1
|
Upadhayay V, Gu W, Yu Q. Enhancing mRNA Interactions by Engineering the Arc Protein with Nucleocapsid Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23473-23482. [PMID: 39433292 DOI: 10.1021/acs.langmuir.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) forms virus-like capsids for mRNA transport between neurons. Unlike HIV-1 Group-specific Antigen (Gag), which uses its Nucleocapsid (NC) domain to bind HIV-1 genomic mRNA, mammalian Arc lacks the NC domain, and their direct mRNA binding interactions remain underexplored. This study examined rat Arc's binding to rat Arc 5' UTR (A5U), HIV-1 5' UTR (H5U), and GFP mRNAs, revealing weak binding with no significant preference. Adding the HIV-1 NC domain to rArc's C-terminus significantly improved binding to H5U, while also showing substantial binding to A5U at about 60% of its H5U level and exhibiting twice the affinity for A5U over GFP mRNA. Importantly, rArc-NC binds 3.4 times more A5U and H5U than GST-NC, indicating that rArc NTD-CA aids mRNA binding by HIV-1 NC. These findings suggest a conserved Gag protein-mRNA interaction mechanism, highlighting the potential for developing mRNA delivery systems that combine endogenous Gag NTD-CA with retroviral NC and UTRs.
Collapse
Affiliation(s)
- Vaibhav Upadhayay
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
3
|
Socas L, Ambroggio E. HIV-1 Gag specificity for PIP2 is regulated by macromolecular electric properties of both protein and membrane local environments. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2023; 1865:184157. [PMID: 37028700 DOI: 10.1016/j.bbamem.2023.184157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.
Collapse
|
4
|
The C-Terminal Domain of RNase H and the C-Terminus Amino Acid Residue Regulate Virus Release and Autoprocessing of a Defective HIV-1 Possessing M50I and V151I Changes in Integrase. Viruses 2022; 14:v14122687. [PMID: 36560691 PMCID: PMC9788298 DOI: 10.3390/v14122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we reported that an HIV-1 variant containing Met-to-Ile change at codon 50 and Val-to-Ile mutation at codon 151 of integrase (IN), HIV(IN:M50I/V151I), was an impaired virus. Despite the mutations being in IN, the virus release was significantly suppressed (p < 0.0001) and the initiation of autoprocessing was inhibited; the mechanism of the defect remains unknown. In the current study, we attempted to identify the critical domains or amino acid (aa) residue(s) that promote defects in HIV(IN:M50I/V151I), using a series of variants, including truncated or aa-substituted RNase H (RH) or IN. The results demonstrated that virus release and the initiation of autoprocessing were regulated by the C-terminal domains (CTDs) of RH and IN. Further studies illustrated that Asp at codon 109 of RH CTD and Asp at the C terminus of IN induces the defect. This result indicated that the CTDs of RH and IN in GagPol and particular aa positions in RH and IN regulated the virus release and the initiation of autoprocessing, and these sites could be potential targets for the development of new therapies.
Collapse
|
5
|
Virus Hijacks Host Proteins and Machinery for Assembly and Budding, with HIV-1 as an Example. Viruses 2022; 14:v14071528. [PMID: 35891508 PMCID: PMC9318756 DOI: 10.3390/v14071528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Viral assembly and budding are the final steps and key determinants of the virus life cycle and are regulated by virus–host interaction. Several viruses are known to use their late assembly (L) domains to hijack host machinery and cellular adaptors to be used for the requirement of virus replication. The L domains are highly conserved short sequences whose mutation or deletion may lead to the accumulation of immature virions at the plasma membrane. The L domains were firstly identified within retroviral Gag polyprotein and later detected in structural proteins of many other enveloped RNA viruses. Here, we used HIV-1 as an example to describe how the HIV-1 virus hijacks ESCRT membrane fission machinery to facilitate virion assembly and release. We also introduce galectin-3, a chimera type of the galectin family that is up-regulated by HIV-1 during infection and further used to promote HIV-1 assembly and budding via the stabilization of Alix–Gag interaction. It is worth further dissecting the details and finetuning the regulatory mechanism, as well as identifying novel candidates involved in this final step of replication cycle.
Collapse
|
6
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
7
|
Durand S, Seigneuret F, Burlaud-Gaillard J, Lemoine R, Tassi MF, Moreau A, Mougel M, Roingeard P, Tauber C, de Rocquigny H. Quantitative analysis of the formation of nucleoprotein complexes between HIV-1 Gag protein and genomic RNA using transmission electron microscopy. J Biol Chem 2022; 298:101500. [PMID: 34929171 PMCID: PMC8760521 DOI: 10.1016/j.jbc.2021.101500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 01/06/2023] Open
Abstract
In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag-gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5'-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein-protein interactions.
Collapse
Affiliation(s)
- Stéphanie Durand
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Florian Seigneuret
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Julien Burlaud-Gaillard
- Microscopy IBiSA Platform, PPF ASB, University of Tours and CHRU of Tours, Tours Cedex 1, France
| | - Roxane Lemoine
- B Cell Ressources Platform, EA4245 "Transplantation, Immunology and Inflammation", University of Tours, Tours Cedex 1, France
| | - Marc-Florent Tassi
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Alain Moreau
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Marylène Mougel
- Équipe R2D2 Retroviral RNA Dynamics and Delivery, IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Philippe Roingeard
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France; Microscopy IBiSA Platform, PPF ASB, University of Tours and CHRU of Tours, Tours Cedex 1, France
| | - Clovis Tauber
- UMR U1253 iBrain, Inserm, University of Tours, Tours Cedex 1, France
| | - Hugues de Rocquigny
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France.
