1
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
2
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
3
|
Brahimetaj R, Willekens I, Massart A, Forsyth R, Cornelis J, Mey JD, Jansen B. Improved automated early detection of breast cancer based on high resolution 3D micro-CT microcalcification images. BMC Cancer 2022; 22:162. [PMID: 35148703 PMCID: PMC8832731 DOI: 10.1186/s12885-021-09133-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The detection of suspicious microcalcifications on mammography represents one of the earliest signs of a malignant breast tumor. Assessing microcalcifications' characteristics based on their appearance on 2D breast imaging modalities is in many cases challenging for radiologists. The aims of this study were to: (a) analyse the association of shape and texture properties of breast microcalcifications (extracted by scanning breast tissue with a high resolution 3D scanner) with malignancy, (b) evaluate microcalcifications' potential to diagnose benign/malignant patients. METHODS Biopsy samples of 94 female patients with suspicious microcalcifications detected during a mammography, were scanned using a micro-CT scanner at a resolution of 9 μm. Several preprocessing techniques were applied on 3504 extracted microcalcifications. A high amount of radiomic features were extracted in an attempt to capture differences among microcalcifications occurring in benign and malignant lesions. Machine learning algorithms were used to diagnose: (a) individual microcalcifications, (b) samples. For the samples, several methodologies to combine individual microcalcification results into sample results were evaluated. RESULTS We could classify individual microcalcifications with 77.32% accuracy, 61.15% sensitivity and 89.76% specificity. At the sample level diagnosis, we achieved an accuracy of 84.04%, sensitivity of 86.27% and specificity of 81.39%. CONCLUSIONS By studying microcalcifications' characteristics at a level of details beyond what is currently possible by using conventional breast imaging modalities, our classification results demonstrated a strong association between breast microcalcifications and malignancies. Microcalcification's texture features extracted in transform domains, have higher discriminating power to classify benign/malignant individual microcalcifications and samples compared to pure shape-features.
Collapse
Affiliation(s)
- Redona Brahimetaj
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, B-1050 Belgium
| | - Inneke Willekens
- Radiology Department, Universitair Ziekenhuis (UZ) Brussels, Laarbeeklaan 101, Brussels, 1090 Belgium
| | - Annelien Massart
- Radiology Department, Universitair Ziekenhuis (UZ) Brussels, Laarbeeklaan 101, Brussels, 1090 Belgium
| | - Ramses Forsyth
- Pathology Department, Universitair Ziekenhuis (UZ) Brussels, Laarbeeklaan 101, Brussels, 1090 Belgium
| | - Jan Cornelis
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, B-1050 Belgium
| | - Johan De Mey
- Radiology Department, Universitair Ziekenhuis (UZ) Brussels, Laarbeeklaan 101, Brussels, 1090 Belgium
| | - Bart Jansen
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, B-1050 Belgium
- IMEC, Kapeldreef 75, Leuven, B-3001 Belgium
| |
Collapse
|
4
|
Muscarella AM, Aguirre S, Hao X, Waldvogel SM, Zhang XHF. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131:143764. [PMID: 33720051 PMCID: PMC7954594 DOI: 10.1172/jci143764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.
