1
|
Xiao MT, Ellsworth CR, Qin X. Emerging role of complement in COVID-19 and other respiratory virus diseases. Cell Mol Life Sci 2024; 81:94. [PMID: 38368584 PMCID: PMC10874912 DOI: 10.1007/s00018-024-05157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.
Collapse
Affiliation(s)
- Mark T Xiao
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Xiao K, Chen Z, He S, Long Q. Up-regulation of scleral C5b-9 and its regulation of the NLRP3 inflammasome in a form-deprivation myopia mouse model. Immunobiology 2024; 229:152776. [PMID: 38118343 DOI: 10.1016/j.imbio.2023.152776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Myopia has become a major public health problem worldwide. Although the involvement of the complement system in myopia progression has been reported, the underlying mechanism has not been well established. In this study, we induced a form deprivation (FD) myopia mouse model to investigate the mechanisms. METHODS Both C6-knockout (KO) and wild-type (WT) mice were divided into FD and normal control (NC) groups. The FD myopia was induced in the right eyes of 24-day-old mice using a translucent balloon for 4 weeks. The left eye remained untreated and served as self-control. NC group received no treatment. Refractive error and axial length were measured at baseline, 2 weeks, and 4 weeks later under normal visual, 4 weeks after FD. Scleral transcriptome sequencing analysis was performed in in FD mice. The scleral levels of C5b-9, NLRP3, Caspase-1, IL-1β, MMP-2, and collagen I were evaluated using immunohistochemistry. RESULTS RNA-seq analysis showed 1058 differentially expressed genes. The GO analysis showed these genes were mainly related to the extracellular matrix, and immune response. The KEGG enrichment analysis showed that complement cascades were upregulated. Under normal visual conditions, both genotypes of mice exhibited comparable refractive error and axial length. However, after four weeks of FD, C6-KO mice showed a significantly less myopic shift (-2.28 ± 0.28 D versus -5.40 ± 1.33 D, P = 0.003), and axial shift (0.043 ± 0.032 mm versus 0.083 ± 0.026 mm, P = 0.042) in comparison to WT mice. Furthermore, the levels of C5b-9, NLRP3, caspase-1, IL-1β, and MMP-2 were found to be elevated in the deprived eyes of WT mice in comparison to their fellow eyes, whereas the extent of this increase was significantly lower in C6-KO mice. CONCLUSIONS Complement cascades are activated in FD myopia model. Upregulation of C5b-9 might participate in scleral remodeling during myopia progression via regulation of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengyu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Bispecific antibodies revolutionizing breast cancer treatment: a comprehensive overview. Front Immunol 2023; 14:1266450. [PMID: 38111570 PMCID: PMC10725925 DOI: 10.3389/fimmu.2023.1266450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-Ya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
4
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
5
|
Tade RS, Kalkal A, Patil PO. Functionalized Graphene Quantum Dots (GQDs) based Label-Free Optical Fluorescence Sensor for CD59 Antigen Detection and Cellular Bioimaging. J Fluoresc 2023:10.1007/s10895-023-03501-y. [PMID: 37976023 DOI: 10.1007/s10895-023-03501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors. Herein, we present a one-step synthesis of Polyethyleneimine (PEI) functionalized graphene quantum dots (Lf-GQDs) from weathered lemon leaf extract. The fabricated Lf-GQDs were successfully used for the quantitative detection of the cluster of CD59 antigen that is reported for its expression in different types of cancer. In this work, we utilized orientation-based attachment of CD59 antibody (Anti-CD59). Our findings reveal that, instead of using random serial addition of antigen or antibody, oriented conjugation saves accumulated concentration offering greater sensitivity and selectivity. The Anti-CD59@Lf-GQDs immunosensor was fabricated using the oriented conjugation of antibodies onto the Lf-GQDs surface. Besides, the fabricated immunosensor demonstrated detection of CD59 in the range of 0.01 to 40.0 ng mL-1 with a low detection limit of 5.3 pg mL-1. Besides, the cellular uptake potential of the synthesized Lf-GQDs was also performed in A549 cells using a bioimaging study. The present approach represents the optimal utilization of Anti-CD59 and CD59 antigen. This approach could afford a pathway for constructing oriented conjugation of antibodies on the nanomaterials-based immunosensor for different biomarkers detection.
Collapse
Affiliation(s)
- Rahul Shankar Tade
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur - 425405, (MS), India
| | - Ashish Kalkal
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Pravin Onkar Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur - 425405, (MS), India.
| |
Collapse
|
6
|
Lee W, Lee SM, Jung ST. Unlocking the Power of Complement-Dependent Cytotoxicity: Engineering Strategies for the Development of Potent Therapeutic Antibodies for Cancer Treatments. BioDrugs 2023; 37:637-648. [PMID: 37486566 DOI: 10.1007/s40259-023-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The complement system is a crucial part of the innate immune response, providing defense against invading pathogens and cancer cells. Recently, it has become evident that the complement system plays a significant role in anticancer activities, particularly through complement-dependent cytotoxicity (CDC), alongside antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP). With the discovery of new roles for serum complement molecules in the human immune system, various approaches are being pursued to develop CDC-enhanced antibody therapeutics. In this review, we focus on successful antibody engineering strategies for enhancing CDC, analyzing the lessons learned and the limitations of each approach. Furthermore, we outline potential pathways for the development of antibody therapeutics specifically aimed at enhancing CDC for superior therapeutic efficacy in the future.
Collapse
Affiliation(s)
- Wonju Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Center, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Balcer E, Sobiech M, Luliński P. Molecularly Imprinted Carriers for Diagnostics and Therapy-A Critical Appraisal. Pharmaceutics 2023; 15:1647. [PMID: 37376096 DOI: 10.3390/pharmaceutics15061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Simultaneous diagnostics and targeted therapy provide a theranostic approach, an instrument of personalized medicine-one of the most-promising trends in current medicine. Except for the appropriate drug used during the treatment, a strong focus is put on the development of effective drug carriers. Among the various materials applied in the production of drug carriers, molecularly imprinted polymers (MIPs) are one of the candidates with great potential for use in theranostics. MIP properties such as chemical and thermal stability, together with capability to integrate with other materials are important in the case of diagnostics and therapy. Moreover, the MIP specificity, which is important for targeted drug delivery and bioimaging of particular cells, is a result of the preparation process, conducted in the presence of the template molecule, which often is the same as the target compound. This review focused on the application of MIPs in theranostics. As a an introduction, the current trends in theranostics are described prior to the characterization of the concept of molecular imprinting technology. Next, a detailed discussion of the construction strategies of MIPs for diagnostics and therapy according to targeting and theranostic approaches is provided. Finally, frontiers and future prospects are presented, stating the direction for further development of this class of materials.
