1
|
Hirose K, Li SZ, Gill R, Hartsock J. Pneumococcal Meningitis Induces Hearing Loss and Cochlear Ossification Modulated by Chemokine Receptors CX3CR1 and CCR2. J Assoc Res Otolaryngol 2024; 25:179-199. [PMID: 38472515 PMCID: PMC11018586 DOI: 10.1007/s10162-024-00935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE Pneumococcal meningitis is a major cause of hearing loss and permanent neurological impairment despite widely available antimicrobial therapies to control infection. Methods to improve hearing outcomes for those who survive bacterial meningitis remains elusive. We used a mouse model of pneumococcal meningitis to evaluate the impact of mononuclear phagocytes on hearing outcomes and cochlear ossification by altering the expression of CX3CR1 and CCR2 in these infected mice. METHODS We induced pneumococcal meningitis in approximately 500 C57Bl6 adult mice using live Streptococcus pneumoniae (serotype 3, 1 × 105 colony forming units (cfu) in 10 µl) injected directly into the cisterna magna of anesthetized mice and treated these mice with ceftriaxone daily until recovered. We evaluated hearing thresholds over time, characterized the cochlear inflammatory response, and quantified the amount of new bone formation during meningitis recovery. We used microcomputed tomography (microCT) scans to quantify cochlear volume loss caused by neo-ossification. We also performed perilymph sampling in live mice to assess the integrity of the blood-perilymph barrier during various time intervals after meningitis. We then evaluated the effect of CX3CR1 or CCR2 deletion in meningitis symptoms, hearing loss, macrophage/monocyte recruitment, neo-ossification, and blood labyrinth barrier function. RESULTS Sixty percent of mice with pneumococcal meningitis developed hearing loss. Cochlear fibrosis could be detected within 4 days of infection, and neo-ossification by 14 days. Loss of spiral ganglion neurons was common, and inner ear anatomy was distorted by scarring caused by new soft tissue and bone deposited within the scalae. The blood-perilymph barrier was disrupted at 3 days post infection (DPI) and was restored by seven DPI. Both CCR2 and CX3CR1 monocytes and macrophages were present in the cochlea in large numbers after infection. Neither chemokine receptor was necessary for the induction of hearing loss, cochlear fibrosis, ossification, or disruption of the blood-perilymph barrier. CCR2 knockout (KO) mice suffered the most severe hearing loss. CX3CR1 KO mice demonstrated an intermediate phenotype with greater susceptibility to hearing loss compared to control mice. Elimination of CX3CR1 mononuclear phagocytes during the first 2 weeks after meningitis in CX3CR1-DTR transgenic mice did not protect mice from any of the systemic or hearing sequelae of pneumococcal meningitis. CONCLUSIONS Pneumococcal meningitis can have devastating effects on cochlear structure and function, although not all mice experienced hearing loss or cochlear damage. Meningitis can result in rapid progression of hearing loss with fibrosis starting at four DPI and ossification within 2 weeks of infection detectable by light microscopy. The inflammatory response to bacterial meningitis is robust and can affect all three scalae. Our results suggest that CCR2 may assist in controlling infection and maintaining cochlear patency, as CCR2 knockout mice experienced more severe disease, more rapid hearing loss, and more advanced cochlear ossification after pneumococcal meningitis. CX3CR1 also may play an important role in the maintenance of cochlear patency.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA.
| | - Song Zhe Li
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
| | - Ruth Gill
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Department of Obstetric and Gynecology, Washington University, St. Louis, MO, USA
| | - Jared Hartsock
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8115, St. Louis, MO, 63110, USA
- Turner Scientific, Jacksonville, IL, USA
| |
Collapse
|
2
|
Generoso JS, Faller CJ, Collodel A, Catalão CHR, Dominguini D, Petronilho F, Barichello T, Giridharan VV. NLRP3 Activation Contributes to Memory Impairment in an Experimental Model of Pneumococcal Meningitis. Mol Neurobiol 2024; 61:239-251. [PMID: 37603152 PMCID: PMC11409915 DOI: 10.1007/s12035-023-03549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Bacterial meningitis is considered a life-threatening condition with high mortality rates. In response to the infection, signaling cascades, producing pro-inflammatory mediators trigger an exacerbated host immune response. Another inflammatory pathway occurs through the activation of inflammasomes. Studies highlight the role of the NLR family pyrin domain containing 3 (NLRP3) in central nervous system disorders commonly involved in neuroinflammation. We aimed to investigate the role of NLRP3 and its inhibitor MCC950 on neurochemical, immunological, and behavioral parameters in the early and late stages of experimental pneumococcal meningitis. For this, adult male Wistar rats received an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a placebo. The animals were divided into control/saline, control/MCC950, meningitis/saline, and meningitis/MCC950. Immediately after the meningitis induction, the animals received 140 ng/kg MCC950 via intracisternal injection. For the acute protocol, 24 h after induction, brain structures were collected to evaluate cytokines, NLRP3, and microglia. In the long-term group, the animals were submitted to open field and recognition of new objects tests at ten days after the meningitis induction. After the behavioral tests, the same markers were evaluated. The animals in the meningitis group at 24 h showed increased levels of cytokines, NLRP3, and IBA-1 expression, and the use of the MCC950 significantly reduced those levels. Although free from infection, ten days after meningitis induction, the animals in the meningitis group had elevated cytokine levels and demonstrated behavioral deficits; however, the single dose of NLRP3 inhibitor rescued the behavior deficits and decreased the brain inflammatory profile.