| |
Collapse
|
8
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Vpr counteracts the restriction of LAPTM5 to promote HIV-1 infection in macrophages. Nat Commun 2021; 12:3691. [PMID: 34140527 PMCID: PMC8211709 DOI: 10.1038/s41467-021-24087-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/31/2021] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 accessory proteins Vif, Vpu, and Nef can promote infection by overcoming the inhibitory effects of the host cell restriction factors APOBEC3G, Tetherin, and SERINC5, respectively. However, how the HIV-1 accessory protein Vpr enhances infection in macrophages but not in CD4+ T cells remains elusive. Here, we report that Vpr counteracts lysosomal-associated transmembrane protein 5 (LAPTM5), a potent inhibitor of HIV-1 particle infectivity, to enhance HIV-1 infection in macrophages. LAPTM5 transports HIV-1 envelope glycoproteins to lysosomes for degradation, thereby inhibiting virion infectivity. Vpr counteracts the restrictive effects of LAPTM5 by triggering its degradation via DCAF1. In the absence of Vpr, the silencing of LAPTM5 precisely phenocopied the effect of Vpr on HIV-1 infection. In contrast, Vpr did not enhance HIV-1 infection in the absence of LAPTM5. Moreover, LAPTM5 was highly expressed in macrophages but not in CD4+ T lymphocytes. Re-expressing LAPTM5 reconstituted the Vpr-dependent promotion of HIV-1 infection in primary CD4+ T cells, as observed in macrophages. Herein, we demonstrate the molecular mechanism used by Vpr to overcome LAPTM5 restriction in macrophages, providing a potential strategy for anti-HIV/AIDS therapeutics.
Collapse
|
10
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
11
|
Distinct Pathway of Human T-Cell Leukemia Virus Type 1 Gag Punctum Biogenesis Provides New Insights into Enveloped Virus Assembly. mBio 2018; 9:mBio.00758-18. [PMID: 30181245 PMCID: PMC6123448 DOI: 10.1128/mbio.00758-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The assembly of virus particles is a crucial aspect of virus spread. For retroviruses, the Gag polyprotein is the key driver for virus particle assembly. In order to produce progeny virus, once Gag is translated, it must translocate from the location in the cytoplasm where it is synthesized to the plasma membrane and form an oligomeric lattice that results in Gag puncta. The biogenesis of mature Gag puncta can trigger the budding process, resulting in virus particle production. While some aspects of the dynamics of Gag oligomerization and particle biogenesis have been observed with human immunodeficiency virus type 1 (HIV-1), the process of Gag punctum biogenesis remains poorly understood, particularly for other retroviruses. Here, we have conducted the most detailed studies thus far on Gag punctum biogenesis for human T-cell leukemia virus type 1 (HTLV-1). Using mEos2 photoconvertible fluorescent proteins and total internal reflection fluorescence microscopy (TIRF), we have found that HTLV-1 Gag was recruited to Gag puncta primarily from the plasma membrane. This was in stark contrast to HIV-1 Gag, which was recruited from the cytoplasm. These observations imply fundamental differences among retroviruses regarding the orchestration of Gag punctum biogenesis, which has important general implications for enveloped virus particle assembly.IMPORTANCE This report describes the results of experiments examining the pathway by which the human retroviral Gag protein is recruited to sites along the inner leaflet of the plasma membrane where Gag punctum biogenesis occurs. In particular, clever and sensitive experimental methods were devised to image in living cells fluorescently labeled Gag protein derivatives from human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) at the plasma membrane. The photoconvertible fluorescent protein mEos2 was strategically utilized, as the fluorescence emission of Gag at the plasma membrane could be differentiated from that of cytosolic Gag. This experimental strategy allowed for the determination of the Gag recruitment pathway into Gag puncta. For HTLV-1 Gag, puncta recruited Gag primarily from the plasma membrane, while HIV-1 Gag was recruited from the cytoplasm. These observations represent the first report of HTLV-1 particle biogenesis and its contrast to that of HIV-1. The observed differences in the Gag recruitment pathways used by HTLV-1 and HIV-1 Gag provide key information that is useful for informing the discovery of novel targets for antiretroviral therapies directed at eliminating virus infectivity and spread.
Collapse
|
12
|
Socas LBP, Ambroggio EE. Myristoylation and Oligonucleotide Interaction Modulate Peptide and Protein Surface Properties: The Case of the HIV-1 Matrix Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6051-6062. [PMID: 29727193 DOI: 10.1021/acs.langmuir.8b01005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myristoylated proteins typically develop a tight association with membranes. One example is the matrix domain (MA) of the HIV-1 Gag protein. In addition, MA is able to bind the Sel25 RNA sequence, a ligand that can act as a competitor for the interaction with the membrane. These properties make HIV-1 MA an attractive molecule to understand how protein and peptide surface properties can be controlled by myristoylation and oligonucleotide interaction. In this line, we analyzed the stability, thermodynamics, and the topography of Langmuir monolayers composed of the myristoylated or unmyristoylated versions of MA in the presence or the absence of a single-strand DNA (ssDNASel25) analogue of the Sel25 RNA sequence. With a similar approach, we compared the MA surface properties with those obtained from monolayers of myristoylated and unmyristoylated MA-derived peptides (first 21 residues of the MA sequence). Our results show that the protein or peptide films are destabilized by the presence of ssDNASel25, inducing solubilization of the monolayer components into the bulk phase. In addition, the oligonucleotide affects the protein-protein or peptide-peptide lateral interactions, provoking interfacial topography changes of the monolayers, visualized by Brewster angle microscopy. Furthermore, we also show how the myristoyl group has major effects on the lateral stability and the elasticity of the monolayers. Altogether, here we propose a general model considering the effect of myristoylation and the interaction with oligonucleotides on the interfacial properties of MA and derived peptides. In this model, we introduce a new role of the core region of MA (sequence of MA after the 21st residue) that confers higher lateral interfacial stability to the protein.
Collapse
Affiliation(s)
- Luis B P Socas
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| | - Ernesto E Ambroggio
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| |
Collapse
|
13
|
Parveen N, Borrenberghs D, Rocha S, Hendrix J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018; 10:E250. [PMID: 29748498 PMCID: PMC5977243 DOI: 10.3390/v10050250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses are simple agents exhibiting complex reproductive mechanisms. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious viral particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that we employ routinely to investigate viruses. We provide a brief overview of the microscopy hardware needed and discuss the different methods and their application. In particular, we review how we applied (i) single-molecule Förster resonance energy transfer (smFRET) to probe the subviral human immunodeficiency virus (HIV-1) integrase (IN) quaternary structure; (ii) single particle tracking to study interactions of the simian virus 40 with membranes; (iii) 3D confocal microscopy and smFRET to quantify the HIV-1 pre-integration complex content and quaternary structure; (iv) image correlation spectroscopy to quantify the cytosolic HIV-1 Gag assembly, and finally; (v) super-resolution microscopy to characterize the interaction of HIV-1 with tetherin during assembly. We hope this review is an incentive for setting up and applying similar single-virus imaging studies in daily virology practice.