Collapse
Affiliation(s)
- Emilia Balcer
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Sarmoko, Ramadhanti M, Zulkepli NA. CD59: Biological function and its potential for drug target action. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
10
|
Sandomenico A, Ruggiero A, Iaccarino E, Oliver A, Squeglia F, Moreira M, Esposito L, Ruvo M, Berisio R. Unveiling CD59-Antibody Interactions to Design Paratope-Mimicking Peptides for Complement Modulation. Int J Mol Sci 2023; 24:ijms24108561. [PMID: 37239905 DOI: 10.3390/ijms24108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Angela Oliver
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| |
Collapse
|
11
|
Tang J, Zhao Z, Zhou J, Jiao L, Zhou W, Ying B, Yang Y. Multiple CD59 Polymorphisms in Chinese Patients with Mycobacterium tuberculosis Infection. J Immunol Res 2023; 2023:1216048. [PMID: 37050931 PMCID: PMC10083888 DOI: 10.1155/2023/1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023] Open
Abstract
Background and Objective. Tuberculosis (TB) is a major threat to human health, especially in developing countries. Its susceptibility and progression depend on interactions between mycobacterium tuberculosis, host immune system, and genetic and environmental factors. Up to now, many studies have presented the association between TB susceptibility and host genetic polymorphisms, but never regarding CD59 gene, which is an essential complement regulator. This study investigated the relationship between multiple CD59 single nucleotide polymorphisms (SNPs) and susceptibility to TB among Chinese patients. Methods. A case–control study was conducted to investigate the SNPs at CD59 rs1047581, rs7046, rs2231460, rs184251026, rs41275164, rs831633, rs704700, rs41275166, and rs10768024 by sequence-specific primer-polymerase chain reaction (SSP-PCR) in 900 tuberculosis patients and 1,534 controls. Results. The minor allele frequencies at rs2231460, rs184251026, rs41275164, and rs41275166 were extremely low both in the Cases (0.00%–0.61%) and in the Controls (0.07%–0.43%), comparatively at rs1047581, rs7046, rs831633, rs704700, and rs10768024 were notably higher both in the Cases (8.23%–48.39%) and in the Controls (8.57%–47.16%). Among the nine SNPs, only homozygous CC genotype at rs10768024 showed a significant protective effect against TB than homozygous TT genotype (OR(95% CI) = 0.59(0.38, 0.91), χ2 = 5.779,
), and homozygous TT and heterozygous CT genotypes showed a significant risk of TB infection in the recessive model (OR(95% CI) = 1.68(1.10, 2.56), χ2 = 5.769,
). Further analysis verified that rs10768024 CC genotype independently related to TB susceptibility (OR(95% CI) = 0.60(0.39, 0.91), Wald χ2 = 5.664,
) in multivariate logistic regression analysis, and its genetic mutation was independent of the other SNPs (r2 = 0.00–0.20) in haplotype analysis. Conclusions. The first investigation of the CD59 gene and susceptibility to TB suggests a significant risk with homozygous TT and heterozygous CT genotypes at rs10768024 loci. The homozygous CC mutation at rs10768024 loci showed a significant protection against TB susceptibility.
Collapse
Affiliation(s)
- Jie Tang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Yang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
12
|
Yin G, Tian T, Ji X, Zheng S, Zhu Z, Li Y, Zhang C. Integrated analysis to identify the prognostic and immunotherapeutic roles of coagulation-associated gene signature in clear cell renal cell carcinoma. Front Immunol 2023; 14:1107419. [PMID: 37006234 PMCID: PMC10063824 DOI: 10.3389/fimmu.2023.1107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The coagulation system is closely related to the physiological status and immune response of the body. Recent years, studies focusing on the association between coagulation system abnormalities and tumor progression have been widely reported. In clear cell renal cell carcinoma (ccRCC), poor prognosis often occurs in patients with venous tumor thrombosis and coagulation system abnormalities, and there is a lack of research in related fields. Significant differences in coagulation function were also demonstrated in our clinical sample of patients with high ccRCC stage or grade. Therefore, in this study, we analyzed the biological functions of coagulation-related genes (CRGs) in ccRCC patients using single-cell sequencing and TCGA data to establish the 5-CRGs based diagnostic signature and predictive signature for ccRCC. Univariate and multivariate Cox analyses suggested that prognostic signature could be an independent risk factor. Meanwhile, we applied CRGs for consistent clustering of ccRCC patients, and the two classes showed significant survival and genotype differences. The differences in individualized treatment between the two different subtypes were revealed by pathway enrichment analysis and immune cell infiltration analysis. In summary, we present the first systematic analysis of the significance of CRGs in the diagnosis, prognosis, and individualized treatment of ccRCC patients.