Collapse
Affiliation(s)
- Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah M. Waldvogel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Tarantino U, Greggi C, Cariati I, Visconti VV, Gasparini M, Cateni M, Gasbarra E, Botta A, Salustri A, Scimeca M. The Role of PTX3 in Mineralization Processes and Aging-Related Bone Diseases. Front Immunol 2021; 11:622772. [PMID: 33584725 PMCID: PMC7878364 DOI: 10.3389/fimmu.2020.622772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The Long Pentraxin 3 (PTX3) is a multifunctional glycoprotein released by peripheral blood leukocytes and myeloid dendritic cells in response to primary pro-inflammatory stimuli, that acts as a non-redundant component of the humoral arm of innate immunity. In addition to the primary role in the acute inflammatory response, PTX3 seems to be involved in other physiological and pathological processes. Indeed, PTX3 seems to play a pivotal role in the deposition and remodeling of bone matrix during the mineralization process, promoting osteoblasts differentiation and activity. Recently, PTX3 was seen to be involved in the ectopic calcifications' formation in breast cancer disease. In this regard, it has been observed that breast cancer tumors characterized by high expression of PTX3 and high amount of Breast Osteoblast Like Cells (BOLCs) showed several Hydroxyapatite (HA) microcalcifications, suggesting a likely role for PTX3 in differentiation and osteoblastic activity in both bone and extra-bone sites. Furthermore, given its involvement in bone metabolism, several studies agree with the definition of PTX3 as a molecule significantly involved in the pathogenesis of age-related bone diseases, such as osteoporosis, both in mice and humans. Recent results suggest that genetic and epigenetic mechanisms acting on PTX3 gene are also involved in the progression of these diseases. Based on these evidences, the aim of our systemic review was to offer an overview of the variety of biological processes in which PTX3 is involved, focusing on bone mineralization, both in a physiological and pathological context.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Chiara Greggi
- Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,PhD students' Program in Medical-Surgical and Biotechnologies and Translational Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Ida Cariati
- Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,PhD students' Program in Medical-Surgical and Biotechnologies and Translational Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Virginia Veronica Visconti
- Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,PhD students' Program in Medical-Surgical and Biotechnologies and Translational Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Monica Gasparini
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Marco Cateni
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Elena Gasbarra
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Orthopedics and Traumatology, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Antonietta Salustri
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
The impact of oral contraceptive use on breast cancer risk: State of the art and future perspectives in the era of 4P medicine. Semin Cancer Biol 2021; 72:11-18. [PMID: 33454355 DOI: 10.1016/j.semcancer.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most commonly occurring cancer in women, the second most frequent cancer overall, and it causes the greatest number of cancer-related deaths among women. The significant increased concern of breast cancer worldwide may be attributed to the prolonged life expectancy and the adoption of the western lifestyle with its related risks factors. A woman's risk for breast cancer is linked to her reproductive history and with her lifetime hormonal exposure. Among the known risk factors for breast cancer, several studies investigated the possible role of the assumption of hormonal "pills" in both breast cancer incidence and development. Nevertheless, data about the association between the assumption of oral contraceptives and breast cancer incidence are still controversial and not conclusive. Given the public health importance of breast cancer and the popularity of hormonal "pills" as contraceptive, the impact of oral contraceptive use on breast cancer risk assumes relevance from both a clinical and a social point of view. Therefore, in this review we wanted to illustrate this issue by addressing the following major themes: a) the role of sex steroid hormones in female breast development and carcinogenesis; b) the clinical impact of hormonal oral contraception according to the state of the art literature; c) the actual scientific debate and future perspectives.
Collapse
|
7
|
Molecular Aspects and Prognostic Significance of Microcalcifications in Human Pathology: A Narrative Review. Int J Mol Sci 2020; 22:ijms22010120. [PMID: 33374380 PMCID: PMC7795544 DOI: 10.3390/ijms22010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients’ management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.
Collapse
|
8
|
Molecular Breast Cancer Imaging in the Era of Precision Medicine. AJR Am J Roentgenol 2020; 215:1512-1519. [DOI: 10.2214/ajr.20.22883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Calabrò ML, Lazzari N, Rigotto G, Tonello M, Sommariva A. Role of Epithelial-Mesenchymal Plasticity in Pseudomyxoma Peritonei: Implications for Locoregional Treatments. Int J Mol Sci 2020; 21:ijms21239120. [PMID: 33266161 PMCID: PMC7731245 DOI: 10.3390/ijms21239120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial-mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal-epithelial transition, MET), now collectively called epithelial-mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial-mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
- Correspondence:
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Marco Tonello
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Antonio Sommariva
- Advanced Surgical Oncology, Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| |
Collapse
|
10
|
BMP-2 Variants in Breast Epithelial to Mesenchymal Transition and Microcalcifications Origin. Cells 2020; 9:cells9061381. [PMID: 32498363 PMCID: PMC7348762 DOI: 10.3390/cells9061381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.