Collapse
Affiliation(s)
- Nagma Parveen
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
14
|
Abstract
This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse X-ray scattering, which yields the bending modulus, KC, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: 1) infection, 2) Tat membrane transport, and 3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): 1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, 2) CRAC (cholesterol recognition amino acid consensus sequence), on the MPER (membrane proximal external region) near the membrane-spanning domain, and 3) LLP2 (lentiviral lytic peptide 2) on the CTT (cytoplasmic C-terminal tail). For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides' effects.
Collapse
|
15
|
Eells R, Barros M, Scott KM, Karageorgos I, Heinrich F, Lösche M. Structural characterization of membrane-bound human immunodeficiency virus-1 Gag matrix with neutron reflectometry. Biointerphases 2017; 12:02D408. [PMID: 28511544 PMCID: PMC5433906 DOI: 10.1116/1.4983155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
The structural characterization of peripheral membrane proteins represents a tremendous challenge in structural biology due to their transient interaction with the membrane and the potential multitude of protein conformations during this interaction. Neutron reflectometry is uniquely suited to address this problem because of its ability to structurally characterize biological model systems nondestructively and under biomimetic conditions that retain full protein functionality. Being sensitive to only the membrane-bound fraction of a water-soluble peripheral protein, neutron reflectometry obtains a low-resolution average structure of the protein-membrane complex that is further refined using integrative modeling strategies. Here, the authors review the current technological state of biological neutron reflectometry exemplified by a detailed report on the structure determination of the myristoylated human immunodeficiency virus-1 (HIV-1) Gag matrix associated with phosphoserine-containing model membranes. The authors found that the HIV-1 Gag matrix is able to adopt different configurations at the membrane in a pH-dependent manner and that the myristate group orients the protein in a way that is conducive to PIP2-binding.
Collapse
Affiliation(s)
- Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Marilia Barros
- Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kerry M Scott
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Ioannis Karageorgos
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 and NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Mathias Lösche
- Departments of Physics and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 and NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
16
|
Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly. J Virol 2017; 91:JVI.02315-16. [PMID: 28053097 DOI: 10.1128/jvi.02315-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM.IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy.
Collapse
|
17
|
Görlitz F, Kelly DJ, Warren SC, Alibhai D, West L, Kumar S, Alexandrov Y, Munro I, Garcia E, McGinty J, Talbot C, Serwa RA, Thinon E, da Paola V, Murray EJ, Stuhmeier F, Neil MAA, Tate EW, Dunsby C, French PMW. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy. J Vis Exp 2017:55119. [PMID: 28190060 PMCID: PMC5352269 DOI: 10.3791/55119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.
Collapse
Affiliation(s)
- Frederik Görlitz
- Photonics Group, Department of Physics, Imperial College London;
| | - Douglas J Kelly
- Photonics Group, Department of Physics, Imperial College London
| | - Sean C Warren
- Photonics Group, Department of Physics, Imperial College London
| | - Dominic Alibhai
- Institute for Chemical Biology, Department of Chemistry, Imperial College London
| | - Lucien West
- MRC Clinical Sciences Centre, Hammersmith Hospital
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London
| | | | - Ian Munro
- Photonics Group, Department of Physics, Imperial College London
| | - Edwin Garcia
- Photonics Group, Department of Physics, Imperial College London
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London
| | - Clifford Talbot
- Photonics Group, Department of Physics, Imperial College London
| | - Remigiusz A Serwa
- Chemical Biology Section, Department of Chemistry, Imperial College London
| | - Emmanuelle Thinon
- Chemical Biology Section, Department of Chemistry, Imperial College London
| | | | | | - Frank Stuhmeier
- Pfizer Global Research and Development, Pfizer Limited, Sandwich, Kent, UK
| | - Mark A A Neil
- Photonics Group, Department of Physics, Imperial College London
| | - Edward W Tate
- Chemical Biology Section, Department of Chemistry, Imperial College London
| | - Christopher Dunsby
- Photonics Group, Department of Physics, Imperial College London; Centre for Histopathology, Imperial College London
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London
| |
Collapse
|
18
|
O'Neil L, Andenoro K, Pagano I, Carroll L, Langer L, Dell Z, Perera D, Treece BW, Heinrich F, Lösche M, Nagle JF, Tristram-Nagle S. HIV-1 matrix-31 membrane binding peptide interacts differently with membranes containing PS vs. PI(4,5)P 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3071-3081. [PMID: 27641491 DOI: 10.1016/j.bbamem.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Efficient assembly of HIV-1 at the plasma membrane (PM) of the T-cell specifically requires PI(4,5)P2. It was previously shown that a highly basic region (HBR) of the matrix protein (MA) on the Gag precursor polyprotein Pr55Gag is required for membrane association. MA is N-terminally myristoylated, which enhances its affinity to membranes. In this work we used X-ray scattering and neutron reflectivity to determine how the physical properties and structure of lipid bilayers respond to the addition of binding domain peptides, either in the myristoylated form (MA31myr) or without the myristoyl group (MA31). Neutron reflectivity measurements showed the peptides predominantly located in the hydrocarbon interior. Diffuse X-ray scattering showed differences in membrane properties upon addition of peptides and the direction of the changes depended on lipid composition. The PI(4,5)P2-containing bilayers softened, thinned and became less ordered as peptide concentration increased. In contrast, POPS-containing bilayers with equivalent net charge first stiffened, thickened and became more ordered with increasing peptide concentration. As softening the host cell's PM upon contact with the protein lowers the free energy for membrane restructuring, thereby potentially facilitating budding of viral particles, our results suggest that the role of PI(4,5)P2 in viral assembly goes beyond specific stereochemical membrane binding. These studies reinforce the importance of lipids in virology.