Collapse
Affiliation(s)
- Guicao Yin
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tai Tian
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xing Ji
- Department of Urology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengqi Zheng
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhenpeng Zhu
- Department of Urology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhenpeng Zhu, ; Yifan Li, ; Cuijian Zhang,
| | - Yifan Li
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Zhenpeng Zhu, ; Yifan Li, ; Cuijian Zhang,
| | - Cuijian Zhang
- Department of Urology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhenpeng Zhu, ; Yifan Li, ; Cuijian Zhang,
| |
Collapse
|
13
|
Zhang G, Xu X, Zhu L, Li S, Chen R, Lv N, Li Z, Wang J, Li Q, Zhou W, Yang P, Liu J. A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories. Stem Cells Int 2023; 2023:2826815. [PMID: 37964983 PMCID: PMC10643041 DOI: 10.1155/2023/2826815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2023] Open
Abstract
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Collapse
Affiliation(s)
- Guanghao Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luojiang Zhu
- Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China
| | - Sisi Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wang Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Liu X, Li N. New thoughts and findings on invasion and metastasis of pancreatic ductal adenocarcinoma (PDAC) from comparative proteomics: multi-target therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03106-8. [PMID: 36745340 DOI: 10.1007/s12094-023-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
As one of the most aggressive malignant tumors, pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth cancer-related mortality in the world. The extremely low survival rate is closely related to early invasion and distant metastasis. However, effective target therapy for weakening its malignant behavior remains limited. Over the past decades, many proteins correlating with invasion and metastasis of PDAC have been discovered using proteomics. The discovery of these proteins gives us a deeper understanding of the invasive and migratory processes of PDAC. This review is a systemic integration of these proteomics findings over the past 10 years. The discovered proteins were typically associated with the glycolytic process, hypoxic microenvironment, post-translational modification, extracellular matrix, exosomes, cancer stem cells, and immune escape. Some proteins were found to have multiple functions, and, cooperation between different proteins in the invasive and metastatic processes was found. This cooperation, and not just single protein function, may play a more significant role in the poor prognosis of PDAC. Therefore, multi-target therapy against these cooperative networks should be a primary choice in the future.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Na Li
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
15
|
Sun J, Cao H, Wen T, Xu Z, Zhang X, Wang J, Zhu H. The bioinformatics analysis of CD59 in Helicobacter pylori infected gastric cancer. Cancer Biomark 2023; 38:27-35. [PMID: 37522198 DOI: 10.3233/cbm-230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cell surface molecules play important roles in cell signal transduction pathways during microbial infection. OBJECTIVE In this study, the expression and the functions of CD59 was investigated in H. pylori infected gastric cancer (GC). METHODS AND RESULTS The differential expression of CD59 and the influence of H. pylori on the expression of CD59 were analyzed via bioinformatics through Gene Set Enrichment in GC. In addition, the expression of CD59 in GES-1, AGS cells and GC tissues infected with H. pylori was confirmed by Western blot. Bioinformatics results and H. pylori infection experiments showed CD59 decreased obviously in H. pylori infected GC cells and tissues. The expression of CD59 was linked to the survival rate of GC patients, and influenced various immune cells in the immune microenvironment of GC. CD59 interacts with other genes to form a network in H. pylori infected GC. Certainly, CD59 decreased significantly in H. pylori infected GC tissues, GES-1 and AGS cells in vitro. CONCLUSION H. pylori infection could influence the expression of CD59 in GC indicating that CD59 may be a promising treatment target.
Collapse
Affiliation(s)
- Jun Sun
- Department of Medical Service, Kunshan First People's Hospital, Kunshan, Jiangsu, China
- Department of Medical Service, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Hui Cao
- Department of food safety and evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- Department of Medical Service, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Tingting Wen
- Department of Pharmacy, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Zi Xu
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Xian Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Hong Zhu
- Department of Clinical Laboratory, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Dash S, Wu CC, Wu CC, Chiang SF, Lu YT, Yeh CY, You JF, Chu LJ, Yeh TS, Yu JS. Extracellular Vesicle Membrane Protein Profiling and Targeted Mass Spectrometry Unveil CD59 and Tetraspanin 9 as Novel Plasma Biomarkers for Detection of Colorectal Cancer. Cancers (Basel) 2022; 15:cancers15010177. [PMID: 36612172 PMCID: PMC9818822 DOI: 10.3390/cancers15010177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) are valuable sources for the discovery of useful cancer biomarkers. This study explores the potential usefulness of tumor cell-derived EV membrane proteins as plasma biomarkers for early detection of colorectal cancer (CRC). EVs were isolated from the culture supernatants of four CRC cell lines by ultracentrifugation, and their protein profiles were analyzed by LC-MS/MS. Bioinformatics analysis of identified proteins revealed 518 EV membrane proteins in common among at least three CRC cell lines. We next used accurate inclusion mass screening (AIMS) in parallel with iTRAQ-based quantitative proteomic analysis to highlight candidate proteins and validated their presence in pooled plasma-generated EVs from 30 healthy controls and 30 CRC patients. From these, we chose 14 potential EV-derived targets for further quantification by targeted MS assay in a separate individual cohort comprising of 73 CRC and 80 healthy subjects. Quantitative analyses revealed significant increases in ADAM10, CD59 and TSPAN9 levels (2.19- to 5.26-fold, p < 0.0001) in plasma EVs from CRC patients, with AUC values of 0.83, 0.95 and 0.87, respectively. Higher EV CD59 levels were significantly correlated with distant metastasis (p = 0.0475), and higher EV TSPAN9 levels were significantly associated with lymph node metastasis (p = 0.0011), distant metastasis at diagnosis (p = 0.0104) and higher TNM stage (p = 0.0065). A two-marker panel consisting of CD59 and TSPAN9 outperformed the conventional marker CEA in discriminating CRC and stage I/II CRC patients from healthy controls, with AUC values of 0.98 and 0.99, respectively. Our results identify EV membrane proteins in common among CRC cell lines and altered plasma EV protein profiles in CRC patients and suggest plasma EV CD59 and TSPAN9 as a novel biomarker panel for detecting early-stage CRC.