Collapse
|
11
|
Breast-Specific Gamma Imaging with [ 99mTc]Tc-Sestamibi: An In Vivo Analysis for Early Identification of Breast Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2020; 9:jcm9030747. [PMID: 32164267 PMCID: PMC7141303 DOI: 10.3390/jcm9030747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this pilot investigation was to evaluate the possible relationship among [99mTc]Tc-Sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of molecules involved in bone metabolism, such as estrogen receptor, bone morphogenetic proteins-2, and PTX3. To this end, forty consecutive breast cancer patients who underwent both breast-specific gamma imaging with [99mTc]Tc-Sestamibi and breast bioptic procedure were retrospectively enrolled. From each diagnostic paraffin block collected in the study, histological diagnosis, immunohistochemical investigations, and energy dispersive X-ray microanalysis were performed. Our data highlight the possible use of breast-specific gamma imaging with [99mTc]Tc-Sestamibi for the early detection of breast cancer lesions expressing bone biomarkers in the presence of breast osteoblast-like cells. Specifically, we show a linear association among sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of estrogen receptor, bone morphogenetics proteins-2, and PTX3. Notably, we also observed an increase of [99mTc]Tc-Sestamibi in breast cancer lesions with magnesium-substituted hydroxyapatite. In conclusion, in this pilot study we evaluated data from the nuclear medicine unit and anatomic pathology department on breast cancer osteotropism, identifying a new possible interpretation of Breast Specific Gamma Imaging with [99mTc]Tc-Sestamibi analysis.
Collapse
|
12
|
Scimeca M, Trivigno D, Bonfiglio R, Ciuffa S, Urbano N, Schillaci O, Bonanno E. Breast cancer metastasis to bone: From epithelial to mesenchymal transition to breast osteoblast-like cells. Semin Cancer Biol 2020; 72:155-164. [PMID: 32045651 DOI: 10.1016/j.semcancer.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
In this review we highlighted the newest aspects concerning the physiopathology of breast cancer metastatization into the bone including: a) in situ biomarkers of breast cancer metastatic diseases, b) biological processes related to the origin of metastatic cells (epithelial to mesenchymal transition), c) the nature and the possible role of Breast Osteoblast-Like Cells in the formation of bone lesions and d) the prognostic value of breast microcalcifications for the bone metastatic disease. In addition, the more recent data about the biology of breast cancer metastatic process and the origin and function of Breast Osteoblast-Like Cells have been analyzed to propose the use of molecular imaging investigations able to identify early neoplastic lesions with high propensity to form bone metastasis in vivo.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
13
|
Urbano N, Scimeca M, Tancredi V, Bonanno E, Schillaci O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives. Semin Cancer Biol 2020; 84:302-309. [PMID: 31982511 DOI: 10.1016/j.semcancer.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Here we proposed the most recent innovations in the use of Breast Specific Gamma Imaging with 99mTc-sestamibi for the management of breast cancer patients. To this end, we reported the recent discoveries concerning: a) the implementation of both instrumental devices and software, b) the biological mechanisms involved in the 99mTc-sestamibi uptake in breast cancer cells, c) the evaluation of Breast Specific Gamma Imaging with 99mTc-sestamibi as predictive markers of metastatic diseases. In this last case, we also reported preliminary data about the capability of Breast Specific Gamma Imaging with 99mTc-sestamibi to identify breast cancer lesions with high propensity to form bone metastatic lesions due to the presence of Breast Osteoblast-Like Cells.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford, 81, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano (Mi), Italy; UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy; Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Diagnostica Medica' & 'Villa dei Platani', Neuromed Group, Avellino, 83100, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; IRCCS Neuromed, Pozzilli (Is), 86077, Italy.
