1
|
Mishra A, Qamar F, Ashrafi K, Fatima S, Samim M, Mohmmed A, Abdin MZ. Emerging nanotechnology-driven drug delivery solutions for malaria: Addressing drug resistance and improving therapeutic success. Int J Pharm 2025; 670:125163. [PMID: 39788401 DOI: 10.1016/j.ijpharm.2024.125163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue. Additionally, the absence of a highly effective malaria vaccine continues to be a significant obstacle. The complex biology of the malaria parasite and the multifaceted nature of the disease contribute to these challenges. Recent advancements in nanotechnology offer promising solutions in malaria treatment, providing benefits such as improved drug stability, sustained release, and targeted delivery to specific cells. Encapsulation technology, in particular, addresses critical limitations like poor solubility, low bioavailability, and frequent dosing requirements. Thus, this review explores innovative strategies to combat malaria, focusing on nanotechnology-based antimalarial formulations and their evaluation in vitro and in vivo. Moreover, the study highlights the SAR of potent antimalarial compounds, molecular markers linked with drug resistance, ACTs, advocates for eco-friendly approaches, nanotechnology-driven vaccines, and new antimalarial agents with their specific targets.
Collapse
Affiliation(s)
- Anuradha Mishra
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Fatima
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Knak T, Takada S, Illarionov B, Krisilia V, Pessanha de Carvalho L, Lungerich B, Sakamoto Y, Höfmann S, Bacher A, Kalscheuer R, Held J, Fischer M, Tanaka N, Kurz T. Expanding the Chemical Space of Reverse Fosmidomycin Analogs. ACS Med Chem Lett 2025; 16:136-143. [PMID: 39811140 PMCID: PMC11726376 DOI: 10.1021/acsmedchemlett.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for Plasmodium falciparum, Escherichia coli, and Mycobacterium tuberculosis that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin. Despite nanomolar target inhibition, the new DXR inhibitors demonstrated mainly weak or no in vitro growth inhibition of the pathogens. Crystallographic studies revealed that compounds 12a and 12b induce an open PfDXR conformation and that the enzyme selectively binds the S-enantiomers. The study underscores the difficulties of achieving potent cellular activity despite strong DXR inhibition and emphasizes the need for novel structural optimization strategies and comprehensive pharmacokinetic studies.
Collapse
Affiliation(s)
- Talea Knak
- Institute
of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sana Takada
- School
of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Boris Illarionov
- Hamburg
School of Food Science, Universität
Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Violetta Krisilia
- Institute
of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr.
1, 40225 Düsseldorf, Germany
| | - Lais Pessanha de Carvalho
- Institut
für Tropenmedizin, Eberhard Karls
Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
| | - Beate Lungerich
- Institute
of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Yasumitsu Sakamoto
- School
of
Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Stefan Höfmann
- Institute
of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Adelbert Bacher
- Hamburg
School of Food Science, Universität
Hamburg, Grindelallee
117, 20146 Hamburg, Germany
- TUM
School of Natural Sciences, Technical University
of Munich, Boltzmannstr.
10, 85748 Garching, Germany
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr.
1, 40225 Düsseldorf, Germany
| | - Jana Held
- Institut
für Tropenmedizin, Eberhard Karls
Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
- German
Center for Infection Research (DZIF),
partner site Tübingen, 72074 Tübingen, Germany
| | - Markus Fischer
- Hamburg
School of Food Science, Universität
Hamburg, Grindelallee
117, 20146 Hamburg, Germany
| | - Nobutada Tanaka
- School
of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Thomas Kurz
- Institute
of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Willocx D, Bizzarri L, Alhayek A, Kannan D, Bravo P, Illarionov B, Rox K, Lohse J, Fischer M, Kany AM, Hahne H, Rottmann M, Witschel M, Odom John A, Hamed MM, Diamanti E, Hirsch AKH. Targeting Plasmodium falciparum IspD in the Methyl-d-erythritol Phosphate Pathway: Urea-Based Compounds with Nanomolar Potency on Target and Low-Micromolar Whole-Cell Activity. J Med Chem 2024; 67:17070-17086. [PMID: 39303294 PMCID: PMC11472328 DOI: 10.1021/acs.jmedchem.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
The methyl-d-erythritol phosphate (MEP) pathway has emerged as an interesting target in the fight against antimicrobial resistance. The pathway is essential in many human pathogens, including Plasmodium falciparum (Pf), but is absent in human cells. In the present study, we report on the discovery of a new chemical class targeting IspD, the third enzyme in the pathway. Exploration of the structure-activity relationship yielded inhibitors with potency in the low-nanomolar range. Moreover, we investigated the whole-cell activity, mode of inhibition, metabolic, and plasma stability of this compound class, and conducted in vivo pharmacokinetic profiling on selected compounds. Lastly, we disclosed a new mass spectrometry (MS)-based enzymatic assay for direct IspD activity determination, circumventing the need for auxiliary enzymes. In summary, we have identified a readily synthesizable compound class, demonstrating excellent activity and a promising profile, positioning it as a valuable tool compound for advancing research on IspD.