Collapse
Affiliation(s)
- Lauren O'Neil
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn Andenoro
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Isabella Pagano
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Laura Carroll
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Leah Langer
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Zachary Dell
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Davina Perera
- Biomedical Engineering, Douglass College, Rutgers University, New Brunswick, NJ 08901, United States
| | - Bradley W Treece
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States; National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States
| | - Mathias Lösche
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States; National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States; Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - John F Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
19
|
HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors. PLoS Pathog 2016; 12:e1005565. [PMID: 27070420 PMCID: PMC4829213 DOI: 10.1371/journal.ppat.1005565] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.
Collapse
|
20
|
Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016; 8:v8020031. [PMID: 26828513 PMCID: PMC4776186 DOI: 10.3390/v8020031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.
Collapse
|
21
|
La Porte A, Kalpana GV. Quantification of HIV-1 Gag Localization Within Virus Producer Cells. Methods Mol Biol 2016; 1354:165-74. [PMID: 26714711 DOI: 10.1007/978-1-4939-3046-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trafficking of newly synthesized Gag protein to the plasma membrane is one of the important steps during HIV-1 assembly. It requires participation of both viral and cellular determinants. Several techniques have been used to measure the amount of Gag that is associated with plasma membrane. Here we describe a microscopy-based method to estimate the distribution of Gag protein within the producer cell. This method can be used in conjunction with other biochemical techniques to quantify the distribution of Gag within a virus-producing cell and its accumulation at the plasma membrane. Since this method is microscopy based, it allows one to quantitate Gag across the cytoplasm, from the nuclear periphery to plasma membrane, at the single-cell level.
Collapse
Affiliation(s)
- Annalena La Porte
- Department of Genetics, Albert Einstein College ofMedicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ganjam V Kalpana
- Departments of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
22
|
Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40. J Virol 2015; 90:3074-85. [PMID: 26719280 DOI: 10.1128/jvi.02607-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. IMPORTANCE Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV.
Collapse
|
23
|
Nkeze J, Li L, Benko Z, Li G, Zhao RY. Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe. Cell Biosci 2015; 5:47. [PMID: 26309721 PMCID: PMC4549081 DOI: 10.1186/s13578-015-0037-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe). Results Each one of the HIV-1 genes was cloned and expressed individually in fission yeast. Subcellular localization of each viral protein was first examined. The effect of protein expression on cellular proliferation and colony formations, an indication of cytotoxicity, were observed. Overall, there is a general correlation of subcellular localization of each viral protein between fission yeast and mammalian cells. Three viral proteins, viral protein R (Vpr), protease (PR) and regulator of expression of viral protein (Rev), were found to inhibit cellular proliferation. Rev was chosen for further analysis in fission yeast and mammalian cells. Consistent with the observation in fission yeast, expression of HIV-1 rev gene also caused growth retardation in mammalian cells. However, the observed growth delay was neither due to the cytotoxic effect nor due to alterations in cell cycling. Mechanistic testing of the Rev effect suggests it triggers transient induction of cellular oxidative stress. Conclusions Some of the behavioral and functional similarities of Rev between fission yeast and mammalian cells suggest fission yeast might be a useful model system for further studies of molecular functions of Rev and other HIV-1 viral proteins.
Collapse
Affiliation(s)
- Joseph Nkeze
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Lin Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,AIDS Research Department, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Zsigmond Benko
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ge Li
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| | - Richard Y Zhao
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201-1192 USA
| |
Collapse
|
24
|
Mariani C, Desdouits M, Favard C, Benaroch P, Muriaux DM. Role of Gag and lipids during HIV-1 assembly in CD4(+) T cells and macrophages. Front Microbiol 2014; 5:312. [PMID: 25009540 PMCID: PMC4069574 DOI: 10.3389/fmicb.2014.00312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/08/2014] [Indexed: 12/25/2022] Open
Abstract
HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages.
Collapse
Affiliation(s)
- Charlotte Mariani
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Marion Desdouits
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Cyril Favard
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Philippe Benaroch
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Delphine M Muriaux
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| |
Collapse
|
25
|
Murine leukemia virus Gag localizes to the uropod of migrating primary lymphocytes. J Virol 2014; 88:10541-55. [PMID: 24965475 DOI: 10.1128/jvi.01104-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B and CD4(+) T lymphocytes are natural targets of murine leukemia virus (MLV). Migrating lymphocytes adopt a polarized morphology with a trailing edge designated the uropod. Here, we demonstrate that MLV Gag localizes to the uropod in polarized B cells and CD4(+) T cells. The uropod localization of MLV Gag was dependent on plasma membrane (PM) association and multimerization of Gag but independent of the viral glycoprotein Env. Basic residues in MA that are required for MLV Gag recruitment to virological synapses between HEK293 and XC cells were dispensable for uropod localization in migrating B cells. Ultrastructural studies indicated that both wild-type and basic-residue mutant Gag localized to the outer surface of the PM at the uropod. Late-domain mutant virus particles were seen at the uropod in form of budding-arrested intermediates. Finally, uropods mediated contact between MLV-infected B cells and uninfected T cells to form virological synapses. Our results suggest that MLV, not unlike HIV, accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts. IMPORTANCE Viruses have evolved mechanisms to coordinate their assembly and budding with cell polarity to facilitate their spreading. In this study, we demonstrated that the viral determinants for MLV Gag to localize to the uropod in polarized B cells are distinct from the requirements to localize to virological synapses in transformed cell lines. Basic residues in MA that are required for the Gag localization to virological synapses between HEK293 and XC cells are dispensable for Gag localization to the uropod in primary B cells. Rather, plasma membrane association and capsid-driven multimerization of Gag are sufficient to drive MLV Gag to the uropod. MLV-laden uropods also mediate contacts between MLV-infected B cells and uninfected T cells to form virological synapses. Our results indicate that MLV accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts.