| |
Collapse
|
14
|
Scimeca M, Anemona L, Granaglia A, Bonfiglio R, Urbano N, Toschi N, Santeusanio G, Schiaroli S, Mauriello S, Tancredi V, Schillaci O, Bonanno E, Mauriello A. Plaque calcification is driven by different mechanisms of mineralization associated with specific cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2019; 29:1330-1336. [PMID: 31653516 DOI: 10.1016/j.numecd.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate possible associations among markers of mineralization, plaque instability and the main risk factors of atherosclerosis. METHODS AND RESULTS A Tissue MicroArray containing 52 samples of calcified carotid plaques from 52 symptomatic and asymptomatic patients were built. TMA serial sections were used to study the expression of inflammatory and mineralization markers (BMP-2, BMP-4, VDR, RANKL, Osteopontin, Sclerostin, β-catenin and calmodulin) by immunohistochemistry. Our data clearly demonstrated the expression of mineralization markers in atheromatic plaques. Indeed, with the exception of RANKL, all investigated markers were expressed in at least 60% of cases. Specifically, multivariate analysis displayed significant associations between both the expression of BMP-2 and the presence of unstable plaques as well as between the expression of β-catenin and the presence of stable plaques. We also found a significant inverse association between both a) the presence of hypertension and VDR and b) smoking habits and calmodulin expression. Finally, we noted a higher density of RANKL positive cells in plaques from diabetic patients as compared to non-diabetic ones and a significant positive association between hypertriglyceridemia and BMP-4 expression. CONCLUSION Our results support the hypothesis that the process of atherosclerotic plaque calcification presents a number of similarities with the physiological processes that occur in bone, involving both osteoblasts- and osteoclasts-like arterial cells. Finally, the present study suggests that risk factors, such as hypertension, cigarette smoke and diabetes, can cause the destabilization of the atheromatic plaque acting on calcification process as well as inflammation.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Italy; Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy.
| | - Lucia Anemona
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Annarita Granaglia
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | | | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| | - Giuseppe Santeusanio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Stefania Schiaroli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Silvestro Mauriello
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Virginia Tancredi
- San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy; Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy.
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Elena Bonanno
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; IRCCS Neuromed Lab. "Diagnostica Medica"; and "Villa dei Platani", Avellino, Italy.
| | - Alessandro Mauriello
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; TorVergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
15
|
Gosling S, Scott R, Greenwood C, Bouzy P, Nallala J, Lyburn ID, Stone N, Rogers K. Calcification Microstructure Reflects Breast Tissue Microenvironment. J Mammary Gland Biol Neoplasia 2019; 24:333-342. [PMID: 31807966 PMCID: PMC6908550 DOI: 10.1007/s10911-019-09441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/27/2019] [Indexed: 10/27/2022] Open
Abstract
Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign - B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.
Collapse
Affiliation(s)
- Sarah Gosling
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - Robert Scott
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Iain D Lyburn
- Thirlestaine Breast Centre, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, Gloucestershire, UK
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| |
Collapse
|
16
|
Scimeca M, Bonfiglio R, Menichini E, Albonici L, Urbano N, De Caro MT, Mauriello A, Schillaci O, Gambacurta A, Bonanno E. Microcalcifications Drive Breast Cancer Occurrence and Development by Macrophage-Mediated Epithelial to Mesenchymal Transition. Int J Mol Sci 2019; 20:E5633. [PMID: 31718020 PMCID: PMC6888678 DOI: 10.3390/ijms20225633] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aims to investigate: (a) the putative association between the presence of microcalcifications and the expression of both epithelial-to-mesenchymal transition and bone biomarkers, (b) the role of microcalcifications in the breast osteoblast-like cells (BOLCs) formation, and (c) the association between microcalcification composition and breast cancer progression. METHODS We collected 174 biopsies on which we performed immunohistochemical and ultrastructural analysis. In vitro experiments were performed to demonstrate the relationship among microcalcification, BOLCs development, and breast cancer occurrence. Ex vivo investigations demonstrated the significant increase of breast osteoblast-like cells in breast lesions with microcalcifications with respect to those without microcalcifications. RESULTS In vitro data displayed that in the presence of calcium oxalate and activated monocytes, breast cancer cells undergo epithelial to mesenchymal transition. Also, in this condition, cells acquired an osteoblast phenotype, thus producing hydroxyapatite. To further confirm in vitro data, we studied 15 benign lesions with microcalcification from patients that developed a malignant condition in the same breast quadrant. Immunohistochemical analysis showed macrophages' polarization in benign lesions with calcium oxalate. CONCLUSIONS Altogether, our data shed new light about the role of microcalcifications in breast cancer occurrence and progression.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milan, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Erika Menichini