Collapse
Affiliation(s)
- Daan Willocx
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Lorenzo Bizzarri
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- OmicScouts
GmbH, Lise-Meitner-Straße
30, 85354 Freising, Germany
| | - Alaa Alhayek
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Deepika Kannan
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Patricia Bravo
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität
Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Boris Illarionov
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jonas Lohse
- OmicScouts
GmbH, Lise-Meitner-Straße
30, 85354 Freising, Germany
| | - Markus Fischer
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Hannes Hahne
- OmicScouts
GmbH, Lise-Meitner-Straße
30, 85354 Freising, Germany
| | - Matthias Rottmann
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität
Basel, Petersplatz 1, 4003 Basel, Switzerland
| | | | - Audrey Odom John
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mostafa M. Hamed
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Eleonora Diamanti
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for
Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Abdullaziz MA, Takada S, Illarionov B, Pessanha de Carvalho L, Sakamoto Y, Höfmann S, Knak T, Kiffe-Delf AL, Mazzone F, Pfeffer K, Kalscheuer R, Bacher A, Held J, Fischer M, Tanaka N, Kurz T. Reverse N-Substituted Hydroxamic Acid Derivatives of Fosmidomycin Target a Previously Unknown Subpocket of 1-Deoxy-d-xylulose 5-Phosphate Reductoisomerase (DXR). ACS Infect Dis 2024; 10:1739-1752. [PMID: 38647213 DOI: 10.1021/acsinfecdis.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.
Collapse
Affiliation(s)
- Mona A Abdullaziz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
- National Research Centre (NRC), 33 El Buhouth St, Ad Doqi, Dokki, Cairo 12622, Egypt
| | - Sana Takada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Boris Illarionov
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Lais Pessanha de Carvalho
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
| | - Yasumitsu Sakamoto
- School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Stefan Höfmann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Talea Knak
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anna-Lene Kiffe-Delf
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, University Hospital Düsseldorf, Germany, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, University Hospital Düsseldorf, Germany, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Adelbert Bacher
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- TUM School of Natural Sciences, Technical University of Munich, Boltzmannstr. 10, 85748 Garching, Germany
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, 72074 Tübingen, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nobutada Tanaka
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Thomas Kurz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
6
|
Johannsen S, Gierse RM, Krüger A, Edwards RL, Nanna V, Fontana A, Zhu D, Masini T, de Carvalho LP, Poizat M, Kieftenbelt B, Hodge DM, Alvarez S, Bunt D, Lacour A, Shams A, Meissner KA, de Souza EE, Dröge M, van Vliet B, den Hartog J, Hutter MC, Held J, Odom John AR, Wrenger C, Hirsch AKH. High Target Homology Does Not Guarantee Inhibition: Aminothiazoles Emerge as Inhibitors of Plasmodium falciparum. ACS Infect Dis 2024; 10:1000-1022. [PMID: 38367280 PMCID: PMC10928712 DOI: 10.1021/acsinfecdis.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.
Collapse
Affiliation(s)
- Sandra Johannsen
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Robin M. Gierse
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Arne Krüger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Rachel L. Edwards
- Department
of Pediatrics, Washington University School
of Medicine, Saint
Louis, Missouri 63110, United States
| | - Vittoria Nanna
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Anna Fontana
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Di Zhu
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Tiziana Masini
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | | | - Mael Poizat
- Symeres, Kadijk 3, Groningen 9747
AT, The Netherlands
| | | | - Dana M. Hodge
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophie Alvarez
- Proteomics
& Metabolomics Facility, Center for Biotechnology, Department
of Agronomy and Horticulture, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Daan Bunt
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Antoine Lacour
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Atanaz Shams
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Kamila Anna Meissner
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | | | | | | | - Michael C. Hutter
- Center
for Bioinformatics, Saarland University, Campus Building E2.1, Saarbrücken 66123, Germany
| | - Jana Held
- Institute
of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany
- German
Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72074, Germany
- Centre
de Recherches Médicales de Lambaréné (CERMEL), B.P. 242 Lambaréné, Gabon
| | - Audrey R. Odom John
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carsten Wrenger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| |
Collapse
|
7
|
Crispim M, Verdaguer IB, Hernández A, Kronenberger T, Fenollar À, Yamaguchi LF, Alberione MP, Ramirez M, de Oliveira SS, Katzin AM, Izquierdo L. Beyond the MEP Pathway: A novel kinase required for prenol utilization by malaria parasites. PLoS Pathog 2024; 20:e1011557. [PMID: 38277417 PMCID: PMC10849223 DOI: 10.1371/journal.ppat.1011557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.