Collapse
Affiliation(s)
- Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
3
|
Segklia K, Matsas R, Papastefanaki F. Brain Infection by Group B Streptococcus Induces Inflammation and Affects Neurogenesis in the Adult Mouse Hippocampus. Cells 2023; 12:1570. [PMID: 37371040 DOI: 10.3390/cells12121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Central nervous system infections caused by pathogens crossing the blood-brain barrier are extremely damaging and trigger cellular alterations and neuroinflammation. Bacterial brain infection, in particular, is a major cause of hippocampal neuronal degeneration. Hippocampal neurogenesis, a continuous multistep process occurring throughout life in the adult brain, could compensate for such neuronal loss. However, the high rates of cognitive and other sequelae from bacterial meningitis/encephalitis suggest that endogenous repair mechanisms might be severely affected. In the current study, we used Group B Streptococcus (GBS) strain NEM316, to establish an adult mouse model of brain infection and determine its impact on adult neurogenesis. Experimental encephalitis elicited neurological deficits and death, induced inflammation, and affected neurogenesis in the dentate gyrus of the adult hippocampus by suppressing the proliferation of progenitor cells and the generation of newborn neurons. These effects were specifically associated with hippocampal neurogenesis while subventricular zone neurogenesis was not affected. Overall, our data provide new insights regarding the effect of GBS infection on adult brain neurogenesis.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
4
|
High Concentration of Protein Oxidation Biomarker O-Tyr/Phe Predicts Better Outcome in Childhood Bacterial Meningitis. Antioxidants (Basel) 2023; 12:antiox12030621. [PMID: 36978869 PMCID: PMC10045379 DOI: 10.3390/antiox12030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Neuronal damage in bacterial meningitis (BM) partly stems from the host´s inflammatory response and induced oxidative stress (OS). We studied the association of cerebrospinal fluid (CSF) biomarkers indicating oxidative damage to proteins with course of illness and outcome in childhood BM in Angola. Ortho-tyrosine/phenylalanine (o-Tyr/Phe), 3-chlorotyrosine/para-tyrosine (3Cl-Tyr/p-Tyr), and 3-nitrotyrosine/para-tyrosine (3NO2-Tyr/p-Tyr) concentration ratios were measured in 79 BM admission CSF samples, employing liquid chromatography coupled to tandem mass spectrometry. Besides death, disease outcomes were registered on Day 7 of treatment and one month after discharge (control visit). The outcome was graded according to the modified Glasgow Outcome Scale (GOS), which considers neurological and audiological sequelae. Children with a o-Tyr/Phe ratio below the median were more likely to present focal convulsions and secondary fever during recovery and suboptimal outcome (GOS < 5) on Day 7 and at control visit (odds ratio (OR) 2.85; 95% CI 1.14–7.14 and OR 5.23; 95% CI 1.66–16.52, respectively). Their most common sequela was ataxia on Day 7 and at control visit (OR 8.55; 95% CI 2.27–32.22 and OR 5.83; 95% CI 1.12–30.4, respectively). The association of a higher admission CSF o-Tyr/Phe ratio with a better course and outcome for pediatric BM points to a beneficial effect of OS.
Collapse
|
5
|
Qiao N, Zhang J, Zhang Y, Liu X. Synergistic regulation of microglia differentiation by CD93 and integrin β1 in the rat pneumococcal meningitis model. Immunol Lett 2022; 251-252:63-74. [PMID: 36336138 DOI: 10.1016/j.imlet.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Streptococcus pneumoniae is the main bacterial pathogen of meningitis worldwide, which has a high mortality rate and survivors are prone to central nervous system (CNS) sequelae. In this regard, microglia activation has been associated with injury to the CNS. The aim of this study was to investigate the relationship between CD93, integrin β1, and microglia activation. In the rat pneumococcal meningitis model, we found significant increases of CD93 and integrin β1 expression and differentiation of M1 phenotype microglia. Furthermore, we showed in vitro siRNA-mediated downregulation of CD93 and integrin β1 expression after infecting highly aggressive proliferating immortalized (HAPI) microglia cells with S. pneumoniae. We observed differentiation of S. pneumonia-infected HAPI microglia cells to the M1 phenotype and significant release of soluble CD93 (sCD93) and integrin β1 expression. Complement C1q and metalloproteinases promoted sCD93 release. We also showed that downregulation of CD93 significantly reduced differentiation to M1 microglia and increased differentiation to M2 microglia. However, addition of recombinant CD93 may regulate microglia differentiation to the M1 phenotype. Furthermore, the downregulation of integrin β1 resulted in downregulation of the CD93 protein. In conclusion, interaction between integrin β1 and CD93 promotes differentiation of microglia to the M1 phenotype, increases the release of pro-inflammatory factors, and leads to nervous system injury in pneumococcal meningitis.
Collapse
Affiliation(s)
- Nana Qiao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Ya Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis. Nat Commun 2022; 13:5032. [PMID: 36028511 PMCID: PMC9418233 DOI: 10.1038/s41467-022-32624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.
Collapse
|
7
|
Cassidy BR, Sonntag WE, Leenen PJM, Drevets DA. Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immun Ageing 2022; 19:25. [PMID: 35614490 PMCID: PMC9130456 DOI: 10.1186/s12979-022-00281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| | - William E. Sonntag
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Pieter J. M. Leenen
- grid.5645.2000000040459992XDepartment of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| |
Collapse
|
8
|
Fang X, Wang H, Zhuo Z, Tian P, Chen Z, Wang Y, Cheng X. miR-141-3p inhibits the activation of astrocytes and the release of inflammatory cytokines in bacterial meningitis through down-regulating HMGB1. Brain Res 2021; 1770:147611. [PMID: 34403663 DOI: 10.1016/j.brainres.2021.147611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial meningitis (BM) is a serious infectious disease of the central nervous system that often occurs in children and adolescents. Many studies have suggested that microRNAs (miRNAs) are involved in BM. This study aimed to address the effects of miR-141-3p on astrocyte activation and inflammatory response in BM through HMGB1. METHODS The 3-week-old rats were injected with Streptococcus pneumoniae (SP) into the lateral ventricle to establish a BM model. Loeffler scoring method was used to evaluate the recovery of neurological function. Brain pathological damage was observed by hematoxylin and eosin (H&E) staining. Primary astrocytes were isolated from brain tissues of BM or non-infected SD rats. The levels of TNF-α, IL-1β, and IL-6 in brain tissues and astrocyte culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-141-3p and HMGB1 was tested using dual-luciferase reporter assay. The expression of miR-141-3p, HMGB1, and the astrocytic marker glial fibrillary acidic protein (GFAP) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. Methylation-specific PCR (MSP) analysis was performed to measure the methylation status of miR-141 promoter. RESULTS The results showed that lower Loeffler scores were exhibited in rats with BM. The subarachnoid space of brain tissues of BM rats was widened, and obvious inflammatory cells were observed. miR-141-3p expression was reduced in BM rats and SP-treated astrocytes. Additionally, we found that overexpression of miR-141-3p led to the downregulation of HMGB1, GFAP, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in astrocytes. Furthermore, the results of dual-luciferase reporter assay confirmed that miR-141-3p directly targeted HMGB1. Overexpression of miR-141-3p inhibited the levels of GFAP, TNF-α, IL-1β, and IL-6 in astrocytes, which was eliminated by the up-regulation of HMGB1. The results of MSP analysis indicated that miR-141 promoter was highly methylated in brain tissues and astrocytes. DNMT1 was involved in the methylation of miR-141 promoter in BM. CONCLUSION The present study verified that miR-141-3p affected inflammatory response by suppressing HMGB1 in SP-induced astrocytes and BM rat model.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peichao Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiuyong Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