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Maria Teresa De Caro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
- “Diagnostica Medica” and “Villa dei Platani”, 83100 Avellino, Italy
| |
Collapse
|
17
|
Bonfiglio R, Milano F, Cranga A, De Caro MT, Kaur Lamsira H, Trivigno D, Urso S, Scimeca M, Bonanno E. Negative prognostic value of intra-ductal fat infiltrate in breast cancer. Pathol Res Pract 2019; 215:152634. [PMID: 31585815 DOI: 10.1016/j.prp.2019.152634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent studies showed a correlation between Body Mass Index and both breast cancer occurrence and progression. Nevertheless, no study reported an accurate evaluation of intra-ductal fat infiltrate. Therefore, the main aim of this study was to evaluate the putative association between intra-ductal fat infiltrate (IDFi) and breast cancer subtypes by using digital pathology. METHODS We retrospectively collected 220 breast biopsies. Paraffin serial sections were used for haematoxylin and eosin staining and immunohistochemical evaluation of the following markers: estrogen receptor (ER), progesterone receptor (PR), Ki67 and c-erb2. Three haematoxylin and eosin sections for each paraffin block were digitalized. Digital slides were used to evaluate the areas of IDFi. Five randomized areas were evaluated for each slide. By using GraphPad software IDFi areas was correlated with a) breast cancer histotype, b) presence of microcalcifications and c) biomarkers expression. RESULTS Breast biopsies were classified as follow: 20 normal breast, 50 benign lesions, and 150 malignant lesions (85 ductal in situ carcinomas; 65 ductal infiltrating carcinomas). Statistical analysis showed a significant increase of IDFi in malignant lesions as compared to both normal breast and benign lesions. We noted higher IDFi in breast ductal carcinomas as compared to lobular lesions. Significant differences were observed between breast lesions with microcalcifications respect to lesions without calcifications. Noteworthy, we also found a positive association between IDFi and the expression of both ER and Ki67. CONCLUSION Results of our study highlighted the possible role of fat in breast cancer progression suggesting a negative prognostic value of IDFi.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Filippo Milano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Ana Cranga
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Teresa De Caro
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | | | - Donata Trivigno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefania Urso
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy (Neuromed group), Italy
| |
Collapse
|
18
|
Scimeca M, Urbano N, Bonfiglio R, Duggento A, Toschi N, Schillaci O, Bonanno E. Novel insights into breast cancer progression and metastasis: A multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer 2019; 1872:138-148. [PMID: 31348975 DOI: 10.1016/j.bbcan.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
According to the most recent epidemiological studies, breast cancer shows the highest incidence and the second leading cause of death in women. Cancer progression and metastasis are the main events related to poor survival of breast cancer patients. This can be explained by the presence of highly resistant to chemo- and radiotherapy stem cells in many breast tumor tissues. In this context, numerous studies highlighted the possible involvement of epithelial to mesenchymal transition phenomenon as biological program to generate cancer stem cells, and thus participate to both metastatic and drug resistance process. Therefore, the comprehension of mechanisms (both cellular and molecular) involved in breast cancer occurrence and progression can lay the foundation for the development of new diagnostic and therapeutical protocols. In this review, we reported the most important findings in the field of breast cancer highlighting the most recent data concerning breast tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy.
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Neuromed Group, "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
19
|
Schillaci O, Scimeca M, Toschi N, Bonfiglio R, Urbano N, Bonanno E. Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9429761. [PMID: 31354394 PMCID: PMC6636452 DOI: 10.1155/2019/9429761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the "tortuous" but decisive path towards personalized medicine.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
| | | | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed Lab, “Diagnostica Medica”, “Villa dei Platani”, Avellino, Italy
| |
Collapse
|
20
|
Schillaci O, Scimeca M, Trivigno D, Chiaravalloti A, Facchetti S, Anemona L, Bonfiglio R, Santeusanio G, Tancredi V, Bonanno E, Urbano N, Mauriello A. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl Med Biol 2019; 68-69:66-79. [PMID: 30770226 DOI: 10.1016/j.nucmedbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Simone Facchetti
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Giuseppe Santeusanio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Virginia Tancredi
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| |
Collapse
|
21
|