Collapse
Affiliation(s)
- Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Center for Biological and Health Sciences, Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Federal University of São Carlos, São Carlos, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Àngel Fenollar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Miriam Ramirez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
8
|
Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE. Novel Therapeutics for Malaria. Pharmaceutics 2023; 15:1800. [PMID: 37513987 PMCID: PMC10383744 DOI: 10.3390/pharmaceutics15071800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is a potentially fatal disease caused by protozoan parasites of the genus Plasmodium. It is responsible for significant morbidity and mortality in endemic countries of the tropical and subtropical world, particularly in Africa, Southeast Asia, and South America. It is estimated that 247 million malaria cases and 619,000 deaths occurred in 2021 alone. The World Health Organization's (WHO) global initiative aims to reduce the burden of disease but has been massively challenged by the emergence of parasitic strains resistant to traditional and emerging antimalarial therapy. Therefore, development of new antimalarial drugs with novel mechanisms of action that overcome resistance in a safe and efficacious manner is urgently needed. Based on the evolving understanding of the physiology of Plasmodium, identification of potential targets for drug intervention has been made in recent years, resulting in more than 10 unique potential anti-malaria drugs added to the pipeline for clinical development. This review article will focus on current therapies as well as novel targets and therapeutics against malaria.
Collapse
Affiliation(s)
- Haitham Alaithan
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute of Public Health, George Washington University, Washington, DC 20037, USA
| | - Mohammad Z Islam
- Department of Pathology and Translational Pathology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Angelike P Liappis
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
9
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
10
|
Elahi R, Prigge ST. New insights into apicoplast metabolism in blood-stage malaria parasites. Curr Opin Microbiol 2023; 71:102255. [PMID: 36563485 PMCID: PMC9852000 DOI: 10.1016/j.mib.2022.102255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The apicoplast of Plasmodium falciparum is the only source of essential isoprenoid precursors and Coenzyme A (CoA) in the parasite. Isoprenoid precursor synthesis relies on the iron-sulfur cluster (FeS) cofactors produced within the apicoplast, rendering FeS synthesis an essential function of this organelle. Recent reports provide important insights into the roles of FeS cofactors and the use of isoprenoid precursors and CoA both inside and outside the apicoplast. Here, we review the recent insights into the roles of these metabolites in blood-stage malaria parasites and discuss new questions that have been raised in light of these discoveries.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
11
|
Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals (Basel) 2022; 15:ph15121553. [PMID: 36559004 PMCID: PMC9782300 DOI: 10.3390/ph15121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.
Collapse
|
12
|
Verdaguer IB, Crispim M, Hernández A, Katzin AM. The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage. Molecules 2022; 27:molecules27248691. [PMID: 36557825 PMCID: PMC9782597 DOI: 10.3390/molecules27248691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Agustín Hernández
- Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +55-11-3091-7417
| |
Collapse
|
13
|
Bofill Verdaguer I, Sussmann RAC, Santiago VF, Palmisano G, Moura GC, Mesquita JT, Yamaguchi LF, Kato MJ, Katzin AM, Crispim M. Isoprenoid alcohols utilization by malaria parasites. Front Chem 2022; 10:1035548. [PMID: 36531309 PMCID: PMC9751614 DOI: 10.3389/fchem.2022.1035548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2024] Open
Abstract
Plasmodium falciparum is the etiological agent of human malaria, one of the most widespread diseases in tropical and subtropical regions. Drug resistance is one of the biggest problems in controlling the disease, which leads to the need to discover new antimalarial compounds. One of the most promissory drugs purposed is fosmidomycin, an inhibitor of the biosynthesis of isoprene units by the methylerythritol 4-phosphate (MEP) pathway, which in some cases failed in clinical studies. Once formed, isoprene units are condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate, which are necessary for Heme O and A formation, ubiquinone, and dolichyl phosphate biosynthesis as well as for protein isoprenylation. Even though the natural substrates of polyprenyl transferases and synthases are polyprenyl pyrophosphates, it was already demonstrated that isoprenoid alcohols (polyprenols) such as farnesol (FOH) and geranylgeraniol (GGOH) can rescue parasites from fosmidomycin. This study better investigated how this rescue phenomenon occurs by performing drug-rescue assays. Similarly, to FOH and GGOH, it was observed that phytol (POH), a 20-carbon plant isoprenoid, as well as unsaponifiable lipid extracts from foods rescue parasites from the antimalarial effect of fosmidomycin. Contrarily, neither dolichols nor nonaprenol rescue parasites from fosmidomycin. Considering this, here we characterized the transport of FOH, GGOH, and POH. Once incorporated, it was observed that these substances are phosphorylated, condensed into longer isoprenoid alcohols, and incorporated into proteins and dolichyl phosphates. Through proteomic and radiolabelling approaches, it was found that prenylated proteins are naturally attached to several isoprenoids, derived from GGOH, dolichol, and POH if exogenously added. Furthermore, the results suggest the presence of at least two promiscuous protein prenyltransferases in the parasite: one enzyme which can use FPP among other unidentified substrates and another enzyme that can use GGPP, phytyl pyrophosphate (PPP), and dolichols, among other substrates not identified here. Thus, further evidence was obtained for dolichols and other isoprenoid products attached to proteins. This study helps to better understand the apicoplast-targeting antimalarial mechanism of action and a novel post-translational modification of proteins in P. falciparum.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Center for Environmental Sciences, Institute of Humanities, Arts and Sciences, Federal University of Southern Bahia, Bahia, Brazil
| | - Verônica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Gabriel Cândido Moura
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Juliana Tonini Mesquita
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway. Pharmaceutics 2022; 14:pharmaceutics14071320. [PMID: 35890216 PMCID: PMC9319574 DOI: 10.3390/pharmaceutics14071320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 µM DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.