Collapse
Affiliation(s)
- Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
| | - Sum-Fu Chiang
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Ting Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Yuh Yeh
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
| | - Jeng-Fu You
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Linkou & Chang Gung University, New Taipei City 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, New Taipei City 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5171); Fax: +886-3-2118891
| |
Collapse
|
17
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
18
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
19
|
Li L, Ding P, Lv X, Xie S, Li L, Chen J, Zhou D, Wang X, Wang Q, Zhang W, Xu Y, Lu R, Hu W. CD59-Regulated Ras Compartmentalization Orchestrates Antitumor T-cell Immunity. Cancer Immunol Res 2022; 10:1475-1489. [PMID: 36206575 PMCID: PMC9716252 DOI: 10.1158/2326-6066.cir-21-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
T cell-mediated immunotherapy represents a promising strategy for cancer treatment; however, it has achieved satisfactory clinical responses in only a limited population. Thus, a broader view of the T-cell immune response is required. The Ras/MAPK pathway operates in many important signaling cascades and regulates multiple cellular activities, including T-cell development, proliferation, and function. Herein, we found that the typical membrane-bound complement regulatory protein CD59 is located intracellularly in T cells and that the intracellular form is increased in the T cells of patients with cancer. When intracellular CD59 is abundant, it facilitates Ras transport to the inner plasma membrane via direct interaction; in contrast, when CD59 is insufficient or deficient, Ras is arrested in the Golgi, thus enhancing Ras/MAPK signaling and T-cell activation, proliferation, and function. mCd59ab deficiency almost completely abolished tumor growth and metastasis in tumor-bearing mice, in which CD4+ and CD8+ T cells were significantly increased compared with their proportions in wild-type littermates, and their proportions were inversely correlated with tumor growth. Using bone marrow transplantation and CD4+ and CD8+ T-cell depletion assays, we further demonstrated the critical roles of these cells in the potent antitumor activity induced by mCd59ab deficiency. Reducing CD59 expression also enhanced MAPK signaling and T-cell activation in human T cells. Therefore, the subcellular compartmentalization of Ras regulated by intracellular CD59 provides spatial selectivity for T-cell activation and a potential T cell-mediated immunotherapeutic strategy.
Collapse
Affiliation(s)
- Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaochao Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqing Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Corresponding Author: Weiguo Hu, Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China. Phone: 213-477-7590; Fax: 216-417-2585; E-mail:
| |
Collapse
|
20
|
Mao M, Lan Z, Peng Y, He J, Lu X, Li J, Xu P, Wu X, Cai X. Identification and functional characterization of complement regulatory protein CD59 in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2022; 131:67-76. [PMID: 36191903 DOI: 10.1016/j.fsi.2022.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
CD59, one of the essential inhibitors of the complement membrane attack complex (MAC), plays a crucial role in regulation of complement activation. In this study, we cloned and identified the CD59 gene (named ToCD59) of golden pompano (Trachinotus ovatus). The ORF sequence of ToCD59 is 357 bp long encoding 118 amino acids with a molecular weight of 13.09 kDa. Prediction of protein domains showed that ToCD59 contained an Lu domain and a C-terminal glycosylphosphatidylinositol (GPI) partial anchor. Homology comparisons indicated that ToCD59 shared the high sequence similarity with other fish CD59. RT-qPCR analysis showed that ToCD59 was expressed in all tested healthy tissues of golden pompano, with the highest level of expression in the brain. After stimulation with bacteria, ToCD59 expression levels were significantly up-regulated in head kidney, liver, gill and brain, but down-regulated in spleen. Subcellular localization results showed that ToCD59 localized to the cytoplasm of A549 cells. The hemolytic activity analysis showed that rToCD59 might have complement inhibitory activity through the alternative complement pathway. In addition, antibacterial test showed that rToCD59 had antibacterial ability against S. agalactiae and V. alginolyticus in vitro. These results suggest that ToCD59 might play an important role in the immune response against pathogens, which would provide basic information for elucidating the functional evolutionary history of complement system in teleost.
Collapse
Affiliation(s)
- Meiqin Mao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Zhenyu Lan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Jiaxing He
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Xin Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Jin Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Xinzhong Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
21
|
Shao F, Gao Y, Wang W, He H, Xiao L, Geng X, Xia Y, Guo D, Fang J, He J, Lu Z. Silencing EGFR-upregulated expression of CD55 and CD59 activates the complement system and sensitizes lung cancer to checkpoint blockade. NATURE CANCER 2022; 3:1192-1210. [PMID: 36271172 DOI: 10.1038/s43018-022-00444-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The complement system is a critical immune component, yet its role in tumor immune evasion and CD8+ T cell activation is not clearly defined. Here, we demonstrate that epidermal growth factor receptor (EGFR)/Wnt signaling induces β-catenin-mediated long noncoding RNA (lncRNA) LINC00973 expression to sponge CD55-targeting miR-216b and CD59-targeting miR-150. The consequently upregulated CD55/CD59 expression suppresses the complement system and cytokine secretion required for CD8+ T cell activation. CD55/CD59-neutralizing antibody treatment or mutation of the LINC00973 promoter activates the complement and CD8+ T cells, inhibiting tumor growth. Importantly, combined anti-CD55/CD59 and anti-programmed death 1 (anti-PD-1) antibody treatments elicit a synergistic tumor-inhibiting effect. In addition, CD55/CD59 levels are inversely correlated with infiltration of M1 macrophages and CD8+ T cells in human lung cancer specimens and predict patient outcome. These findings underscore the critical role of EGFR/Wnt/β-catenin-upregulated CD55/CD59 expression in inhibiting the complement and CD8+ T cell activation for tumor immune evasion and immune checkpoint blockade resistance and identify a potential combination therapy to overcome these effects.
Collapse
Affiliation(s)
- Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Geng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xia
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Wang B, Zou D, Wang N, Wang H, Zhang T, Gao L, Ma C, Zheng P, Gu B, Li X, Wang Y, He P, Ma Y, Wang X, Chen H. Construction and validation of a novel coagulation-related 7-gene prognostic signature for gastric cancer. Front Genet 2022; 13:957655. [PMID: 36105100 PMCID: PMC9465170 DOI: 10.3389/fgene.2022.957655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Gastric cancer (GC) is the most common malignant tumor. Due to the lack of practical molecular markers, the prognosis of patients with advanced gastric cancer is still poor. A number of studies have confirmed that the coagulation system is closely related to tumor progression. Therefore, the purpose of this study was to construct a coagulation-related gene signature and prognostic model for GC by bioinformatics methods. Methods: We downloaded the gene expression and clinical data of GC patients from the TCGA and GEO databases. In total, 216 coagulation-related genes (CRGs) were obtained from AmiGO 2. Weighted gene co-expression network analysis (WGCNA) was used to identify coagulation-related genes associated with the clinical features of GC. Last absolute shrinkage and selection operator (LASSO) Cox regression was utilized to shrink the relevant predictors of the coagulation system, and a Coag-Score prognostic model was constructed based on the coefficients. According to this risk model, GC patients were divided into high-risk and low-risk groups, and overall survival (OS) curves and receiver operating characteristic (ROC) curves were drawn in the training and validation sets, respectively. We also constructed nomograms for predicting 1-, 2-, and 3-year survival in GC patients. Single-sample gene set enrichment analysis (ssGSEA) was exploited to explore immune cells’ underlying mechanisms and correlations. The expression levels of coagulation-related genes were verified by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: We identified seven CRGs employed to construct a Coag-Score risk model using WGCNA combined with LASSO regression. In both training and validation sets, GC patients in the high-risk group had worse OS than those in the low-risk group, and Coag-Score was identified as an independent predictor of OS, and the nomogram provided a quantitative method to predict the 1-, 2-, and 3-year survival rates of GC patients. Functional analysis showed that Coag-Score was mainly related to the MAPK signaling pathway, complement and coagulation cascades, angiogenesis, epithelial–mesenchymal transition (EMT), and KRAS signaling pathway. In addition, the high-risk group had a significantly higher infiltration enrichment score and was positively associated with immune checkpoint gene expression. Conclusion: Coagulation-related gene models provide new insights and targets for the diagnosis, prognosis prediction, and treatment management of GC patients.