9
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
10
|
Too LK, Hunt N, Simunovic MP. The Role of Inflammation and Infection in Age-Related Neurodegenerative Diseases: Lessons From Bacterial Meningitis Applied to Alzheimer Disease and Age-Related Macular Degeneration. Front Cell Neurosci 2021; 15:635486. [PMID: 33867940 PMCID: PMC8044768 DOI: 10.3389/fncel.2021.635486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related neurodegenerative diseases, such as Alzheimer disease (AD) and age-related macular degeneration (AMD), are multifactorial and have diverse genetic and environmental risk factors. Despite the complex nature of the diseases, there is long-standing, and growing, evidence linking microbial infection to the development of AD dementia, which we summarize in this article. Also, we highlight emerging research findings that support a role for parainfection in the pathophysiology of AMD, a disease of the neurosensory retina that has been shown to share risk factors and pathological features with AD. Acute neurological infections, such as Bacterial Meningitis (BM), trigger inflammatory events that permanently change how the brain functions, leading to lasting cognitive impairment. Neuroinflammation likewise is a known pathological event that occurs in the early stages of chronic age-related neurodegenerative diseases AD and AMD and might be triggered as a parainfectious event. To date, at least 16 microbial pathogens have been linked to the development of AD; on the other hand, investigation of a microbe-AMD relationship is in its infancy. This mini-review article provides a synthesis of existing evidence indicating a contribution of parainfection in the aetiology of AD and of emerging findings that support a similar process in AMD. Subsequently, it describes the major immunopathological mechanisms that are common to BM and AD/AMD. Together, this evidence leads to our proposal that both AD and AMD may have an infectious aetiology that operates through a dysregulated inflammatory response, leading to deleterious outcomes. Last, it draws fresh insights from the existing literature about potential therapeutic options for BM that might alleviate neurological disruption associated with infections, and which could, by extension, be explored in the context of AD and AMD.
Collapse
Affiliation(s)
- Lay Khoon Too
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas Hunt
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P. Simunovic
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
11
|
Maldiney T, Bonnot D, Anzala N, Albac S, Labrousse D, Varon E, Amoureux L, Chapuis A, Bador J, Neuwirth C, Croisier D, Chavanet P. In vitro antimicrobial activity of daptomycin alone and in adjunction with either amoxicillin, cefotaxime or rifampicin against the main pathogens responsible for bacterial meningitis in adults. J Glob Antimicrob Resist 2021; 25:193-198. [PMID: 33774218 DOI: 10.1016/j.jgar.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES As daptomycin adjunction is currently under clinical evaluation in the multicentre phase II AddaMAP study to improve the prognosis of pneumococcal meningitis, the present work aimed at evaluating the in vitro antimicrobial activity of daptomycin-based combinations against some of the most frequent species responsible for bacterial meningitis. METHODS Clinically relevant strains of Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus influenzae and Neisseria meningitidis were obtained from National Reference Centers. The antimicrobial activity of amoxicillin, cefotaxime and rifampicin, either alone or in association with daptomycin, was explored through the determination of minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) as well as time-kill assay (TKA) using the broth microdilution method. RESULTS All species taken together, the adjunction of daptomycin had no deleterious impact on the antimicrobial activity of amoxicillin, cefotaxime or rifampicin in vitro. Regarding Gram-positive bacteria, FICI and TKA analysis confirmed a global improvement of growth inhibition and bactericidal activity due to the adjunction of daptomycin. The synergistic effect prevailed for L. monocytogenes as demonstrated by FICI mainly <0.5 and a dynamic TKA-based synergy rate >50%. In addition, daptomycin-based associations did not modify the activity of β-lactam antibiotics or rifampicin against Gram-negative bacteria, notably N. meningitidis. CONCLUSION These results bring comforting evidence towards the clinical potential of daptomycin adjunction in the treatment of bacterial meningitis, which supports the ongoing AddaMAP clinical trial.
Collapse
Affiliation(s)
- Thomas Maldiney
- Infectious Diseases Department, University Hospital of Dijon, 14 rue Paul Gaffarel, 21000, Dijon, France
| | - Dorian Bonnot
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Nelson Anzala
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Sandrine Albac
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | | | - Emmanuelle Varon
- National Centre for Pneumococci, Centre Hospitalier Intercommunal Créteil, 40 avenue de Verdun, 94000, Créteil, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Angélique Chapuis
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, 2 Place Saint-Jacques, Besançon, France
| | - Delphine Croisier
- Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France
| | - Pascal Chavanet
- Infectious Diseases Department, University Hospital of Dijon, 14 rue Paul Gaffarel, 21000, Dijon, France; Vivexia, Résidence Richelieu, 10 Boulevard Carnot, 21000, Dijon, France.
| |
Collapse
|
12
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Muri L, Oberhänsli S, Buri M, Le ND, Grandgirard D, Bruggmann R, Müri RM, Leib SL. Repetitive transcranial magnetic stimulation activates glial cells and inhibits neurogenesis after pneumococcal meningitis. PLoS One 2020; 15:e0232863. [PMID: 32915781 PMCID: PMC7485822 DOI: 10.1371/journal.pone.0232863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal meningitis (PM) causes damage to the hippocampus, a brain structure critically involved in learning and memory. Hippocampal injury-which compromises neurofunctional outcome-occurs as apoptosis of progenitor cells and immature neurons of the hippocampal dentate granule cell layer thereby impairing the regenerative capacity of the hippocampal stem cell niche. Repetitive transcranial magnetic stimulation (rTMS) harbours the potential to modulate the proliferative activity of this neuronal stem cell niche. In this study, specific rTMS protocols-namely continuous and intermittent theta burst stimulation (cTBS and iTBS)-were applied on infant rats microbiologically cured from PM by five days of antibiotic treatment. Following two days of exposure to TBS, differential gene expression was analysed by whole transcriptome analysis using RNAseq. cTBS provoked a prominent effect in inducing differential gene expression in the cortex and the hippocampus, whereas iTBS only affect gene expression in the cortex. TBS induced polarisation of microglia and astrocytes towards an inflammatory phenotype, while reducing neurogenesis, neuroplasticity and regeneration. cTBS was further found to induce the release of pro-inflammatory cytokines in vitro. We conclude that cTBS intensified neuroinflammation after PM, which translated into increased release of pro-inflammatory mediators thereby inhibiting neuroregeneration.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Simone Oberhänsli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Michelle Buri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - René M. Müri
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Ricci S, Grandgirard D, Masouris I, Braccini T, Pozzi G, Oggioni MR, Koedel U, Leib SL. Combined therapy with ceftriaxone and doxycycline does not improve the outcome of meningococcal meningitis in mice compared to ceftriaxone monotherapy. BMC Infect Dis 2020; 20:505. [PMID: 32660552 PMCID: PMC7359289 DOI: 10.1186/s12879-020-05226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy. .,ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.