Collapse
|
15
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
16
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
17
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
18
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
19
|
Koehne E, Adegnika AA, Held J, Kreidenweiss A. Pharmacotherapy for artemisinin-resistant malaria. Expert Opin Pharmacother 2021; 22:2483-2493. [PMID: 34311639 DOI: 10.1080/14656566.2021.1959913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Malaria, the most devastating parasitic disease, is currently treated with artemisinin-based combination therapies (ACTs). Unfortunately, some ACTs are unable to rapidly clear Plasmodium falciparum parasites from the blood stream and are failing to cure malaria patients; a problem, so far, largely confined to Southeast Asia. There is a fear of resistant Plasmodium falciparum emerging in other parts of the world including Sub-Saharan Africa. Strategies for alternative treatments, ideally non-artemisinin based, are needed. AREAS COVERED This narrative review gives an overview of approved antimalarials and of some compounds in advanced drug development that could be used when an ACT is failing. The selection was based on a literature search in PubMed and WHO notes for malaria treatment. EXPERT OPINION The ACT drug class can still cure malaria in malaria endemic regions. However, the appropriate ACT drug should be chosen considering the background resistance of the partner drug of the local parasite population. Artesunate-pyronaridine, the 'newest' recommended ACT, and atovaquone-proguanil are, so far, effective, and safe treatments for uncomplicated falciparum malaria. Therefore, all available ACTs should be safeguarded from parasite resistance and the development of new antimalarial drug classes needs to be accelerated.
Collapse
Affiliation(s)
- Erik Koehne
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
20
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
21
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
de Araújo RV, Santos SS, Sanches LM, Giarolla J, El Seoud O, Ferreira EI. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. Mem Inst Oswaldo Cruz 2020; 115:e200229. [PMID: 33053077 PMCID: PMC7534959 DOI: 10.1590/0074-02760200229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Malaria and tuberculosis are no longer considered to be neglected diseases by the World Health Organization. However, both are huge challenges and public health problems in the world, which affect poor people, today referred to as neglected populations. In addition, malaria and tuberculosis present the same difficulties regarding the treatment, such as toxicity and the microbial resistance. The increase of Plasmodium resistance to the available drugs along with the insurgence of multidrug- and particularly tuberculosis drug-resistant strains are enough to justify efforts towards the development of novel medicines for both diseases. This literature review provides an overview of the state of the art of antimalarial and antituberculosis chemotherapies, emphasising novel drugs introduced in the pharmaceutical market and the advances in research of new candidates for these diseases, and including some aspects of their mechanism/sites of action.