Collapse
|
26
|
Maldonado JO, Martin JL, Mueller JD, Zhang W, Mansky LM. New insights into retroviral Gag-Gag and Gag-membrane interactions. Front Microbiol 2014; 5:302. [PMID: 25009535 PMCID: PMC4068372 DOI: 10.3389/fmicb.2014.00302] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
A critical aspect of viral replication is the assembly of virus particles, which are subsequently released as progeny virus. While a great deal of attention has been focused on better understanding this phase of the viral life cycle, many aspects of the molecular details remain poorly understood. This is certainly true for retroviruses, including that of the human immunodeficiency virus type 1 (HIV-1; a lentivirus) as well as for human T-cell leukemia virus type 1 (HTLV-1; a deltaretrovirus). This review discusses the retroviral Gag protein and its interactions with itself, the plasma membrane and the role of lipids in targeting Gag to virus assembly sites. Recent progress using sophisticated biophysical approaches to investigate – in a comparative manner – retroviral Gag–Gag and Gag–membrane interactions are discussed. Differences among retroviruses in Gag–Gag and Gag–membrane interactions imply dissimilar molecular aspects of the viral assembly pathway, including the interactions of Gag with lipids at the membrane.
Collapse
Affiliation(s)
- José O Maldonado
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA
| | - Jessica L Martin
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA
| | - Joachim D Mueller
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 4School of Physics and Astronomy, University of Minnesota Minneapolis, MN, USA
| | - Wei Zhang
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 5Characterization Facility, University of Minnesota Minneapolis, MN, USA
| | - Louis M Mansky
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA ; 6Department of Microbiology, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
27
|
Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 2014; 88:8813-25. [PMID: 24872578 DOI: 10.1128/jvi.00992-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) exploits dendritic cells (DCs) to promote its transmission to T cells. We recently reported that the capture of HIV-1 by mature dendritic cells (MDCs) is mediated by an interaction between the glycosphingolipid (GSL) GM3 on virus particles and CD169/Siglec-1 on MDCs. Since HIV-1 preferentially buds from GSL-enriched lipid microdomains on the plasma membrane, we hypothesized that the virus assembly and budding site determines the ability of HIV-1 to interact with MDCs. In support of this hypothesis, mutations in the N-terminal basic domain (29/31KE) or deletion of the membrane-targeting domain of the HIV-1 matrix (MA) protein that altered the virus assembly and budding site to CD63(+)/Lamp-1-positive intracellular compartments resulted in lower levels of virion incorporation of GM3 and attenuation of virus capture by MDCs. Furthermore, MDC-mediated capture and transmission of MA mutant viruses to T cells were decreased, suggesting that HIV-1 acquires GSLs via budding from the plasma membrane to access the MDC-dependent trans infection pathway. Interestingly, MDC-mediated capture of Nipah and Hendra virus (recently emerged zoonotic paramyxoviruses) M (matrix) protein-derived virus-like particles that bud from GSL-enriched plasma membrane microdomains was also dependent on interactions between virion-incorporated GSLs and CD169. Moreover, capture and transfer of Nipah virus envelope glycoprotein-pseudotyped lentivirus particles by MDCs were severely attenuated upon depletion of GSLs from virus particles. These results suggest that GSL incorporation into virions is critical for the interaction of diverse enveloped RNA viruses with DCs and that the GSL-CD169 recognition nexus might be a conserved viral mechanism of parasitization of DC functions for systemic virus dissemination. IMPORTANCE Dendritic cells (DCs) can capture HIV-1 particles and transfer captured virus particles to T cells without establishing productive infection in DCs, a mechanism of HIV-1 trans infection. We have recently identified CD169-mediated recognition of GM3, a host-derived glycosphingolipid (GSL) incorporated into the virus particle membrane, as the receptor and ligand for the DC-HIV trans infection pathway. In this study, we have identified the matrix (MA) domain of Gag to be the viral determinant that governs incorporation of GM3 into HIV-1 particles, a previously unappreciated function of the HIV-1 MA. In addition, we demonstrate that the GSL-CD169-dependent trans infection pathway is also utilized as a dissemination mechanism by henipaviruses. GSL incorporation in henipaviruses was also dependent on the viral capsid (M) protein-directed assembly and budding from GSL-enriched lipid microdomains. These findings provide evidence of a conserved mechanism of retrovirus and henipavirus parasitization of cell-to-cell recognition pathways for systemic virus dissemination.
Collapse
|
28
|
Kuzembayeva M, Dilley K, Sardo L, Hu WS. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology 2014; 454-455:362-70. [PMID: 24530126 DOI: 10.1016/j.virol.2014.01.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022]
Abstract
As a member of the retrovirus family, HIV-1 packages its RNA genome into particles and replicates through a DNA intermediate that integrates into the host cellular genome. The multiple genes encoded by HIV-1 are expressed from the same promoter and their expression is regulated by splicing and ribosomal frameshift. The full-length HIV-1 RNA plays a central role in viral replication as it serves as the genome in the progeny virus and is used as the template for Gag and GagPol translation. In this review, we summarize findings that contribute to our current understanding of how full-length RNA is expressed and transported, cis- and trans-acting elements important for RNA packaging, the locations and timing of RNA:RNA and RNA:Gag interactions, and the processes required for this RNA to be packaged into viral particles.
Collapse
Affiliation(s)
- Malika Kuzembayeva
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kari Dilley
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Luca Sardo
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
29
|
Vlach J, Samal AB, Saad JS. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J Biol Chem 2014; 289:8697-705. [PMID: 24500712 DOI: 10.1074/jbc.m113.543694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8-43 (MA-(8-43)). Here, we present the NMR structure of CaM bound to MA-(8-43). Our data revealed that MA-(8-43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8-43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8-43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.
Collapse
Affiliation(s)
- Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
30
|
Abstract
Apolipoprotein L1 (APOL1) is a major component of the human innate immune response against African trypanosomes. Although the mechanism of the trypanolytic activity of circulating APOL1 has been recently clarified, the intracellular function(s) of APOL1 in human cells remains poorly defined. Like that of many genes linked to host immunity, APOL1 expression is induced by proinflammatory cytokines gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Additionally, IFN-γ-polarized macrophages that potently restrict HIV-1 replication express APOL1, which suggests that APOL1 may contribute to HIV-1 suppression. Here, we report that APOL1 inhibits HIV-1 replication by multiple mechanisms. We found that APOL1 protein targeted HIV-1 Gag for degradation by the endolysosomal pathway. Interestingly, we found that APOL1 stimulated both endocytosis and lysosomal biogenesis by promoting nuclear localization of transcription factor EB (TFEB) and expression of TFEB target genes. Moreover, we demonstrated that APOL1 depletes cellular viral accessory protein Vif, which counteracts the host restriction factor APOBEC3G, via a pathway involving degradation of Vif in lysosomes and by secretion of Vif in microvesicles. As a result of Vif depletion by APOL1, APOBEC3G was not degraded and reduced infectivity of progeny virions. In support of this model, we also showed that endogenous expression of APOL1 in differentiated U937 monocytic cells stimulated with IFN-γ resulted in a reduced production of virus particles. This finding supports the hypothesis that induction of APOL1 contributes to HIV-1 suppression in differentiated monocytes. Deciphering the precise mechanism of APOL1-mediated HIV-1 restriction may facilitate the design of unique therapeutics to target HIV-1 replication.