| | - Denis Grandgirard
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Tiziana Braccini
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Marco R Oggioni
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Uwe Koedel
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Stephen L Leib
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Zhang Z, Xu D, Zhao S, Lian D, Wu J, He D, Li L. Notch1 Signaling Pathway Promotes Proliferation and Mediates Differentiation Direction in Hippocampus of Streptococcus pneumonia Meningitis Rats. J Infect Dis 2020; 220:1977-1988. [PMID: 31433841 DOI: 10.1093/infdis/jiz414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Streptococcus pneumonia meningitis (PM) is a major cause of childhood neurological deficits. Although the Notch1 signaling pathway regulates neurogenesis and neuroinflammation, we know little about its expression or influence on hippocampal neurogenesis and gliogenesis during PM. METHODS We used immunofluorescence and Western blots to detect Notch1 signaling expression during experimental PM. Through double-labeling immunofluorescence, we investigated proliferation and differentiation in the dentate gyrus (DG) in PM before and after treatment with exogenous Notch1 activator (Jagged1) and inhibitor (IMR-1). RESULTS Our results showed that Notch1 was activated after 24 hours in PM. Compared with the phosphate-buffered saline (PBS) control, Jagged1 increased the proliferation of neural stem cells and progenitor cells (NS/PCs) in DG. After 14 and 28 days of meningitis, astrocyte differentiation increased compared with control. Astrocyte differentiation was higher in the Jagged1 versus the PBS group. In contrast, IMR-1 increased neuronal differentiation but decreased astrocyte differentiation compared with dimethyl sulfoxide treatment. CONCLUSIONS Under PM, Notch1 signaling promotes NS/PC proliferation and astrocyte differentiation in DG, while decreasing neuronal differentiation. Transient activation of the Notch1 signaling pathway explains the reactive gliogenesis and limited neuronal differentiation observed in PM.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Danfeng Xu
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shengnan Zhao
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Di Lian
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Wu
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Dake He
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Li
- Department of Pediatric Neurology, Xinhua Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
17
|
Vilnits AA, Skripchenko NV, Gorelik EY, Egorova ES, Markova KV. [Possibilities for optimizing the pathogenetic therapy of purulent meningitis in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:46-50. [PMID: 31994513 DOI: 10.17116/jnevro201911912146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To assess an effect of the combined use of Cytoflavin and Sulodexide on the course and outcomes of purulent meningitis in children. MATERIAL AND METHODS Fifty children with purulent meningitis, aged from 5 to 17 years 11 month, were studied. Thirty patients of the treatment group (n=30; mean age 6,8 ± 2,2 years) received Cytoflavin (0,6 mcg/kg once a day) during 5 days with the following treatment with Sulodexide (250 LSU/day in children 5-12 years, 500 LSU/day in children above 12 years). Patients of the comparison group (n=20), aged 5,9±1,8 years, received standard antibacterial treatment. Duration and persistent of fever, cerebral, meningeal symptoms, the recovery period of CSF, the normalization of the number of desquamated epithelial cells (DEC), D-dimer were estimated. Outcomes of purulent meningitis were assessed using a working scale representing a modification of Rankin's, Fisher's, and Glasgow scales. RESULTS AND CONCLUSION The combination of drugs reduces the duration of cerebral and meningeal symptoms, leads to the normalization of hematological parameters (the level of leukocytes, desquamous epithelial cells, D-dimer) and improves outcomes.
Collapse
Affiliation(s)
- A A Vilnits
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia; Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia; Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - E Yu Gorelik
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E S Egorova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - K V Markova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
18
|
Principi N, Esposito S. Bacterial meningitis: new treatment options to reduce the risk of brain damage. Expert Opin Pharmacother 2019; 21:97-105. [PMID: 31675255 DOI: 10.1080/14656566.2019.1685497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Bacterial meningitis (BM) is a medical emergency and its etiology varies according to the age group and geographic area. Studies have shown that brain damage, sequelae and neuropsychological deficits depend not only on the direct deleterious action of the pathogens, but also on the host defenses themselves.Areas covered: Corticosteroids (CS) were the first drugs used with the intent to limit the exaggerated host response. However, as steroid addition to antibiotics is frequently unsatisfactory, other measures have been suggested. In this study, the most important adjuvant therapies that are potentially useful to limit the neuropsychological damage of BM are discussed.Expert opinion: The pathophysiological mechanisms leading to the development of brain damage are not completely defined. Moreover, the efficacy of adjuvant therapies can vary according to the aetiologic cause of BM, and differences in immune system function of the host can play a relevant role in the expression of inflammation and related problems. It is likely that none of the measures with demonstrated efficacy in animal models can be translated into clinical practice in the next few years, suggesting that to reduce the total burden of BM, the increased use of vaccines seems to be the best solution.