Collapse
Affiliation(s)
- Renan Vinicius de Araújo
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Soraya Silva Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Luccas Missfeldt Sanches
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Jeanine Giarolla
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Omar El Seoud
- Universidade de São Paulo, Instituto de Química, Departamento de
Química Fundamental, São Paulo, SP, Brasil
| | - Elizabeth Igne Ferreira
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Swift RP, Rajaram K, Liu HB, Dziedzic A, Jedlicka AE, Roberts AD, Matthews KA, Jhun H, Bumpus NN, Tewari SG, Wallqvist A, Prigge ST. A mevalonate bypass system facilitates elucidation of plastid biology in malaria parasites. PLoS Pathog 2020; 16:e1008316. [PMID: 32059044 PMCID: PMC7046295 DOI: 10.1371/journal.ppat.1008316] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/27/2020] [Accepted: 01/10/2020] [Indexed: 12/03/2022] Open
Abstract
Malaria parasites rely on a plastid organelle for survival during the blood stages of infection. However, the entire organelle is dispensable as long as the isoprenoid precursor, isopentenyl pyrophosphate (IPP), is supplemented in the culture medium. We engineered parasites to produce isoprenoid precursors from a mevalonate-dependent pathway, creating a parasite line that replicates normally after the loss of the apicoplast organelle. We show that carbon-labeled mevalonate is specifically incorporated into isoprenoid products, opening new avenues for researching this essential class of metabolites in malaria parasites. We also show that essential apicoplast proteins, such as the enzyme target of the drug fosmidomycin, can be deleted in this mevalonate bypass parasite line, providing a new method to determine the roles of other important apicoplast-resident proteins. Several antibacterial drugs kill malaria parasites by targeting basic processes, such as transcription, in the organelle. We used metabolomic and transcriptomic methods to characterize parasite metabolism after azithromycin treatment triggered loss of the apicoplast and found that parasite metabolism and the production of apicoplast proteins is largely unaltered. These results provide insight into the effects of apicoplast-disrupting drugs, several of which have been used to treat malaria infections in humans. Overall, the mevalonate bypass system provides a way to probe essential aspects of apicoplast biology and study the effects of drugs that target apicoplast processes. Malaria parasites rely on an organelle called the apicoplast for growth and survival. Antimalarial drugs such as azithromycin inhibit basic processes in the apicoplast and result in the disruption of the organelle. Surprisingly, addition of a single metabolite, isopentenyl pyrophosphate (IPP), allows the parasites to survive in culture after disruption of the apicoplast. Unfortunately, using IPP to study this phenomenon has several limitations: IPP is prohibitively expensive, has to be used at high concentrations, and has a half-life less than 5 hours. To address these problems, we engineered parasites to express four enzymes from an alternative pathway capable of producing IPP in the parasites. We validated this new system and used it to metabolically label essential metabolites, to delete an essential apicoplast protein, and to characterize the state of apicoplast-disrupted parasites. A key finding from these studies comes from transcriptomic and metabolomic analysis of parasites treated with the drug azithromycin. We found that apicoplast disruption results in few changes in parasite metabolism. In particular, the expression of hundreds of nuclear-encoded apicoplast proteins are not affected by disruption of the apicoplast organelle, making it likely that apicoplast metabolic pathways and processes are still functional in apicoplast-disrupted parasites.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Anne E. Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Aleah D. Roberts
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Krista A. Matthews
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Hugo Jhun
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Namandje N. Bumpus
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, United States of America
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
26
|
Mombo-Ngoma G, Remppis J, Sievers M, Zoleko Manego R, Endamne L, Kabwende L, Veletzky L, Nguyen TT, Groger M, Lötsch F, Mischlinger J, Flohr L, Kim J, Cattaneo C, Hutchinson D, Duparc S, Moehrle J, Velavan TP, Lell B, Ramharter M, Adegnika AA, Mordmüller B, Kremsner PG. Efficacy and Safety of Fosmidomycin-Piperaquine as Nonartemisinin-Based Combination Therapy for Uncomplicated Falciparum Malaria: A Single-Arm, Age De-escalation Proof-of-Concept Study in Gabon. Clin Infect Dis 2019; 66:1823-1830. [PMID: 29293893 PMCID: PMC5982710 DOI: 10.1093/cid/cix1122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/23/2017] [Indexed: 12/03/2022] Open
Abstract
Background Fosmidomycin–piperaquine is being developed as nonartemisinin-based combination therapy to meet the challenge of emerging artemisinin resistance. Methods The study was a phase 2, single-arm, proof-of-concept study of the efficacy, tolerability, and safety of fosmidomycin–piperaquine for the treatment of uncomplicated Plasmodium falciparum monoinfection in Gabon. Adults and children of both sexes with initial parasite counts between 1000 and 150000/µL received oral treatment with fosmidomycin (twice daily doses of 30 mg/kg) and piperaquine (once daily dose of 16 mg/kg) for 3 days and followed-up for 63 days. The primary efficacy endpoint was the per-protocol polymerase chain reaction (PCR)–corrected day 28 adequate clinical and parasitological response (ACPR). Results One hundred patients were enrolled. The PCR-corrected day 28 ACPR rate was 83/83, or 100% (95% confidence interval, 96–100). Fourteen patients had asexual parasitaemia between day 28 and day 63; all were typed by PCR as new infections. Fosmidomycin–piperaquine therapy led to rapid parasite clearance (median, 36 hours; interquartile range [IQR], 6–60) and fever clearance time (median, 12 hours; IQR, 6–48). The electrocardiogram assessments showed 2 patients with prolonged QT interval >500 msec following study drug administration. The majority of adverse events affected the gastrointestinal and respiratory tracts and were transient and mild to moderate in severity. Conclusions This is the first report of the use of the combination fosmidomycin–piperaquine. The combination appeared to have high efficacy and be safe and well tolerated despite observed transient changes in electrocardiogram with prolongation of the QT interval. Clinical Trials Registration. NCT02198807.