Urbano N, Scimeca M, Bonanno E, Schillaci O. 99mTc sestamibi SPECT: a possible tool for early detection of breast cancer lesions with high bone metastatic potential. Future Oncol 2019; 15:455-457. [PMID: 30618271 DOI: 10.2217/fon-2018-0735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", viale Oxford, 81, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.,IRCCS San Raffaele, Rome, Italy
| | - Elena Bonanno
- IRCCS San Raffaele, Rome, Italy.,Department of Experimental Medicine & Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133 Rome, Italy.,IRCCS Neuromed Lab. "Diagnostica Medica" & "Villa dei Platani", Avellino, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
22
|
Prostate Osteoblast-Like Cells: A Reliable Prognostic Marker of Bone Metastasis in Prostate Cancer Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:9840962. [PMID: 30627063 PMCID: PMC6305022 DOI: 10.1155/2018/9840962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to investigate the putative association among the presence of prostate cancer cells, defined as prostate osteoblast-like cells (POLCs), and showing the expression of typical morphological and molecular characteristics of osteoblasts, the development of bone metastasis within 5 years of diagnosis, and the uptake of 18F-choline evaluated by PET/CT analysis. To this end, prostate biopsies (n = 110) were collected comprising 44 benign lesions and 66 malignant lesions. Malignant lesions were further subdivided into two groups: biopsies from patients that had clinical evidence of bone metastasis (BM+, n = 23) and biopsies from patients that did not have clinical evidence of bone metastasis within 5 years (BM-, n = 43). Paraffin serial sections were obtained from each specimen to perform histological classifications and immunohistochemical (IHC) analysis. Small fragments of tissue were used to perform ultrastructural and microanalytical investigations. IHC demonstrated the expression of markers of epithelial-to-mesenchymal transition (VIM), bone mineralization, and osteoblastic differentiation (BMP-2, PTX-3, RUNX2, RANKL, and VDR) in prostate lesions characterized by the presence of calcium-phosphate microcalcifications and high metastatic potential. Ultrastructural studies revealed the presence of prostate cancer cells with osteoblast phenotype close to microcalcifications. Noteworthy, PET/CT analysis showed higher uptake of 18F-choline in BM+ lesions with high positivity (≥300/500 cells) for RUNX2 and/or RANKL immunostaining. Although these data require further investigations about the molecular mechanisms of POLCs generation and role in bone metastasis, our study can open new and interesting prospective in the management of prostate cancer patients. The presence of POLCs along with prostate microcalcifications may become negative prognostic markers of the occurrence of bone metastases.
Collapse
|
23
|
Bonfiglio R, Scimeca M, Urbano N, Bonanno E, Schillaci O. Breast microcalcifications: biological and diagnostic perspectives. Future Oncol 2018; 14:3097-3099. [PMID: 30411977 DOI: 10.2217/fon-2018-0624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS San Raffaele, Via di Val Cannuta 247, Rome 00166, Italy
| | - Nicoletta Urbano
- Department of Imaging Diagnostics, Molecular Imaging, Interventional Radiology and Radiotherapy, Unit of Nuclear Medicine, Policlinico 'Tor Vergata', Rome, 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,'Diagnostica Medica' & 'Villa dei Platani', Neuromed Group, Avellino, 83100, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| |
Collapse
|
24
|
Scimeca M, Bonanno E. New highlight in breast cancer development: the key role of hepcidin and iron metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S56. [PMID: 30613631 DOI: 10.21037/atm.2018.10.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS San Raffaele, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy.,"Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
25
|
Scimeca M, Urbano N, Bonfiglio R, Schillaci O, Bonanno E. Breast osteoblast-like cells: a new biomarker for the management of breast cancer. Br J Cancer 2018; 119:1129-1132. [PMID: 30327566 PMCID: PMC6219492 DOI: 10.1038/s41416-018-0255-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background In this study, we investigated the relationship between the expression of the main in situ markers of breast cancer and the presence of breast osteoblast-like cells (BOLCs). Methods We collected 100 breast biopsies. Serial paraffin sections were obtained from each biopsy to perform histological classifications and immunohistochemical analyses (RUNX2, RANKL, vimentin, TGFβ, Ki67, CD44, ER, PR and HER2). Results Linear regression analysis showed a positive and significant correlation between the number of BOLCs and the expression of EMT-related markers (vimentin and TGFβ), Ki67 and ER. Conversely, we observed an inverse correlation between the number of CD44-positive breast cancer cells and the BOLCs. No significant differences were observed between the number of BOLCs and the HER2 scores. Conclusions Morphological and molecular characterisation of BOLCs can lay the foundations towards understanding the biological basis of the formation of breast microcalcifications, and breast cancer metastasis to bone. The data here reported may be useful for the identification of breast lesions with high potential to develop bone metastasis.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.,University of San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy.,OrchideaLab S.r.l, Via del Grecale 6, Morlupo, Rome, Italy
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy. .,"Diagnostica Medica" and "Villa dei Platani", Avellino, Italy.