Collapse
Affiliation(s)
- Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dan Zou
- Chengdu Seventh People’s Hospital, Chengdu, China
| | - Na Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haotian Wang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tao Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of oncology, First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Gao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peng Zheng
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuemei Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Puyi He
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yanling Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xueyan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Department of Cancer Center, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Hao Chen,
| |
Collapse
|
23
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
24
|
Xie Y, Liu Y, Ding J, Li G, Ni B, Pang H, Hu X, Wu L. Identification of DDX31 as a Potential Oncogene of Invasive Metastasis and Proliferation in PDAC. Front Cell Dev Biol 2022; 10:762372. [PMID: 35237592 PMCID: PMC8883474 DOI: 10.3389/fcell.2022.762372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors worldwide and has poor prognosis. DEAD box proteins31 (DDX31) participate in cellular processes involving RNA secondary structure changes. However, the functions of DDX31 in PDAC remain to be elucidated. Methods: The key gene DDX31 was identified using a combination of a risk model and weighted gene co-expression network analysis (WGCNA) with R software. The biological functions of DDX31 in PDAC were investigated through bioinformatics analysis and in vitro experiments. Results: Combining with WGCNA and risk model, DDX31 was identified as a potential factor of the invasive metastasis properties of PDAC, and its expression was closely related to the malignant differentiation of PDAC. The results of gene set enrichment analysis (GSEA) showed that DDX31 was correlated with cell invasive metastasis and proliferation by activating MAPK signaling pathway. The inhibition of DDX31 inhibited the invasion and migration of PDAC cells. Survival analysis showed that DDX31 expression was negatively associated with the poor prognosis in patients with PDAC. Interpretation:DDX31 may be a potential factor for PDAC. The inhibition of DDX31 may be a potential way to treat PDAC.
Collapse
Affiliation(s)
- Yongjie Xie
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Jinsheng Ding
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Huifang Pang
- Department of Gastroenterology, Digestive Endoscopy Unit, Tongliao City Hospital, Tongliao, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, China
| | - Liangliang Wu
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention, Department of Gastric Cancer, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
25
|
Moresi F, Rossetti DV, Vincenzoni F, Simboli GA, La Rocca G, Olivi A, Urbani A, Sabatino G, Desiderio C. Investigating Glioblastoma Multiforme Sub-Proteomes: A Computational Study of CUSA Fluid Proteomic Data. Int J Mol Sci 2022; 23:ijms23042058. [PMID: 35216175 PMCID: PMC8879425 DOI: 10.3390/ijms23042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Based on our previous proteomic study on Cavitating Ultrasound Aspirator (CUSA) fluid pools of Newly Diagnosed (ND) and Recurrent (R) glioblastomas (GBMs) of tumor core and periphery, as defined by 5-aminolevulinc acid (5-ALA) metabolite fluorescence, this work aims to apply a bioinformatic approach to investigate specifically into three sub-proteomes, i.e., Not Detected in Brain (NB), Cancer Related (CR) and Extracellular Vesicles (EVs) proteins following selected database classification. The study of these yet unexplored specific datasets aims to understand the high infiltration capability and relapse rate that characterizes this aggressive brain cancer. Out of the 587 proteins highly confidently identified in GBM CUSA pools, 53 proteins were classified as NB. Their gene ontology (GO) analysis showed the over-representation of blood coagulation and plasminogen activating cascade pathways, possibly compatible with Blood Brain Barrier damage in tumor disease and surgery bleeding. However, the NB group also included non-blood proteins and, specifically, histones correlated with oncogenesis. Concerning CR proteins, 159 proteins were found in the characterized GBM proteome. Their GO analysis highlighted the over-representation of many pathways, primarily glycolysis. Interestingly, while CR proteins were identified in ND-GBM exclusively in the tumor zones (fluorescence positive core and periphery zones) as predictable, conversely, in R-GBM they were unexpectedly characterized prevalently in the healthy zone (fluorescence negative tumor periphery). Relative to EVs protein classification, 60 proteins were found. EVs are over-released in tumor disease and are important in the transport of biological macromolecules. Furthermore, the presence of EVs in numerous body fluids makes them a possible low-invasive source of brain tumor biomarkers to be investigated. These results give new hints on the molecular features of GBM in trying to understand its aggressive behavior and open to more in-depth investigations to disclose potential disease biomarkers.