Collapse
Affiliation(s)
- Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Département de Parasitologie-Mycologie, Université des Sciences de la Santé, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Jonathan Remppis
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Moritz Sievers
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Rella Zoleko Manego
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Lilian Endamne
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Lumeka Kabwende
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon
| | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - The Trong Nguyen
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Mirjam Groger
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Felix Lötsch
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Johannes Mischlinger
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Lena Flohr
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Johanna Kim
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Chiara Cattaneo
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - David Hutchinson
- DMG Deutsche Malaria GmbH, formerly Jomaa Pharma GmbH, Hamburg, Germany
| | | | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany.,Vietnamese-German Center for Medical Research, Hanoi and Faculty of Medicine, Duy Tan University DaNang, Vietnam
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany.,Bernhard Nocht Hospital for Tropical Diseases, Bernhard Nocht Institute for Tropical Medicine and University Medical Center Hamburg-Eppendorf, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Libreville, Gabon.,Institute of Tropical Medicine, University of Tübingen, and German Centre for Infection Research, Hamburg, Germany
| |
Collapse
|
27
|
Parkinson EI, Erb A, Eliot AC, Ju KS, Metcalf WW. Fosmidomycin biosynthesis diverges from related phosphonate natural products. Nat Chem Biol 2019; 15:1049-1056. [PMID: 31451762 PMCID: PMC7098449 DOI: 10.1038/s41589-019-0343-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/09/2019] [Indexed: 12/04/2022]
Abstract
Fosmidomycin and related molecules comprise a family of phosphonate natural products with potent antibacterial, antimalarial and herbicidal activities. To understand the biosynthesis of these compounds, we characterized the fosmidomycin producer, Streptomyces lavendulae, using biochemical and genetic approaches. Surprisingly, we were unable to elicit production of fosmidomycin, instead observing the unsaturated derivative dehydrofosmidomycin, which we showed potently inhibits 1-deoxy-D-xylulose 5-phosphate reductoisomerase and has bioactivity against a number of bacteria. The genes required for dehydrofosmidomycin biosynthesis were established by heterologous expression experiments. Bioinformatics analyses, characterization of intermediates, and in vitro biochemistry show that the biosynthetic pathway involves conversion of a two-carbon phosphonate precursor into the unsaturated three-carbon product via a highly unusual rearrangement reaction, catalyzed by the 2-oxoglutarate dependent dioxygenase DfmD. The required genes and biosynthetic pathway for dehydrofosmidomycin differ substantially from that of the related natural product FR-900098, suggesting that the ability to produce these bioactive molecules arose via convergent evolution.
Collapse
Affiliation(s)
- Elizabeth I Parkinson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Annette Erb
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew C Eliot
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kou-San Ju
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Microbiology and the Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - William W Metcalf
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
28
|
Courtens C, Risseeuw M, Caljon G, Maes L, Cos P, Martin A, Van Calenbergh S. Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2019; 29:1232-1235. [PMID: 30879839 DOI: 10.1016/j.bmcl.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/10/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
A series of eleven double prodrug derivatives of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. A pivaloyloxymethyl (POM) phosphonate prodrug modification was combined with various prodrug derivatisations of the hydroxamate moiety. The majority of compounds showed activity comparable with or inferior to fosmidomycin against P. falciparum. N-benzyl substituted carbamate prodrug 6f was the most active antimalarial analog with an IC50 value of 0.64 µM. Contrary to fosmidomycin and parent POM-prodrug 5, 2-nitrofuran and 2-nitrothiophene prodrugs 6i and 6j displayed promising antitubercular activities.
