) causing intra-abdominal and urinary tract infections from the worldwide Study for Monitoring Antimicrobial Resistance Trends (SMART) collected from 2008-2011. METHODS Antimicrobial susceptibility testing was performed on isolates with an ertapenem minimum inhibitory concentration >0.5mg/L or those phenotypically producing extended-spectrum β-lactamases (ESBLs). ESBLs, AmpC β-lactamases and carbapenemases were detected by multiplex PCR. RESULTS A total of 142 isolates, including Proteus mirabilis (n=121), Proteus vulgaris (n=3), Providencia stuartii (n=5), Providencia rettgeri (n=6) and Morganella morganii (n=7), were analysed. Proteus mirabilis was generally susceptible to ertapenem (∼90%) compared with imipenem (≤25%). The most common ESBLs were CTX-M types (n=64), followed by TEM (n=27) and SHV (n=7). CTX-M-1, CTX-M-2 and CTX-M-15 were the dominant CTX-M-type ESBLs in P. mirabilis isolates. CMY (n=14), which included CMY-2 (n=6), was the most common AmpC β-lactamase, followed by DHA (n=6) and FOX (n=4). NDM (n=7), which included NDM-1 (n=4), was the most common carbapenemase, followed by KPC (n=2). Isolates from hospital-associated infections had more complicated β-lactamase combinations than isolates from community-acquired infections. CONCLUSION The global emergence and spread of β-lactamase-producing Proteeae isolates are major issues in tackling antimicrobial resistance. Continuous monitoring of antimicrobial resistance trends and developing further resistance surveillance are necessary.
Collapse
Affiliation(s)
- Jui-Hsuan Yang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu City, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | | |
Collapse
|
43
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
44
|
An Update on Existing and Emerging Data for Meropenem-Vaborbactam. Clin Ther 2020; 42:692-702. [DOI: 10.1016/j.clinthera.2020.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
|
45
|
Rubtsova MY, Ulyashova MM, Pobolelova YI, Presnova GV, Egorov AM. Biochip for the Simultaneous Identification of Beta-Lactamase and Carbapenemase Genes Conferring Bacterial Resistance to Beta-Lactam Antibiotics. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s000368382002012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Moubareck CA, Hammoudi Halat D, Sartawi M, Lawlor K, Sarkis DK, Alatoom A. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs: First comparative study from Abu Dhabi, United Arab Emirates. J Glob Antimicrob Resist 2020; 20:147-152. [DOI: 10.1016/j.jgar.2019.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
|
47
|
Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med 2020; 9:jcm9010275. [PMID: 31963877 PMCID: PMC7019939 DOI: 10.3390/jcm9010275] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Septicaemia likely results in high case-fatality rates in the present multidrug-resistant (MDR) era. Amongst them are hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), two frequent fatal septicaemic entities amongst hospitalised patients. We reviewed the PubMed database to identify the common organisms implicated in HAP/VAP, to explore the respective risk factors, and to find the appropriate antibiotic choice. Apart from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, extended-spectrum β-lactamase-producing Enterobacteriaceae spp., MDR or extensively drug-resistant (XDR)-Acinetobacter baumannii complex spp., followed by Stenotrophomonas maltophilia, Chryseobacterium indologenes, and Elizabethkingia meningoseptica are ranked as the top Gram-negative bacteria (GNB) implicated in HAP/VAP. Carbapenem-resistant Enterobacteriaceae notably emerged as an important concern in HAP/VAP. The above-mentioned pathogens have respective risk factors involved in their acquisition. In the present XDR era, tigecycline, colistin, and ceftazidime-avibactam are antibiotics effective against the Klebsiella pneumoniae carbapenemase and oxacillinase producers amongst the Enterobacteriaceae isolates implicated in HAP/VAP. Antibiotic combination regimens are recommended in the treatment of MDR/XDR-P. aeruginosa or A. baumannii complex isolates. Some special patient populations need prolonged courses (>7-day) and/or a combination regimen of antibiotic therapy. Implementation of an antibiotic stewardship policy and the measures recommended by the United States (US) Institute for Healthcare were shown to decrease the incidence rates of HAP/VAP substantially.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 1262)
| | - Yin-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wei-Cheng Lin
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chin-Wan Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
| |
Collapse
|
48
|
Jean SS, Gould IM, Lee WS, Hsueh PR. New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs 2019; 79:705-714. [PMID: 30972660 DOI: 10.1007/s40265-019-01112-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A gradual rise in drug-resistant trends among Gram-negative organisms, especially carbapenem-resistant (CR) Enterobacteriaceae (CRE), CR-Pseudomonas aeruginosa, and extensively-drug-resistant (XDR) Acinetobacter baumannii, poses an enormous threat to healthcare systems worldwide. In the last decade, many pharmaceutical companies have devoted enormous resources to the development of new potent antibiotics against XDR Gram-negative pathogens, particularly CRE. Some of these novel antibiotics against CRE strains are β-lactam/β-lactamase-inhibitor combination agents, while others belong to the non-β-lactam class. Most of these antibiotics display good in vitro activity against the producers of Ambler class A, C, and D β-lactamase, although avibactam and vaborbactam are not active in vitro against metallo-β-lactamase (MβL) enzymes. Nevertheless, in vitro efficacy against the producers of some or all class B enzymes (New Delhi MβL, Verona integron-encoded MβL, etc) has been shown with cefepime-zidebactam, aztreonam-avibactam, VNRX-5133, cefiderocol, plazomicin, and eravacycline. As of Feburary 2019, drugs approved for treatment of some CRE-related infections by the US Food and Drug Administration included ceftazidime-avibactam, meropenem-vaborbactam, plazomicin, and eravacycline. Although active against extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae, delafloxacin does not show in vitro activity against CRE. Murepavadin is shown to be specifically active against CR- and colistin-resistant P. aeruginosa strains. Despite successful development of novel antibiotics, strict implementation of an antibiotic stewardship policy in combination with the use of well-established phenotypic tests and novel multiplex PCR methods for detection of the most commonly encountered β-lactamases/carbapenemases in hospitals is important for prescribing effective antibiotics against CRE and decreasing the resistance burden due to CRE.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei, Taiwan
| | - Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Scotland, UK
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| | | |
Collapse
|
49
|
Jing X, Min X, Zhang X, Gong L, Wu T, Sun R, Chen L, Liu R, Zeng J. The Rapid Carbapenemase Detection Method (rCDM) for Rapid and Accurate Detection of Carbapenemase-Producing Enterobacteriaceae and Pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9:371. [PMID: 31781513 PMCID: PMC6851228 DOI: 10.3389/fcimb.2019.00371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022] Open
Abstract
This study aimed to design a new method for rapid and accurate detection of carbapenemase phenotypes based on the simplified carbapenem inactivation method (sCIM). We evaluated the sensitivity and specificity of the method, called the rapid carbapenemase detection method (rCDM), for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. A total of 257 Enterobacteriaceae, 236 P. aeruginosa, and 20 Acinetobacter baumannii isolates were tested. Phenotypic evaluations were performed using rCDM, sCIM, and mCIM. For Enterobacteriaceae, the sensitivity of rCDM was 100% and the specificity was 99.6%. For P. aeruginosa, the sensitivity of rCDM was 97.4% and the specificity was 100%. Carbapenemase-producing A. baumannii were not detected by rCDM. The concordance rate of rCDM and sCIM for Enterobacteriaceae and P. aeruginosa was 99.8%, with the exception of one P. aeruginosa isolate that expressed the blaVIM−4 gene. The concordance rate of rCDM and mCIM for Enterobacteriaceae and P. aeruginosa was 100%. rCDM can be used to accurately detect carbapenemase-producing Enterobacteriaceae and P. aeruginosa in 5–6 h and is suitable for routine use in most clinical microbiology laboratories.
Collapse
Affiliation(s)
- Xiaopeng Jing
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochun Min
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Gong
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Tingting Wu
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiling Sun
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liujun Chen
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Yang X, Wang D, Zhou Q, Nie F, Du H, Pang X, Fan Y, Bai T, Xu Y. Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam. BMC Microbiol 2019; 19:240. [PMID: 31675928 PMCID: PMC6824082 DOI: 10.1186/s12866-019-1613-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/15/2019] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Detection of ceftazidime/avibactam (CAZ/AVI) antibacterial activity is absolutely vital with the rapid growth of carbapenem resistant Enterobacteriaceae (CRE). But now, there is no available automated antimicrobial susceptibility testing card for CAZ/AVI, so Kirby-Bauer has become an economical and practical method for detecting CAZ/AVI antibacterial activity against Enterobacteriaceae. RESULT In this study, antimicrobial susceptibility testing of CAZ/AVI against 386 Enterobacteriaceae (188 Klebsiella pneumoniae, 122 Escherichia coli, 76 Enterobacter cloacae) isolated from clinical patients was performed by broth microdilution. Of the 386 strains, 54 extended spectrum β lactamases negative (ESBL(-)), 104 extended spectrum β lactamases positive (ESBL(+)), 228 CRE. 287 isolates were susceptible to CAZ/AVI and 99 isolates were resistant to CAZ/AVI. At the same time, to obtain optimal content avibactam (AVI) disk containing ceftazidime (30 μg), inhibition zone diameter of four kinds of ceftazidime (30 μg) disk containing different AVI content (0 μg, 10 μg, 25 μg, 50 μg) were tested by Kirby-Bauer method. The microdilution broth method interpretation was used as the standard to estimate susceptible or resistance and then coherence analysis was carried out between Kirby-Bauer and broth microdilution. The result shows the inhibition zone diameter of 30 μg/50 μg disk, susceptible isolates: 20.5 mm-31.5 mm, resistance isolates: 8.25 mm-21.5 mm. The inhibition zone diameter of 30 μg/25 μg disk, susceptible isolates: 19.7 mm-31.3 mm, resistance isolates: 6.5 mm-19.2 mm. The inhibition zone diameter of 30 μg/10 μg disk, susceptible isolates: 19.5 mm-31 mm, resistance isolates: 6.5 mm-11 mm. The inhibition zone diameter of ceftazidime (30 μg), susceptible isolates: 6.5 mm-27.5 mm, resistance isolates 6.5 mm. CONCLUSION Our results show that 30 μg/50 μg, 30 μg/25 μg, 30 μg/10 μg CAZ/AVI disk have significant statistical differences to determinate CAZ/AVI antibacterial activity, but for 30 μg/50 μg disk, there has a cross section between susceptible isolates (minimum 20.5 mm) and resistance isolates (maximum 21.5 mm). For 30 μg/25 μg disk, it is hard to distinguish the difference between susceptible isolates (minimum 19.7 mm) and resistance isolates (maximum 19.2 mm), so 30 μg/10 μg CAZ/AVI disk is more conducive to determinate antibacterial activity.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qin Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Fang Nie
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Hongfei Du
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xueli Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yingzi Fan
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Tingting Bai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|