Collapse
Affiliation(s)
- Fabiana Moresi
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
| | - Giorgia Antonia Simboli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Giuseppe La Rocca
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Alessandro Olivi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
| | - Giovanni Sabatino
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|
26
|
Kneiber D, Kowalski EH, Amber KT. The Immunogenetics of Autoimmune Blistering Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:173-212. [DOI: 10.1007/978-3-030-92616-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Tian W, Wang P, Wang Z, Qi H, Dong J, Wang H. Phospholipid Phosphatase 4 as a Driver of Malignant Glioma and Pancreatic Adenocarcinoma. Front Oncol 2021; 11:790676. [PMID: 34917513 PMCID: PMC8669803 DOI: 10.3389/fonc.2021.790676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Glioma and pancreatic cancer are tumors with a high degree of malignancy, morbidity, and mortality. The present study explored possible molecular mechanisms and potential diagnostic and prognostic biomarker-PLPP4 of glioma and PAAD. PLPP4 is differentially elevated in glioma and PAAD tissues. Statistical analysis from TCGA demonstrated that high expression of PLPP4 significantly and positively correlated with clinicopathological features, including pathological grade and poor overall survival in glioma and PAAD patients. Following this, the methylation levels of PLPP4 also affected overall survival in clinical tissue samples. Silencing PLPP4 inhibited proliferation, invasion, and migration in LN229 cells and PANC-1 cells. Moreover, the combination of multiple proteins for the prognosis prediction of glioma and PAAD was evaluated. These results were conducted to elaborate on the potential roles of the biomarker-PLPP4 in clonability and invasion of glioma and PAAD cells.
Collapse
Affiliation(s)
- Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, China.,Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Hongmei Wang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
28
|
Selecting Hub Genes and Predicting Target Genes of microRNAs in Tuberculosis via the Bioinformatics Analysis. Genet Res (Camb) 2021; 2021:6226291. [PMID: 34803519 PMCID: PMC8572619 DOI: 10.1155/2021/6226291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is the world's most prevalently infectious disease. Molecular mechanisms behind tuberculosis remain unknown. microRNA (miRNA) is involved in a wide variety of diseases. To validate the significant genes and miRNAs in the current sample, two messenger RNA (mRNA) expression profile datasets and three miRNA expression profile datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed (DE) genes (DEGs) and miRNAs (DE miRNAs) between healthy and TB patients were filtered out. Enrichment analysis was executed, and a protein-protein interaction (PPI) network was developed to understand the enrich pathways and hub genes of TB. Additionally, the target genes of miRNA were predicted and overlapping target genes were identified. We studied a total of 181 DEGs (135 downregulated and 46 upregulated genes) and two DE miRNAs (2 downregulated miRNAs) from two gene profile datasets and three miRNA profile datasets, respectively. 10 hub genes were defined based on high degree of connectivity. A PPI network's top module was constructed. The 23 DEGs identified have a significant relationship with miRNAs. 25 critically significant Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were discovered. The detailed study revealed that, in tuberculosis, the DE miRNA and DEGs form an interaction network. The identification of novel target genes and main pathways would aid with our understanding of miRNA's function in tuberculosis progression.
Collapse
|
29
|
Delphin M, Desmares M, Schuehle S, Heikenwalder M, Durantel D, Faure-Dupuy S. How to get away with liver innate immunity? A viruses' tale. Liver Int 2021; 41:2547-2559. [PMID: 34520597 DOI: 10.1111/liv.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
In their never-ending quest towards persistence within their host, hepatitis viruses have developed numerous ways to counteract the liver innate immunity. This review highlights the different and common mechanisms employed by these viruses to (i) establish in the liver (passive entry or active evasion from immune recognition) and (ii) actively inhibit the innate immune response (ie modulation of pattern recognition receptor expression and/or signalling pathways, modulation of interferon response and modulation of immune cells count or phenotype).
Collapse
Affiliation(s)
- Marion Delphin
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Manon Desmares
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
|
31
|
Kawaguchi K, Yamamoto-Hino M, Goto S. SPPL3-dependent downregulation of the synthesis of (neo)lacto-series glycosphingolipid is required for the staining of cell surface CD59. Biochem Biophys Res Commun 2021; 571:81-87. [PMID: 34303967 DOI: 10.1016/j.bbrc.2021.06.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
CD59 is a small glycoprotein modified with a glycophosphatidylinositol (GPI) anchor that prevents the formation of the membrane attack complex, thereby protecting host cells from lysis. A previous study identified that cell surface CD59 staining required the intramembrane protease signal peptide peptidase-like 3 (SPPL3). However, the effect of SPPL3 on the staining of CD59 remains unknown. This study shows that SPPL3 is essential for the surface labeling of CD59 but not of major GPI-anchored proteins. Surface CD59 staining requires the intramembrane protease activity of SPPL3 and SPPL3-mediated suppression of the (neo)lacto-series glycosphingolipids (nsGSLs)-but not N-glycan-synthesis pathway. The abundance of nsGSLs may affect complement-dependent cytotoxicity by altering the abundance or accessibility of cell surface CD59.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
32
|
Abstract
Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Anne Billet
- Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Université de Paris, F-75005, Paris, France
| |
Collapse
|
33
|
Glioblastoma CUSA Fluid Protein Profiling: A Comparative Investigation of the Core and Peripheral Tumor Zones. Cancers (Basel) 2020; 13:cancers13010030. [PMID: 33374813 PMCID: PMC7795841 DOI: 10.3390/cancers13010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The biological processes responsible for the high infiltration and recurrence rate of glioblastoma multiforme, the most frequent and aggressive primary brain tumor (GBM), are still under investigation. By the original analysis of cavitating ultrasound aspirator fluid as the biological specimen, the present study aimed to preliminarily explore and compare the protein profiles of the tumor core and tumor periphery, as defined by 5-aminolevulinic acid fluorescence, in newly diagnosed and recurrent glioblastoma sampled pools. The results showed distinguished protein elements in the different tumor and peritumoral zones, as well as in the two tumor states (newly diagnosed vs recurrent), and suggested the presence of pathological aspects in the fluorescent negative periphery, possibly contributing to the comprehension of the molecular mechanisms underlying this tumor’s onset and development, opening to potential clinical applications. Abstract The present investigation aimed to characterize the protein profile of cavitating ultrasound aspirator fluid of newly diagnosed and recurrent glioblastoma comparing diverse zones of collection, i.e., tumor core and tumor periphery, with the aid of 5-aminolevulinic acid fluorescence. The samples were pooled and analyzed in triplicate by LC-MS following the shotgun proteomic approach. The identified proteins were then grouped to disclose elements exclusive and common to the tumor state or tumor zones and submitted to gene ontology classification and pathway overrepresentation analysis. The proteins common to the distinct zones were further investigated by relative quantitation, following a label free approach, to disclose possible differences of expression. Nine proteins, i.e., tubulin 2B chain, CD59, far upstream element-binding, CD44, histone H1.4, caldesmon, osteopontin, tropomyosin chain and metallothionein-2, marked the core of newly diagnosed glioblastoma with respect to tumor periphery. Considering the tumor zone, including the core and the fluorescence positive periphery, the serine glycine biosynthesis, pentose phosphate, 5-hydroxytryptamine degredation, de novo purine biosynthesis and huntington disease pathways resulted statistically significantly overrepresented with respect to the human genome of reference. The fluorescence negative zone shared several protein elements with the tumor zone, possibly indicating the presence of pathological aspects of glioblastoma rather than of normal brain parenchyma. On the other hand, its exclusive protein elements were considered to represent the healthy zone and, accordingly, exhibiting no pathways overrepresentation. On the contrary to newly diagnosed glioblastoma, pathway overrepresentation was recognized only in the healthy zone of recurrent glioblastoma. The TGFβ signaling pathway, exclusively classified in the fluorescence negative periphery in newly diagnosed glioblastoma, was instead the exclusive pathway classified in the tumor core of recurrent glioblastoma. These results, preliminary obtained on sample pools, demonstrated the potential of cavitron ultrasonic surgical aspirate fluid for proteomic profiling of glioblastoma able to distinguish molecular features specific of the diverse tumor zones and tumor states, possibly contributing to the understanding of the highly infiltrative capability and recurrent rate of this aggressive brain tumor and opening to potential clinical applications to be further investigated.