Collapse
Affiliation(s)
- Charlotte Courtens
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Anandi Martin
- Medical Microbiology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Avenue Hippocrate 55, B-1200 Woluwe-Saint-Lambert, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
29
|
Mengue JB, Held J, Kreidenweiss A. AQ-13 - an investigational antimalarial drug. Expert Opin Investig Drugs 2019; 28:217-222. [DOI: 10.1080/13543784.2019.1560419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Juliana Boex Mengue
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen,
Germany
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital,
Lambaréné, Gabon
| |
Collapse
|
30
|
Grogg M, Hilvert D, Ebert MO, Beck AK, Seebach D, Kurth F, Dittrich PS, Sparr C, Wittlin S, Rottmann M, Mäser P. Cell Penetration, Herbicidal Activity, and in-vivo-Toxicity of Oligo-Arginine Derivatives and of Novel Guanidinium-Rich Compounds Derived from the Biopolymer Cyanophycin. Helv Chim Acta 2018; 101:e1800112. [PMID: 30905972 PMCID: PMC6426238 DOI: 10.1002/hlca.201800112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 11/10/2022]
Abstract
Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, i.e. decreased doses. However, both salts showed low herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at doses as low as 1.4 μmol/kg (Table 2). The results show that use of CPPs for drug delivery, for instance to cancer cells and tissues, must be considered with due care. The biopolymer cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building block is the dipeptide H-βAsp-αArg-OH (H-Adp-OH). To test and compare the biological properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 μmol/kg causes no symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).
Collapse
Affiliation(s)
- Marcel Grogg
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Albert K. Beck
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Felix Kurth
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| |
Collapse
|
31
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Abstract
The last two decades have seen a surge in antimalarial drug development with product development partnerships taking a leading role. Resistance of Plasmodium falciparum to the artemisinin derivatives, piperaquine and mefloquine in Southeast Asia means new antimalarials are needed with some urgency. There are at least 13 agents in clinical development. Most of these are blood schizonticides for the treatment of uncomplicated falciparum malaria, under evaluation either singly or as part of two-drug combinations. Leading candidates progressing through the pipeline are artefenomel-ferroquine and lumefantrine-KAF156, both in Phase 2b. Treatment of severe malaria continues to rely on two parenteral drugs with ancient forebears: artesunate and quinine, with sevuparin being evaluated as an adjuvant therapy. Tafenoquine is under review by stringent regulatory authorities for approval as a single-dose treatment for Plasmodium vivax relapse prevention. This represents an advance over standard 14-day primaquine regimens; however, the risk of acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency remains. For disease prevention, several of the newer agents show potential but are unlikely to be recommended for use in the main target groups of pregnant women and young children for some years. Latest predictions are that the malaria burden will continue to be high in the coming decades. This fact, coupled with the repeated loss of antimalarials to resistance, indicates that new antimalarials will be needed for years to come. Failure of the artemisinin-based combinations in Southeast Asia has stimulated a reappraisal of current approaches to combination therapy for malaria with incorporation of three or more drugs in a single treatment under consideration.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | |
Collapse
|
33
|
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Dowd CS, Couch RD. A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD). Anal Biochem 2018; 542:63-75. [PMID: 29180070 PMCID: PMC5817008 DOI: 10.1016/j.ab.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Haley Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Clark J Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052, USA.
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
34
|
Gisselberg JE, Herrera Z, Orchard LM, Llinás M, Yeh E. Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site. Cell Chem Biol 2017; 25:185-193.e5. [PMID: 29276048 DOI: 10.1016/j.chembiol.2017.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/24/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
The bifunctional farnesyl/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key branchpoint enzyme in isoprenoid biosynthesis in Plasmodium falciparum (malaria) parasites. PfFPPS/GGPPS is a validated, high-priority antimalarial drug target. Unfortunately, current bisphosphonate drugs that inhibit FPPS and GGPPS enzymes by acting as a diphosphate substrate analog show poor bioavailability and selectivity for PfFPPS/GGPPS. We identified a new non-bisphosphonate compound, MMV019313, which is highly selective for PfFPPS/GGPPS and showed no activity against human FPPS or GGPPS. Inhibition of PfFPPS/GGPPS by MMV019313, but not bisphosphonates, was disrupted in an S228T variant, demonstrating that MMV019313 and bisphosphonates have distinct modes of inhibition. Molecular docking indicated that MMV019313 did not bind previously characterized substrate sites in PfFPPS/GGPPS. Our finding uncovers a new, selective small-molecule binding site in this important antimalarial drug target with superior druggability compared with the known inhibitor site and sets the stage for the development of Plasmodium-specific FPPS/GGPPS inhibitors.