| |
Collapse
|
26
|
Bonfiglio R, Scimeca M, Toschi N, Pistolese CA, Giannini E, Antonacci C, Ciuffa S, Tancredi V, Tarantino U, Albonici L, Bonanno E. Radiological, Histological and Chemical Analysis of Breast Microcalcifications: Diagnostic Value and Biological Significance. J Mammary Gland Biol Neoplasia 2018; 23:89-99. [PMID: 29744755 DOI: 10.1007/s10911-018-9396-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Classification of mammary microcalcifications is based on radiological and histological characteristics that are routinely evaluated during the diagnostic path for the identification of breast cancer, or in patients at risk of developing breast cancer. The main aim of this study was to explore the relationship between the imaging parameters most commonly used for the study of mammary microcalcifications and the corresponding histological and chemical properties. To this end, we matched the radiographic characteristics of microcalcifications to breast lesion type, histology of microcalcifications and elemental composition of microcalcifications as obtained by energy dispersive x ray (EDX)-microanalysis. In addition, we investigated the properties of breast cancer microenvironment, under the hypothesis that microcalcification formation could result from a mineralization process similar to that occurring during bone osteogenesis. In this context, breast lesions with and without microcalcifications were compared in terms of the expression of the main molecules detected during bone mineralization (BMP-2, BMP-4, PTX3, RANKL OPN and RUNX2). Our data indicate that microcalcifications classified by mammography as "casting type" are prevalently made of hydroxyapatite magnesium substituted and are associated with breast cancer types with the poorest prognosis. Moreover, breast cancer cells close to microcalcifications expressed higher levels of bone mineralization markers as compared to cells found in breast lesions without microcalcifications. Notably, breast lesions with microcalcifications were characterized by the presence of breast-osteoblast-like cells. In depth studies of microcalcifications characteristics could support a new interpretation about the genesis of ectopic calcification in mammary tissue. Candidating this phenomenon as an integral part of the tumorigenic process therefore has the potential to improve the clinical management of patients early during their diagnostic path.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Manuel Scimeca
- OrchideaLab S.r.l., via del Grecale 6, Morlupo, Rome, RM, Italy
- IRCCS San Raffaele Pisana, 00166, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Adriana Pistolese
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Elena Giannini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Antonacci
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Sara Ciuffa
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Virginia Tancredi
- IRCCS San Raffaele Pisana, 00166, Rome, Italy
- Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics and Traumatology, "Tor Vergata" University of Rome, "Policlinico Tor Vergata" Foundation, Rome, Italy
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
- IRCCS Neuromed Lab. 'Diagnostica Medica' & 'Villa dei Platani', 83100, Avellino, Italy.
| |
Collapse
|
27
|
Scimeca M, Urbano N, Bonfiglio R, Schillaci O, Bonanno E. Management of oncological patients in the digital era: anatomic pathology and nuclear medicine teamwork. Future Oncol 2018; 14:1013-1015. [PMID: 29623724 DOI: 10.2217/fon-2017-0698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS San Raffaele, Via di Val Cannuta 247, Rome 00166, Italy.,OrchideaLab S.r.l., Via del Grecale 6, Morlupo, Rome (RM) 000674, Italy
| | | | - Rita Bonfiglio
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS Neuromed, Pozzilli 860777, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCSS Neuromed Lab. 'Diagnostica Medica' & 'Villa dei Platani', Avellino 83100, Italy
| |
Collapse
|
28
|
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem 2018; 62:2841. [PMID: 29569878 PMCID: PMC5907194 DOI: 10.4081/ejh.2018.2841] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.
Collapse
Affiliation(s)
- Manuel Scimeca
- University of Rome "Tor Vergata", Department of Biomedicine and Prevention.
| | | | | | | | | |
Collapse
|
29
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|