Collapse
|
31
|
Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2013; 2:a006924. [PMID: 22762019 DOI: 10.1101/cshperspect.a006924] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A defining property of retroviruses is their ability to assemble into particles that can leave producer cells and spread infection to susceptible cells and hosts. Virion morphogenesis can be divided into three stages: assembly, wherein the virion is created and essential components are packaged; budding, wherein the virion crosses the plasma membrane and obtains its lipid envelope; and maturation, wherein the virion changes structure and becomes infectious. All of these stages are coordinated by the Gag polyprotein and its proteolytic maturation products, which function as the major structural proteins of the virus. Here, we review our current understanding of the mechanisms of HIV-1 assembly, budding, and maturation, starting with a general overview and then providing detailed descriptions of each of the different stages of virion morphogenesis.
Collapse
Affiliation(s)
- Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | |
Collapse
|
32
|
Kim JH, Song H, Austin JL, Cheng W. Optimized Infectivity of the Cell-Free Single-Cycle Human Immunodeficiency Viruses Type 1 (HIV-1) and Its Restriction by Host Cells. PLoS One 2013; 8:e67170. [PMID: 23825637 PMCID: PMC3688982 DOI: 10.1371/journal.pone.0067170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
The infectivity of retroviruses such as HIV-1 in plasma or cultured media is less than 0.1% in general, the mechanisms of which are not yet fully understood. One possible explanation among others is the potential presence of large numbers of defective virions in a virus pool, which limits the apparent infectivity of HIV virions. To test this hypothesis, we have varied the culture conditions used to generate single-cycle HIV-1 virions. Among these culture variables, virion harvest time, media change after transfection, and envelope plasmid input can all improve HIV-1 infectivity by reducing the number of defective virions. A harvest time of 18–24 hours post transfection as opposed to 48 hours, and a media change six hours post transfection both improve viral infectivity. An optimal quantity of envelope plasmid input during transfection was also found. Collectively, these conditions increased the infectivity of HIV-1 virions by sevenfold compared to normally reported values in TZM-bl indicator cell lines. These conditions also increased the infectivity of HIV-1 in CD4+ T cells, suggesting that these conditions work by increasing the intrinsic infectivity of a virus pool. Nevertheless, these improvements on virion infectivity were marginal compared to the impact of host cells on HIV infection, which can decrease the apparent infectivity by 19-fold even for the most optimized viruses. These results suggest that the infectivity of HIV-1 virions can be optimized by reducing the number of defective virions; however, viral-cell interactions may pose a major barrier for HIV-1 infectivity.
Collapse
Affiliation(s)
- Jin H. Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hanna Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jamie L. Austin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
33
|
Iordanskiy S, Santos S, Bukrinsky M. Nature, nurture and HIV: The effect of producer cell on viral physiology. Virology 2013; 443:208-13. [PMID: 23747196 DOI: 10.1016/j.virol.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 01/13/2023]
Abstract
Macrophages and CD4-positive T lymphocytes are the major targets and producers of HIV-1. While the molecular details underlying HIV replication in macrophages and T cells become better understood, it remains unclear whether viruses produced by these target cells differ in their biological properties. Recent reports suggest that HIV virions incorporate a large number of producer cell proteins and lipids which have an effect on subsequent viral replication in newly infected cells. The identity and abundance of these incorporated factors varies between different types of producer cells, suggesting that they may influence the replication capacity and pathogenic activity of the virions produced by T cells and macrophages.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | | | | |
Collapse
|
34
|
Tan J, Sattentau QJ. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol 2013; 21:405-12. [PMID: 23735804 DOI: 10.1016/j.tim.2013.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Macrophages are a major target of HIV-1 infection and are believed to act as viral reservoirs and mediators of HIV-1-associated neurological damage. These pathological roles may be associated with the ability of the virus to assemble and accumulate in apparently intracellular compartments in macrophages. These so-called virus-containing compartments were initially thought to be late endosomes or multivesicular bodies, but it has since been shown that they are distinct structures that have complex three-dimensional morphology, a unique set of protein markers, and features such as a near-neutral pH and frequent connections to the extracellular milieu. These features appear to protect HIV-1 from hostile elements both within and outside the cell. This review discusses the cellular and molecular characteristics of HIV-1-containing compartments in macrophages and how they offer a safe haven for the virus, with important consequences for pathogenesis.
Collapse
Affiliation(s)
- Joshua Tan
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
35
|
Alibhai D, Kelly DJ, Warren S, Kumar S, Margineau A, Serwa RA, Thinon E, Alexandrov Y, Murray EJ, Stuhmeier F, Tate EW, Neil MAA, Dunsby C, French PMW. Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation. JOURNAL OF BIOPHOTONICS 2013. [PMID: 23184449 DOI: 10.1002/jbio.v6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z' factors exceeding 0.6 are realised for this FLIM FRET assay.
Collapse
Affiliation(s)
- Dominic Alibhai
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alibhai D, Kelly DJ, Warren S, Kumar S, Margineau A, Serwa RA, Thinon E, Alexandrov Y, Murray EJ, Stuhmeier F, Tate EW, Neil MAA, Dunsby C, French PMW. Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation. JOURNAL OF BIOPHOTONICS 2013; 6:398-408. [PMID: 23184449 PMCID: PMC3660788 DOI: 10.1002/jbio.201200185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/14/2012] [Indexed: 05/29/2023]
Abstract
Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z' factors exceeding 0.6 are realised for this FLIM FRET assay.