Collapse
Affiliation(s)
- Nicola Principi
- Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Munk M, Poulsen FR, Larsen L, Nordström CH, Nielsen TH. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide. Neurocrit Care 2019; 29:496-503. [PMID: 29508265 DOI: 10.1007/s12028-018-0509-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebral mitochondrial dysfunction is prominent in the pathophysiology of severe bacterial meningitis. In the present study, we hypothesize that the metabolic changes seen after intracisternal lipopolysaccharide (LPS) injection in a piglet model of meningitis is compatible with mitochondrial dysfunction and resembles the metabolic patterns seen in patients with bacterial meningitis. METHODS Eight pigs received LPS injection in cisterna magna, and four pigs received NaCl in cisterna magna as a control. Biochemical variables related to energy metabolism were monitored by intracerebral microdialysis technique and included interstitial glucose, lactate, pyruvate, glutamate, and glycerol. The intracranial pressure (ICP) and brain tissue oxygen tension (PbtO2) were also monitored along with physiological variables including mean arterial pressure, blood glucose, lactate, and partial pressure of O2 and CO2. Pigs were monitored for 60 min at baseline and 240 min after LPS/NaCl injection. RESULTS After LPS injection, a significant increase in cerebral lactate/pyruvate ratio (LPR) compared to control group was registered (p = 0.01). This increase was due to a significant increased lactate with stable and normal values of pyruvate. No significant change in PbtO2 or ICP was registered. No changes in physiological variables were observed. CONCLUSIONS The metabolic changes after intracisternal LPS injection is compatible with disturbance in the oxidative metabolism and partly due to mitochondrial dysfunction with increasing cerebral LPR due to increased lactate and normal pyruvate, PbtO2, and ICP. The metabolic pattern resembles the one observed in patients with bacterial meningitis. Metabolic monitoring in these patients is feasible to monitor for cerebral metabolic derangements otherwise missed by conventional intensive care monitoring.
Collapse
Affiliation(s)
- M Munk
- University of Southern Denmark School of Medicine, Odense, Denmark
| | - F R Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - L Larsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - C H Nordström
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - T H Nielsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark. .,Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R209, Stanford, CA, 94305-5327, USA.
| |
Collapse
|
20
|
Şah İpek M. Neonatal Bacterial Meningitis. NEONATAL MEDICINE 2019. [DOI: 10.5772/intechopen.87118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Rugemalira E, Roine I, Kuligowski J, Sánchez-Illana Á, Piñeiro-Ramos JD, Andersson S, Peltola H, Leite Cruzeiro M, Pelkonen T, Vento M. Protein Oxidation Biomarkers and Myeloperoxidase Activation in Cerebrospinal Fluid in Childhood Bacterial Meningitis. Antioxidants (Basel) 2019; 8:antiox8100441. [PMID: 31581487 PMCID: PMC6826731 DOI: 10.3390/antiox8100441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
The immunological response in bacterial meningitis (BM) causes the formation of reactive oxygen and nitrogen species (ROS, RNS) and activates myeloperoxidase (MPO), an inflammatory enzyme. Thus, structural oxidative and nitrosative damage to proteins and DNA occurs. We aimed to asses these events in the cerebrospinal fluid (CSF) of pediatric BM patients. Phenylalanine (Phe), para-tyrosine (p-Tyr), nucleoside 2'-deoxiguanosine (2dG), and biomarkers of ROS/RNS-induced protein and DNA oxidation: ortho-tyrosine (o-Tyr), 3-chlorotyrosine (3Cl-Tyr), 3-nitrotyrosine (3NO₂-Tyr) and 8-oxo-2'-deoxyguanosine (8OHdG), concentrations were measured by liquid chromatography coupled to tandem mass spectrometry in the initial CSF of 79 children with BM and 10 without BM. All biomarkers, normalized with their corresponding precursors, showed higher median concentrations (p < 0.0001) in BM compared with controls, except 8OHdG/2dG. The ratios o-Tyr/Phe, 3Cl-Tyr/p-Tyr and 3NO₂-Tyr/p-Tyr were 570, 20 and 4.5 times as high, respectively. A significantly higher 3Cl-Tyr/p-Tyr ratio was found in BM caused by Streptococcus pneumoniae, than by Haemophilus influenzae type b, or Neisseria meningitidis (p = 0.002 for both). In conclusion, biomarkers indicating oxidative damage to proteins distinguished BM patients from non-BM, most clearly the o-Tyr/Phe ratio. The high 3Cl-Tyr/p-Tyr ratio in pneumococcal meningitis suggests robust inflammation because 3Cl-Tyr is a marker of MPO activation and, indirectly, of inflammation.
Collapse
Affiliation(s)
- Emilie Rugemalira
- Children's Hospital, Helsinki University Hospital, Stenbäckinkatu 9, 00029 Helsinki, Finland.
- Faculty of Medicine, University of Helsinki, Yliopistonkatu 4, 00014 Helsinki, Finland.
| | - Irmeli Roine
- Faculty of Medicine, University Diego Portales, Manuel Rodrigues Sur 333, 8370109 Santiago Region Metropolitana, Chile.
| | - Julia Kuligowski
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Ángel Sánchez-Illana
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | | | - Sture Andersson
- Children's Hospital, Helsinki University Hospital, Stenbäckinkatu 9, 00029 Helsinki, Finland.
- Faculty of Medicine, University of Helsinki, Yliopistonkatu 4, 00014 Helsinki, Finland.
| | - Heikki Peltola
- Children's Hospital, Helsinki University Hospital, Stenbäckinkatu 9, 00029 Helsinki, Finland.
- Faculty of Medicine, University of Helsinki, Yliopistonkatu 4, 00014 Helsinki, Finland.
| | | | - Tuula Pelkonen
- Children's Hospital, Helsinki University Hospital, Stenbäckinkatu 9, 00029 Helsinki, Finland.
- Faculty of Medicine, University of Helsinki, Yliopistonkatu 4, 00014 Helsinki, Finland.
- Hospital Pediátrico David Bernardino, Rua Amilcar Cabral, Luanda, Angola.
| | - Máximo Vento
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain.