Collapse
|
34
|
Huang J, Tang Y, Zou X, Lu Y, She S, Zhang W, Ren H, Yang Y, Hu H. Identification of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis. Cancer Cell Int 2020; 20:332. [PMID: 32699531 PMCID: PMC7372886 DOI: 10.1186/s12935-020-01409-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identified by targeted proteomic analysis. Methods Wound healing and Transwell assays was performed to observe the effect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Differential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. Results FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identified. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co-precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation-associated 1 (SIPA1), spectrin β, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated. Knockdown of FASN in liver cancer reduced the expression of FSCN1, SIPA1, SPTBN1 and CD59. Furthermore, inhibition of FASN, FSCN1 or SPTBN1 expression in liver cancer resulted in alterations of epithelial–mesenchymal transition (EMT)-associated markers E-cadherin, N-cadherin, vimentin and transcription factors, Snail and Twist, at the mRNA level, and changes in matrix metallopeptidase (MMP)-2 and MMP-9 protein expression. Conclusion The results suggested that the FASN-interacting protein network produced by iTRAQ-based proteomic analyses may be involved in regulating invasion and metastasis in liver cancer by influencing EMT and the function of MMPs.
Collapse
Affiliation(s)
- Juan Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yao Tang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Xiaoqin Zou
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yi Lu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Sha She
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Wenyue Zhang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yixuan Yang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| | - Huaidong Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| |
Collapse
|
35
|
Qin YT, Feng YS, Ma YJ, He XW, Li WY, Zhang YK. Tumor-Sensitive Biodegradable Nanoparticles of Molecularly Imprinted Polymer-Stabilized Fluorescent Zeolitic Imidazolate Framework-8 for Targeted Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24585-24598. [PMID: 32390415 DOI: 10.1021/acsami.0c05154] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Targeting enrichment of nanocarriers at tumor sites and effective drug release are critical in cancer treatment. Accordingly, we used fluorescent zeolitic imidazolate framework-8 nanoparticles loaded with doxorubicin (FZIF-8/DOX) as the core and a molecularly imprinted polymer (MIP) as the shell to synthesize tumor-sensitive biodegradable FZIF-8/DOX-MIP nanoparticles (FZIF-8/DOX-MIPs). The MIP prepared with the epitope of CD59 cell membrane glycoprotein as the template allowed FZIF-8/DOX-MIPs to be enriched to tumor sites by actively targeting recognition of MCF-7 cancer cells (CD59-positive). Moreover, using N,N'-diacrylylcystamine as the cross-linker and dimethylaminoethyl methacrylate as the main monomer, the MIP's framework will be broken under the stimulation of a tumor microenvironment (high-concentration glutathione and weakly acidic), so that the internal FZIF-8/DOX is exposed to a microacidic environment to release DOX through further degradation. More importantly, the ability of FZIF-8/DOX-MIPs in targeted fluorescence imaging and effective drug release has been validated both in vitro and in vivo. Compared to other cells and nanoparticles, FZIF-8/DOX-MIPs were more capable of being phagocytosed by MCF-7 cells and were more lethal to MCF-7 cells. In the comparative experiments carried out on tumor-bearing mice, FZIF-8/DOX-MIPs had the best inhibitory effect on the growth of MCF-7 tumors. Furthermore, the FZIF-8/DOX-MIPs can serve as a diagnostic agent because of the active targeting of MCF-7 cells and the stronger red fluorescence of the embedded carbon quantum dots. Because of the active targeting ability, good biocompatibility, tumor-sensitive biodegradability, and effective drug release performance, FZIF-8/DOX-MIPs can be widely used in tumor imaging and treatment.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yu-Sheng Feng
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yao-Jia Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
36
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Zhang R, Liu Q, Peng J, Wang M, Gao X, Liao Q, Zhao Y. Pancreatic cancer-educated macrophages protect cancer cells from complement-dependent cytotoxicity by up-regulation of CD59. Cell Death Dis 2019; 10:836. [PMID: 31685825 PMCID: PMC6828776 DOI: 10.1038/s41419-019-2065-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) are versatile immune cells that promote a variety of malignant behaviors of pancreatic cancer. CD59 is a GPI-anchored membrane protein that prevents complement activation by inhibiting the formation of the membrane attack complex, which may protect cancer cells from complement-dependent cytotoxicity (CDC). The interactions between CD59, TAMs and pancreatic cancer remain largely unknown. A tissue microarray of pancreatic cancer patients was used to evaluate the interrelationship of CD59 and TAMs and their survival impacts were analyzed. In a coculture system, THP-1 cells were used as a model to study the function of TAMs and the roles of pancreatic cancer-educated macrophages in regulating the expression of CD59 in pancreatic cancer cells were demonstrated by real-time PCR, western blot and immunofluorescence staining. The effects of macrophages on regulating CDC in pancreatic cancer cells were demonstrated by an in vitro study. To explore the potential mechanisms, RNA sequencing of pancreatic cancer cells with or without co-culture of THP-1 macrophages was performed, and the results showed that the IL-6R/STAT3 signaling pathway might participate in the regulation, which was further demonstrated by target-siRNA transfection, antibody neutralization and STAT3 inhibitors. Our data revealed that the infiltration of TAMs and the expression of CD59 of pancreatic cancer were paralleled, and higher infiltration of TAMs and higher expression of CD59 predicted worse survival of pancreatic cancer patients. Pancreatic cancer-educated macrophages could protect cancer cells from CDC by up-regulating CD59 via the IL-6R/STAT3 signaling pathway. These findings uncovered the novel mechanisms between TAMs and CD59, and contribute to providing a new promising target for the immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang Gao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