Collapse
Affiliation(s)
- Dominic Alibhai
- Institute of Chemical Biology, Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2A, UK
| | - Douglas J Kelly
- Institute of Chemical Biology, Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2A, UK
| | - Sean Warren
- Institute of Chemical Biology, Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2A, UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Anca Margineau
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Remigiusz A Serwa
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Emmanuelle Thinon
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Yuriy Alexandrov
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | | | - Frank Stuhmeier
- Pfizer Worldwide Research and DevelopmentPfizer Limited, Sandwich, Kent, CT13 9NJ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Mark A A Neil
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
- Centre for Histopathology, Imperial College LondonDu Cane Rd, London, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College LondonSouth Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
37
|
Basic residues in the matrix domain and multimerization target murine leukemia virus Gag to the virological synapse. J Virol 2013; 87:7113-26. [PMID: 23616653 DOI: 10.1128/jvi.03263-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672-7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific "acidic" interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.
Collapse
|
38
|
Timmons CL, Shao Q, Wang C, Liu L, Liu H, Dong X, Liu B. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 assembly through interference with HIV-1 gag plasma membrane targeting. J Infect Dis 2013; 207:1171-80. [PMID: 23303812 PMCID: PMC3583272 DOI: 10.1093/infdis/jit001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/31/2012] [Indexed: 02/02/2023] Open
Abstract
GB virus type C (GBV-C) is a single-stranded positive-sense RNA virus classified in the Flaviviridae family. Persistent coinfection with GBV-C is associated with lower human immunodeficiency virus type 1 (HIV-1) load, higher CD4(+) T-cell count, and prolonged survival in HIV-1 coinfected patients. The GBV-C envelope glycoprotein E2 has been reported to interfere with HIV-1 entry. In this study, we showed that the expression of GBV-C E2 inhibited HIV-1 Gag assembly and release. Expression of glycosylated GBV-C E2 inhibited HIV-1 Gag precursor processing, resulting in lower production of CAp24 and MAp17, while the overall expression level of the Gag precursor Pr55 remained unchanged. Membrane floatation gradient and indirect immunofluorescence confocal microscopy analysis showed that glycosylated E2 disrupted HIV-1 Gag trafficking to the plasma membrane, resulting in Gag accumulation in subcellular compartments. This interference in HIV-1 Gag trafficking led to diminished HIV-1 particle production, which is a critical step for HIV-1 to infect new host cells. These findings shed light on a novel mechanism used by GBV-C E2 to inhibit HIV-1 replication and may provide insight into new approaches for suppressing HIV-1 replication.
Collapse
Affiliation(s)
- Christine L Timmons
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. Proc Natl Acad Sci U S A 2013; 110:3525-30. [PMID: 23401539 DOI: 10.1073/pnas.1216655110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localization of the HIV type-1 (HIV-1) Gag protein on the plasma membrane (PM) for virus assembly is mediated by specific interactions between the N-terminal myristoylated matrix (MA) domain and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. The PM bilayer is highly asymmetric, and this asymmetry is considered crucial in cell function. In a typical mammalian cell, the inner leaflet of the PM is enriched in phosphatidylserine (PS) and phosphatidylethanolamine (PE) and contains minor populations of phosphatidylcholine (PC) and PI(4,5)P(2). There is strong evidence that efficient binding of HIV-1 Gag to membranes is sensitive not only to lipid composition and net negative charge, but also to the hydrophobic character of the acyl chains. Here, we show that PS, PE, and PC interact directly with MA via a region that is distinct from the PI(4,5)P(2) binding site. Our NMR data also show that the myristoyl group is readily exposed when MA is bound to micelles or bicelles. Strikingly, our structural data reveal a unique binding mode by which the 2'-acyl chain of PS, PE, and PC lipids is buried in a hydrophobic pocket whereas the 1'-acyl chain is exposed. Sphingomyelin, a major lipid localized exclusively on the outer layer of the PM, does not bind to MA. Our findings led us to propose a trio engagement model by which HIV-1 Gag is anchored to the PM via the 1'-acyl chains of PI(4,5)P(2) and PS/PE/PC and the myristoyl group, which collectively bracket a basic patch projecting toward the polar leaflet of the membrane.
Collapse
|
40
|
Chojnacki J, Müller B. Investigation of HIV-1 assembly and release using modern fluorescence imaging techniques. Traffic 2012; 14:15-24. [PMID: 22957540 DOI: 10.1111/tra.12006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/17/2022]
Abstract
The replication of HIV-1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV-1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus-cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV-1-host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV-1 particle formation.
Collapse
Affiliation(s)
- Jakub Chojnacki
- Department of Infectious Diseases, Virology, University Hospital of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
41
|
Virus assembly and plasma membrane domains: which came first? Virus Res 2012; 171:332-40. [PMID: 22989508 DOI: 10.1016/j.virusres.2012.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 11/23/2022]
Abstract
Viral assembly is a key step in the virus life cycle. In this review, we focus mainly on the ability of retroviruses, especially HIV-1, to assemble at the plasma membrane of their host cells. The assembly process of RNA enveloped viruses necessitates a fine orchestration between the different viral components and specific interactions between viral proteins and lipids of the host cell membrane. Searching for a comparison with another RNA enveloped virus, we refer to influenza virus to show how it could share (or not) some common features with HIV-1 assembly since both viruses are believed to assemble mainly in raft microdomains. We also discuss the role of RNA and the cellular actin cytoskeleton in enhancing these viral assembly processes. Finally, based on the literature and on new results we have obtained by molecular docking, we propose another mechanism for HIV-1 assembly in membrane domains. This mechanism involves the trapping of acidic lipids by the viral Gag protein by means of ionic protein-lipid interactions, inducing thereby formation of acidic lipid-enriched microdomains (ALEM).