| |
Collapse
|
22
|
Muri L, Le ND, Zemp J, Grandgirard D, Leib SL. Metformin mediates neuroprotection and attenuates hearing loss in experimental pneumococcal meningitis. J Neuroinflammation 2019; 16:156. [PMID: 31351490 PMCID: PMC6660697 DOI: 10.1186/s12974-019-1549-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pneumococcal meningitis is associated with high risk of neurological sequelae such as cognitive impairment and hearing loss. These sequelae are due to parenchymal brain and inner ear damage primarily induced by the excessive inflammatory reaction in response to bacterial brain invasion. Metformin—a biguanide drug to treat diabetes mellitus type 2—was recently found to suppress neuroinflammation and induce neuroregeneration. This study evaluated the effect of metformin adjunctive to antibiotics on neuroinflammation, brain and inner ear damage, and neurofunctional outcome in experimental pediatric pneumococcal meningitis. Methods Eleven-day-old Wistar rats were infected intracisternally with 5.22 ± 1.27 × 103 CFU Streptococcus pneumoniae and randomized for treatment with metformin (50 mg/kg, i.p., once daily for 3 weeks) plus ceftriaxone (100 mg/kg, i.p., bid, n = 61) or ceftriaxone monotherapy (n = 79). Cortical damage and hippocampal apoptosis were evaluated histomorphometrically 42 h post infection. Cerebrospinal fluid cytokine levels were analyzed during acute infection. Five weeks post infection, auditory brainstem responses were measured to determine hearing thresholds. Spiral ganglion neuron density and abundance of recently proliferated and integrated hippocampal granule neurons were assessed histologically. Additionally, the anti-inflammatory effect of metformin was studied in primary rat astroglial cells in vitro. Results Upon pneumococcal infection, metformin treatment significantly reduced levels of inflammatory cytokines and nitric oxide production in cerebrospinal fluid and in astroglial cell cultures in vitro (p < 0.05). Compared to animals receiving ceftriaxone monotherapy, adjunctive metformin significantly reduced cortical necrosis (p < 0.02) during acute infection and improved median click-induced hearing thresholds (60 dB vs. 100 dB, p < 0.002) 5 weeks after infection. Adjuvant metformin significantly improved pure tone hearing thresholds at all assessed frequencies compared to ceftriaxone monotherapy (p < 0.05) and protected from PM-induced spiral ganglion neuron loss in the inner ear (p < 0.05). Conclusion Adjuvant metformin reduces brain injury during pneumococcal meningitis by decreasing the excessive neuroinflammatory response. Furthermore, it protects spiral ganglion neurons in the inner ear and improves hearing impairments after experimental pneumococcal meningitis. These results identify adjuvant metformin as a promising therapeutic option to improve the outcome after pediatric pneumococcal meningitis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1549-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Jonas Zemp
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.
| |
Collapse
|
23
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Wang Y, Liu X, Liu Q. NOD2 Expression in Streptococcus pneumoniae Meningitis and Its Influence on the Blood-Brain Barrier. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:7292084. [PMID: 30186539 PMCID: PMC6109993 DOI: 10.1155/2018/7292084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae meningitis is one of the most common disorders seen in clinical practice. It is believed that the brain tissue immune injury is caused by the expression of pattern-recognition receptors (PRR) which can further induce the release of other cytokines and inflammatory cascades. The aim of this study is to investigate the expression of nucleotide-binding oligomerization domain 2 (NOD2) and inflammatory factors in rat brain tissues infected with Streptococcus pneumoniae and its influence on the blood-brain barrier (BBB) permeability. Rats were given an intracranial injection of Streptococcus pneumoniae to construct the Streptococcus pneumoniae meningitis rat models. The expression change curves of NOD2 and inflammatory factors at different time points (0 h, 12 h, 24 h, 48 h, and 7 d) after Streptococcus pneumoniae were evaluated by enzyme-linked immunosorbent assay (ELISA). Western blotting analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were engaged to examine the expression of NOD2. Furthermore, the changing processes of pathological characteristics, nervous system score, cerebral oedema, and BBB permeability were observed. Our results showed that NOD2 expression began to increase in the 12 h after Streptococcus pneumoniae infection group, while the remaining inflammatory factors were not obviously increased. Meanwhile, the levels of NOD2, as well as inflammatory factors IL-1β, TNF-α, and IL-6 were markedly elevated in 24 h and 48 h infection groups, which were consistent with the increases in BBB permeability and BWC, and the positive expression of NOD2 in the infected rat brain tissues was observed using immunohistochemistry (IHC). This study suggests that NOD2 might be related to the activation of inflammation pathways and the damage to the blood-brain barrier. NOD2 and inflammatory factors have played vital roles in the pathogenesis of Streptococcus pneumoniae meningitis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Qilu Hospital, Shandong University, 107# Wen Hua Xi Road, Jinan, Shandong 250012, China
- The People's Hospital in Zoucheng, 59# Qian Quan Road, Zoucheng, Shandong 273500, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, 107# Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Qi Liu
- The People's Hospital in Zoucheng, 59# Qian Quan Road, Zoucheng, Shandong 273500, China
| |
Collapse
|
25
|
Zhao WD, Liu DX, Wei JY, Miao ZW, Zhang K, Su ZK, Zhang XW, Li Q, Fang WG, Qin XX, Shang DS, Li B, Li QC, Cao L, Kim KS, Chen YH. Caspr1 is a host receptor for meningitis-causing Escherichia coli. Nat Commun 2018; 9:2296. [PMID: 29895952 PMCID: PMC5997682 DOI: 10.1038/s41467-018-04637-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but the pathogenesis of E. coli meningitis remains elusive. E. coli penetration of the blood–brain barrier (BBB) is the critical step for development of meningitis. Here, we identify Caspr1, a single-pass transmembrane protein, as a host receptor for E. coli virulence factor IbeA to facilitate BBB penetration. Genetic ablation of endothelial Caspr1 and blocking IbeA–Caspr1 interaction effectively prevent E. coli penetration into the brain during meningitis in rodents. IbeA interacts with extracellular domain of Caspr1 to activate focal adhesion kinase signaling causing E. coli internalization into the brain endothelial cells of BBB. E. coli can invade hippocampal neurons causing apoptosis dependent on IbeA–Caspr1 interaction. Our results indicate that E. coli exploits Caspr1 as a host receptor for penetration of BBB resulting in meningitis, and that Caspr1 might be a useful target for prevention or therapy of E. coli meningitis. Penetration of the blood–brain barrier (BBB) is crucial for development of E. coli-caused meningitis. Here, the authors show that a host membrane protein, Caspr1, acts as a receptor for a bacterial virulence factor to facilitate BBB penetration and entry of E. coli into brain neurons.
Collapse
Affiliation(s)
- Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China.