38
|
Yan B, Chen B, Min S, Gao Y, Zhang Y, Xu P, Li C, Chen J, Luo G, Liu C. iTRAQ-based Comparative Serum Proteomic Analysis of Prostate Cancer Patients with or without Bone Metastasis. J Cancer 2019; 10:4165-4177. [PMID: 31413735 PMCID: PMC6691707 DOI: 10.7150/jca.33497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Once prostate cancer developed bone metastasis, the quality of life and prognosis of patients are seriously affected as no effective treatment is currently available. It is necessary to explore the mechanism of bone metastasis and new therapeutic targets. Purpose: To find out the differentially expressed serum proteins in prostate cancer patients with bone metastasis and analyze the expression of key proteins in prostate cancer tissues, serum and prostate cancer cell lines. So as to provide a basis for revealing the mechanism of bone metastasis and designing new therapeutic targets. Methods: iTRAQ-based proteomics method was used to compare serum differential proteins in prostate cancer patients with and without bone metastasis. Three key proteins (CD59, haptoglobin and tetranectin) which had significant fold changes were selected to validate the results of mass spectrometry. Immunohistochemistry and ELISA were applied to tissues and serum samples from prostate cancer patients, respectively, for validation. Finally, western blot, flow cytometry, and immunocytochemistry were used to analyze the expression of the three differentially expressed proteins in the prostate cancer cell lines PC3, LNCap, and Du145. Results: Thirty-two differentially expressed proteins related to bone metastasis of prostate cancer were identified, of which 11 were up-regulated and 21 were down-regulated. CD59 and haptoglobin were up-regulated in prostate cancer with bone metastasis while tetranectin was down-regulated. Tetranectin showed differential expression in epithelial and stromal cells of prostate cancer and hyperplasia tissues.The expression of CD59 was highest in PC3 and lowest in LNCap, while the expression of haptoglobin and tetranectin was the highest in DU145 and lowest in PC3. Conclusion: Mass spectrometry analysis showed that there were more differentially expressed proteins in the serum of patients with bone metastasis than those without metastasis. It has been verified that CD59, haptoglobin and tetranectin are prostate cancer bone metastasis related proteins.
Collapse
Affiliation(s)
- Bo Yan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Urology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaoju Min
- Department of Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yubo Gao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiasheng Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Zhang R, Liu Q, Li T, Liao Q, Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int 2019; 19:300. [PMID: 31787848 PMCID: PMC6858723 DOI: 10.1186/s12935-019-1027-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
The complement system has traditionally been considered a component of innate immunity against invading pathogens and "nonself" cells. Recent studies have demonstrated the immunoregulatory functions of complement activation in the tumor microenvironment (TME). The TME plays crucial roles in tumorigenesis, progression, metastasis and recurrence. Imbalanced complement activation and the deposition of complement proteins have been demonstrated in many types of tumors. Plasma proteins, receptors, and regulators of complement activation regulate several biological functions of stromal cells in the TME and promote the malignant biological properties of tumors. Interactions between the complement system and cancer cells contribute to the proliferation, epithelial-mesenchymal transition, migration and invasion of tumor cells. In this review, we summarize recent advances related to the function of the complement system in the TME and discuss the therapeutic potential of targeting complement-mediated immunoregulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Ronghua Zhang
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Qiaofei Liu
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Tong Li
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- 0000 0001 0662 3178grid.12527.33Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
40
|
Macor P, Capolla S, Tedesco F. Complement as a Biological Tool to Control Tumor Growth. Front Immunol 2018; 9:2203. [PMID: 30319647 PMCID: PMC6167450 DOI: 10.3389/fimmu.2018.02203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
Deposits of complement components have been documented in several human tumors suggesting a potential involvement of the complement system in tumor immune surveillance. In vitro and in vivo studies have revealed a double role played by this system in tumor progression. Complement activation in the cancer microenvironment has been shown to promote cancer growth through the release of the chemotactic peptide C5a recruiting myeloid suppressor cells. There is also evidence that tumor progression can be controlled by complement activated on the surface of cancer cells through one of the three pathways of complement activation. The aim of this review is to discuss the protective role of complement in cancer with special focus on the beneficial effect of complement-fixing antibodies that are efficient activators of the classical pathway and contribute to inhibit tumor expansion as a result of MAC-mediated cancer cell killing and complement-mediated inflammatory process. Cancer cells are heterogeneous in their susceptibility to complement-induced killing that generally depends on stable and relatively high expression of the antigen and the ability of therapeutic antibodies to activate complement. A new generation of monoclonal antibodies are being developed with structural modification leading to hexamer formation and enhanced complement activation. An important progress in cancer immunotherapy has been made with the generation of bispecific antibodies targeting tumor antigens and able to neutralize complement regulators overexpressed on cancer cells. A great effort is being devoted to implementing combined therapy of traditional approaches based on surgery, chemotherapy and radiotherapy and complement-fixing therapeutic antibodies. An effective control of tumor growth by complement is likely to be obtained on residual cancer cells following conventional therapy to reduce the tumor mass, prevent recurrences and avoid disabilities.
Collapse
Affiliation(s)
- Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|