Collapse
|
42
|
Malkusch S, Muranyi W, Müller B, Kräusslich HG, Heilemann M. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 2012; 139:173-9. [DOI: 10.1007/s00418-012-1014-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/08/2023]
|
43
|
Hogue IB, Llewellyn GN, Ono A. Dynamic Association between HIV-1 Gag and Membrane Domains. Mol Biol Int 2012; 2012:979765. [PMID: 22830021 PMCID: PMC3399408 DOI: 10.1155/2012/979765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/01/2012] [Indexed: 12/18/2022] Open
Abstract
HIV-1 particle assembly is driven by the structural protein Gag. Gag binds to and multimerizes on the inner leaflet of the plasma membrane, eventually resulting in formation of spherical particles. During virus spread among T cells, Gag accumulates to the plasma membrane domain that, together with target cell membrane, forms a cell junction known as the virological synapse. While Gag association with plasma membrane microdomains has been implicated in virus assembly and cell-to-cell transmission, recent studies suggest that, rather than merely accumulating to pre-existing microdomains, Gag plays an active role in reorganizing the microdomains via its multimerization activity. In this paper, we will discuss this emerging view of Gag microdomain interactions. Relationships between Gag multimerization and microdomain association will be further discussed in the context of Gag localization to T-cell uropods and virological synapses.
Collapse
Affiliation(s)
- Ian B. Hogue
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
HIV Assembly and Budding: Ca(2+) Signaling and Non-ESCRT Proteins Set the Stage. Mol Biol Int 2012; 2012:851670. [PMID: 22761998 PMCID: PMC3384956 DOI: 10.1155/2012/851670] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/26/2012] [Indexed: 12/16/2022] Open
Abstract
More than a decade has elapsed since the link between the endosomal sorting complex required for transport (ESCRT) machinery and HIV-1 protein trafficking and budding was first identified. L domains in HIV-1 Gag mediate recruitment of ESCRT which function in bud abscission releasing the viral particle from the host cell. Beyond virus budding, the ESCRT machinery is also involved in the endocytic pathway, cytokinesis, and autophagy. In the past few years, the number of non-ESCRT host proteins shown to be required in the assembly process has also grown. In this paper, we highlight the role of recently identified cellular factors that link ESCRT machinery to calcium signaling machinery and we suggest that this liaison contributes to setting the stage for productive ESCRT recruitment and mediation of abscission. Parallel paradigms for non-ESCRT roles in virus budding and cytokinesis will be discussed.
Collapse
|
45
|
Ghanam RH, Samal AB, Fernandez TF, Saad JS. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Front Microbiol 2012; 3:55. [PMID: 22363329 PMCID: PMC3281212 DOI: 10.3389/fmicb.2012.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/01/2012] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P(2) to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag's intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
46
|
Dordor A, Poudevigne E, Göttlinger H, Weissenhorn W. Essential and supporting host cell factors for HIV-1 budding. Future Microbiol 2012; 6:1159-70. [PMID: 22004035 DOI: 10.2217/fmb.11.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 employs its structural proteins to orchestrate assembly and budding at the plasma membrane of host cells. The Gag polyprotein is sufficient to form virus-like particles in the absence of other viral proteins and provides a platform to interact with numerous cellular factors that regulate Gag trafficking to the site of assembly and budding. Notably endosomal sorting complexes required for transport have attained much attention over the last decade because of their essential role in virion release. Here we review recent advances in understanding the role of host cell factors recruited by Gag during HIV-1 assembly and budding.
Collapse
Affiliation(s)
- Aurelien Dordor
- Unit of Virus Host Cell Interactions UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
47
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
48
|
Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 2012; 86:2990-3002. [PMID: 22258250 DOI: 10.1128/jvi.06874-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.
Collapse
|
49
|
HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through env-mediated fusion pores. J Virol 2012; 86:3924-33. [PMID: 22258237 DOI: 10.1128/jvi.06478-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Direct cell-to-cell transmission of human immunodeficiency virus (HIV) is a more potent and efficient means of virus propagation than infection by cell-free virus particles. The aim of this study was to determine whether cell-to-cell transmission requires the assembly of enveloped virus particles or whether nucleic acids with replication potential could translocate directly from donor to target cells through envelope glycoprotein (Env)-induced fusion pores. To this end, we characterized the transmission properties of viruses carrying mutations in the matrix protein (MA) that affect the incorporation of Env into virus particles but do not interfere with Env-mediated cell-cell fusion. By use of cell-free virus, the infectivity of MA mutant viruses was below the detection threshold both in single-cycle and in multiple-cycle assays. Truncation of the cytoplasmic tail (CT) of Env restored the incorporation of Env into MA mutant viruses and rescued their cell-free infectivity to different extents. In cell-to-cell transmission assays, MA mutations prevented HIV transmission from donor to target cells, despite efficient Env-dependent membrane fusion. HIV transmission was blocked at the level of virus core translocation into the cytosol of target cells. As in cell-free assays, rescue of Env incorporation by truncation of the Env CT restored the virus core translocation and cell-to-cell infectivity of MA mutant viruses. These data show that HIV cell-to-cell transmission requires the assembly of enveloped virus particles. The increased efficiency of this infection route may thus be attributed to the high local concentrations of virus particles at sites of cellular contacts rather than to a qualitatively different transmission process.
Collapse
|
50
|
Abstract
In macrophages, HIV-1 accumulates in intracellular vesicles designated virus-containing compartments (VCCs). These might play an important role in the constitution of macrophages as viral reservoirs and allow HIV-1 to evade the immune system by sequestration in an internal niche, which is difficult to access from the exterior. However, until now, evidence of whether internal virus accumulations are protected from the host's humoral immune response is still lacking. In order to be able to study the formation and antibody accessibility of VCCs, we generated HIV-1 with green fluorescent protein (GFP)-tagged Gag replicating in primary macrophages. Live-cell observations revealed faint initial cytosolic Gag expression and subsequent large intracellular Gag accumulations which stayed stable over days. Taking advantage of the opportunity to study the accessibility of intracellular VCCs via the cell surface, we demonstrate that macrophage internal HIV-1-containing compartments cannot be targeted by neutralizing antibodies. Furthermore, HIV-1 was efficiently transferred from antibody-treated macrophages to T cells. Three-dimensional reconstruction of electron microscopic slices revealed that Gag accumulations correspond to viral particles within enclosed compartments and convoluted membranes. Thus, although some VCCs were connected to the plasma membrane, the complex membrane architecture of the HIV-1-containing compartment might shield viral particles from neutralizing antibodies. In sum, our study provides evidence that HIV-1 is sequestered into a macrophage internal membranous web, posing an obstacle for the elimination of this viral reservoir.
Collapse
|