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Zi-Wei Miao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Zheng-Kang Su
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Qiang Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Xiao-Xue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - De-Shu Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Qing-Chang Li
- Department of Pathology, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Liu Cao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St, Room 3157, Baltimore, MD, 21287, USA
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China.
| |
Collapse
|
26
|
Zhang L, Zhou P, Meng Z, Pang C, Gong L, Zhang Q, Jia Q, Song K. Infectious mononucleosis and hepatic function. Exp Ther Med 2018; 15:2901-2909. [PMID: 29456696 PMCID: PMC5795407 DOI: 10.3892/etm.2018.5736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
Abnormal hepatic function is common in infectious mononucleosis (IM). However, it remains unknown why increased transferase levels are more common than bilirubin abnormalities in IM. The current study aimed to investigate these associations in the Chinese population. A total of 95 patients with IM (47 males and 48 females) were enrolled in the current study, as well as 95 healthy controls. Patients were sorted by sex. A receiver operating characteristic (ROC) curve was used to determine cut-off values for IM diagnosis and prediction. Crude and adjusted odds ratios (OR) for IM were analyzed using binary logistic regression. It was determined that alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamyl transferase (GGT) levels were significantly higher in patients with IM compared with controls; however, total bilirubin (TB) levels were significantly lower in patients with IM. ROCs demonstrated that, if ALT, AST and GGT concentrations were higher than, or if TB was lower than, cut-off values, they were predictive of IM. Binary logistic regression identified that the risk of IM in patients exhibiting high levels of transferases was significantly increased, particularly in males. Crude ORs in ALT quartile 4 were 21.667 and 10.111 for males and females, respectively and adjusted ORs were 38.054 and 9.882, respectively. A significant IM risk of IM was evident in patients with low bilirubin levels and females appeared to be particularly susceptible. For example, crude ORs in quartile 1 were 8.229 and 8.257 for males and females, respectively and adjusted ORs were 8.883 and 10.048, respectively. Therefore, the current study identified a positive association between transferase levels and IM and a negative association between TB and IM. Therefore, the results of the current study indicate that high transferases are suggestive of IM, particularly in males, whereas low TB is suggestive for IM, particularly in females.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pingping Zhou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Gong
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qing Zhang
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiyu Jia
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kun Song
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Hupp S, Ribes S, Seele J, Bischoff C, Förtsch C, Maier E, Benz R, Mitchell TJ, Nau R, Iliev AI. Magnesium therapy improves outcome in Streptococcus pneumoniae meningitis by altering pneumolysin pore formation. Br J Pharmacol 2017; 174:4295-4307. [PMID: 28888095 DOI: 10.1111/bph.14027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Streptococcus pneumoniae is the most common cause of bacterial meningitis in adults and is characterized by high lethality and substantial cognitive disabilities in survivors. Here, we have studied the capacity of an established therapeutic agent, magnesium, to improve survival in pneumococcal meningitis by modulating the neurological effects of the major pneumococcal pathogenic factor, pneumolysin. EXPERIMENTAL APPROACH We used mixed primary glial and acute brain slice cultures, pneumolysin injection in infant rats, a mouse meningitis model and complementary approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of primary glial cells. KEY RESULTS Treatment with therapeutic concentrations of magnesium chloride (500 mg·kg-1 in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and tissue remodelling both in brain slices and in animal models. In contrast to other divalent ions, which diminish the membrane binding of pneumolysin in non-therapeutic concentrations, magnesium delayed toxin-driven pore formation without affecting its membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the survival and improved clinical condition of mice with pneumococcal meningitis, in the absence of antibiotic treatment. CONCLUSIONS AND IMPLICATIONS Magnesium is a well-established and safe therapeutic agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic effects on the brain. The improved animal survival and clinical condition in the meningitis model identifies magnesium as a promising candidate for adjunctive treatment of pneumococcal meningitis, together with antibiotic therapy.
Collapse
Affiliation(s)
- Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Sandra Ribes
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Jana Seele
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Carolin Bischoff
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Christina Förtsch
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Roland Nau
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Asparouh I Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Zhang L, Zhou P, Meng Z, Gong L, Pang C, Li X, Jia Q, Tan J, Liu N, Hu T, Zhang Q, Jia Q, Song K. Low uric acid level increases the risk of infectious mononucleosis and this effect is more pronounced in women. Mol Clin Oncol 2017; 7:1039-1044. [PMID: 29285370 DOI: 10.3892/mco.2017.1433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious mononucleosis (IM) due to Epstein-Barr virus infection is common. Uric acid (UA) is an important endogenous antioxidant. To the best of our knowledge, the association between UA and IM has not been comprehensively investigated to date. The aim of the present study was to investigate this association in Chinese patients. A total of 95 patients (47 men and 48 women) with IM were recruited, along with 95 healthy controls. Clinical data were classified by patient sex. Receiver operating characteristic (ROC) curve analysis was adopted to determine the cut-off values of UA for IM diagnosis and prediction. Crude and adjusted odds ratios (ORs) of UA for IM were analyzed by binary logistic regression. The UA levels were significantly lower in IM patients compared with those in controls. In addition, UA levels in men were significantly higher compared with those in women. The ROC curve demonstrated good diagnostic and predictive values of UA for IM in both sexes. The UA cut-off values were 326.00 and 243.50 µmol/l for diagnosing IM in men and women, respectively, with a diagnostic accuracy of 76.596 and 80.208%, respectively. Binary logistic regression analysis revealed a significant risk of IM in the low UA quartiles in both sexes. Following adjustments, the ORs even increased. Women with low UA levels appeared to be more susceptible to IM. For example, the crude ORs in quartile 1 were 24.000 and 52.500 for men and women, respectively, and the respective adjusted ORs were 31.437 and 301.746 (all P<0.01). To the best of our knowledge, the present study is the first to demonstrate the inverse association between UA and IM, suggesting a progressive decrease of antioxidant reserve in IM. Moreover, low UA was suggestive of IM, particularly in women.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pingping Zhou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Gong
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xue Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Na Liu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianpeng Hu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qing Zhang
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiyu Jia
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kun Song
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
29
|
Role of purinergic signaling in experimental pneumococcal meningitis. Sci Rep 2017; 7:44625. [PMID: 28300164 PMCID: PMC5353597 DOI: 10.1038/srep44625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Excessive neutrophilic inflammation contributes to brain pathology and adverse outcome in pneumococcal meningitis (PM). Recently, we identified the NLRP3 inflammasome/interleukin (IL)-1β pathway as a key driver of inflammation in PM. A critical membrane receptor for NLRP3 inflammasome activation is the ATP-activated P2 purinoceptor (P2R) P2X7. Thus, we hypothesized involvement of ATP and P2Rs in PM. The functional role of ATP was investigated in a mouse meningitis model using P2R antagonists. Brain expression of P2Rs was assessed by RT-PCR. ATP levels were determined in murine CSF and cell culture experiments. Treatment with the P2R antagonists suramin or brilliant blue G did not have any impact on disease course. This lack of effect might be attributed to meningitis-associated down-regulation of brain P2R expression and/or a drop of cerebrospinal fluid (CSF) ATP, as demonstrated by RT-PCR and ATP analyses. Supplemental cell culture experiments suggest that the reduction in CSF ATP is, at least partly, due to ATP hydrolysis by ectonucleotidases of neutrophils and macrophages. In conclusion, this study suggests that ATP-P2R signaling is only of minor or even no significance in PM. This may be explained by down-regulation of P2R expression and decreased CSF ATP levels.