Collapse
Affiliation(s)
- Jolyn E Gisselberg
- Department of Biochemistry, Stanford Medical School, Stanford University, Stanford, CA 94305, USA
| | - Zachary Herrera
- Department of Biochemistry, Stanford Medical School, Stanford University, Stanford, CA 94305, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Guggisberg AM, Sundararaman SA, Lanaspa M, Moraleda C, González R, Mayor A, Cisteró P, Hutchinson D, Kremsner PG, Hahn BH, Bassat Q, Odom AR. Whole-Genome Sequencing to Evaluate the Resistance Landscape Following Antimalarial Treatment Failure With Fosmidomycin-Clindamycin. J Infect Dis 2016; 214:1085-91. [PMID: 27443612 DOI: 10.1093/infdis/jiw304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/14/2016] [Indexed: 11/12/2022] Open
Abstract
Novel antimalarial therapies are needed in the face of emerging resistance to artemisinin combination therapies. A previous study found a high cure rate in Mozambican children with uncomplicated Plasmodium falciparum malaria 7 days after combination treatment with fosmidomycin-clindamycin. However, 28-day cure rates were low (45.9%), owing to parasite recrudescence. We sought to identify any genetic changes underlying parasite recrudescence. To this end, we used a selective whole-genome amplification method to amplify parasite genomes from blood spot DNA samples. Parasite genomes from pretreatment and postrecrudescence samples were subjected to whole-genome sequencing to identify nucleotide variants. Our data did not support the existence of a genetic change responsible for recrudescence following fosmidomycin-clindamycin treatment. Additionally, we found that previously described resistance alleles for these drugs do not represent biomarkers of recrudescence. Future studies should continue to optimize fosmidomycin combinations for use as antimalarial therapies.
Collapse
Affiliation(s)
| | - Sesh A Sundararaman
- Department of Medicine Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Miguel Lanaspa
- Centro de Investigação em Saúde de Manhiça, Mozambique Barcelona Institute for Global Health, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Cinta Moraleda
- Centro de Investigação em Saúde de Manhiça, Mozambique Barcelona Institute for Global Health, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça, Mozambique Barcelona Institute for Global Health, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Mozambique Barcelona Institute for Global Health, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Pau Cisteró
- Barcelona Institute for Global Health, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | | | - Peter G Kremsner
- Institut für Tropenmedizin, University of Tübingen, Germany Centre de Recherches Médicales de Lambaréné, Gabon
| | - Beatrice H Hahn
- Department of Medicine Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Mozambique
| | - Audrey R Odom
- Department of Pediatrics Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Wiesner J, Ziemann C, Hintz M, Reichenberg A, Ortmann R, Schlitzer M, Fuhst R, Timmesfeld N, Vilcinskas A, Jomaa H. FR-900098, an antimalarial development candidate that inhibits the non-mevalonate isoprenoid biosynthesis pathway, shows no evidence of acute toxicity and genotoxicity. Virulence 2016; 7:718-28. [PMID: 27260413 PMCID: PMC4991342 DOI: 10.1080/21505594.2016.1195537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
FR-900098 is an inhibitor of 1-deoxy-d-xylulose-5-phosphate (DXP) reductoisomerase, the second enzyme in the non-mevalonate isoprenoid biosynthesis pathway. In previous studies, FR-900098 was shown to possess potent antimalarial activity in vitro and in a murine malaria model. In order to provide a basis for further preclinical and clinical development, we studied the acute toxicity and genotoxicity of FR-900098. We observed no acute toxicity in rats, i.e. there were no clinical signs of toxicity and no substance-related deaths after the administration of a single dose of 3000 mg/kg body weight orally or 400 mg/kg body weight intravenously. No mutagenic potential was detected in the Salmonella typhimurium reverse mutation assay (Ames test) or an in vitro mammalian cell gene mutation test using mouse lymphoma L5178Y/TK(+/-) cells (clone 3.7.2C), both with and without metabolic activation. In addition, FR-900098 demonstrated no clastogenic or aneugenic capability or significant adverse effects on blood formation in an in vivo micronucleus test with bone marrow erythrocytes from NMRI mice. We conclude that FR-900098 lacks acute toxicity and genotoxicity, supporting its further development as an antimalarial drug.
Collapse
Affiliation(s)
- Jochen Wiesner
- a Department of Bioresources , Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Gießen , Germany
| | - Christina Ziemann
- b Fraunhofer Institute for Toxicology and Experimental Medicine ITEM , Hannover , Germany
| | - Martin Hintz
- c Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik am Standort Gießen, Universitätsklinikum Gießen und Marburg GmbH , Gießen , Germany
| | - Armin Reichenberg
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Regina Ortmann
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Martin Schlitzer
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Rainer Fuhst
- b Fraunhofer Institute for Toxicology and Experimental Medicine ITEM , Hannover , Germany
| | - Nina Timmesfeld
- e Institut für Medizinische Biometrie und Epidemiologie, Philipps-Universität Marburg , Marburg , Germany
| | - Andreas Vilcinskas
- a Department of Bioresources , Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Gießen , Germany.,f Institute for Insect Biotechnology, Justus-Liebig-University of Gießen , Gießen , Germany
| | - Hassan Jomaa
- g Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik am Standort Marburg, Universitätsklinikum Gießen und Marburg GmbH , Marburg , Germany
| |
Collapse
|