Collapse
|
30
|
Zhang P, Zhang N, Liu L, Zheng K, Zhu L, Zhu J, Cao L, Jiang Y, Liu G, He Q. Polymorphisms of toll-like receptors 2 and 9 and severity and prognosis of bacterial meningitis in Chinese children. Sci Rep 2017; 7:42796. [PMID: 28202935 PMCID: PMC5311876 DOI: 10.1038/srep42796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity, protecting the host from bacterial pathogens. We investigated whether bacterial meningitis (BM) in children was associated with gene polymorphisms in TLR2 (rs3804099), TLR3 (rs3775291 and rs3775290) and TLR9 (rs352139 and rs352140). Blood samples were taken from 218 child patients with confirmed BM and 330 healthy adult controls (HC) and polymorphisms of these genes were analyzed by PCR-based sequencing. For TLR2 rs3804099, frequencies of the minor allele C were markedly higher in patients with severe BM (defined as CSF glucose concentration ≤ 1.5 mmol/L and seizures) than those without (43.5% and 40.1% vs. 30.1% and 29.1%, p = 0.008 and p = 0.016, respectively). For TLR9 rs352139, patients who carried genotype AA and minor allele A developed seizures less often than those without (OR = 0.289, p = 0.003 and OR = 0.568, p = 0.004, respectively). However, for TLR9 rs352140, patients who carried genotype TT and minor allele T developed seizures more often than those without (OR = 3.385, p = 0.004 and OR = 1.767, p = 0.004, respectively). Our finding suggested that genetic variations in TLR2 and TLR9 are associated with severity and prognosis of bacterial meningitis in Chinese children. However, the results should be interpreted with caution since the number of subjects included was limited.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Nan Zhang
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China
| | - Linlin Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Kai Zheng
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China
| | - Liang Zhu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Junping Zhu
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China
| | - Lina Cao
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China
| | - Yiyuan Jiang
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China
| | - Gang Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Qiushui He
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| |
Collapse
|
31
|
Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res 2017; 6. [PMID: 28184287 PMCID: PMC5288681 DOI: 10.12688/f1000research.8533.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/23/2023] Open
Abstract
In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with
Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.
Collapse
Affiliation(s)
- Andrew Janowski
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| | - Jason Newland
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
32
|
Abstract
Over the past several decades, the incidence of bacterial meningitis in children has decreased but there remains a significant burden of disease in adults, with a mortality of up to 30%. Although the pathogenesis of bacterial meningitis is not completely understood, knowledge of bacterial invasion and entry into the CNS is improving. Clinical features alone cannot determine whether meningitis is present and analysis of cerebrospinal fluid is essential for diagnosis. Newer technologies, such as multiplex PCR, and novel diagnostic platforms that incorporate proteomics and genetic sequencing, might help provide a quicker and more accurate diagnosis. Even with appropriate antimicrobial therapy, mortality is high and so attention has focused on adjunctive therapies; adjunctive corticosteroids are beneficial in certain circumstances. Any further improvements in outcome are likely to come from either modulation of the host response or novel approaches to therapy, rather than new antibiotics. Ultimately, the best hope to reduce the disease burden is with broadly protective vaccines.
Collapse
Affiliation(s)
- Fiona McGill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Leeds University Hospitals NHS Trust, Leeds, UK; Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust, Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Division of Infection and Immunity, University College London, London, UK
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Allan R Tunkel
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK.
| |
Collapse
|
33
|
Auger JP, Fittipaldi N, Benoit-Biancamano MO, Segura M, Gottschalk M. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection. Pathogens 2016; 5:pathogens5030048. [PMID: 27409640 PMCID: PMC5039428 DOI: 10.3390/pathogens5030048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Nahuel Fittipaldi
- Public Health Ontario and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
34
|
Lian D, He D, Wu J, Liu Y, Zhu M, Sun J, Chen F, Li L. Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis. J Neuroimmunol 2016; 294:46-55. [PMID: 27138098 DOI: 10.1016/j.jneuroim.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/24/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite the effective use of antibiotics, occurrences of mortality and neurological sequelae following Streptococcus pneumoniae meningitis remain high. METHODS We investigated the neurogenesis of endogenous neural stem cells (NSCs) after inoculation with exogenous brain-derived neurotrophic factor (BDNF) in the hippocampus dentate gyrus following experimental S. pneumoniae meningitis using a double-labeling immunofluorescence analysis with 5-bromo-2'-deoxyuridine (BrdU), Nestin, DCX and NeuN. RESULTS Our results showed that 7days after inoculation, the number of BrdU & Nestin co-labeled cells increased in the hippocampus in meningitis rats compared with control rats (p<0.05). But the number of DCX-positive cells decreased in the dentate gyrus of infected rats treated with saline (p<0.05). However, these cell numbers returned to close to normal-control levels in infected rats treated with BDNF (p>0.05). After treatment with exogenous BDNF, the number of BrdU & Nestin co-labeled cells increased in the hippocampus in both the meningitis rats and normal control rats (p<0.05), but this increase was more significant in the former (p<0.05). We found that the percentage of BrdU & DCX/BrdU co-labeled cells increased in infected rats treated with BDNF both 7days and 14days after inoculation in a greater proportion compared to other groups (p<0.05). No significant differences were found in the percentage of BrdU & NeuN/BrdU 28days after inoculation among all of the groups (p>0.05). CONCLUSION Our findings suggest that S. pneumoniae meningitis activates the proliferation of endogenous NSCs, but impairs their early differentiation. Administration of exogenous BDNF might improve the neurogenesis of endogenous NSCs in the hippocampus and may provide a promising therapy after bacterial meningitis.
Collapse
Affiliation(s)
- Di Lian
- Department of Pediatric Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dake He
- Department of Pediatric Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jing Wu
- Department of Pediatric Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ying Liu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Mingjie Zhu
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jiaming Sun
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Feng Chen
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ling Li
- Department of Pediatric Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|