1
|
Current Knowledge on Spinal Meningiomas Epidemiology, Tumor Characteristics and Non-Surgical Treatment Options: A Systematic Review and Pooled Analysis (Part 1). Cancers (Basel) 2022; 14:cancers14246251. [PMID: 36551736 PMCID: PMC9776907 DOI: 10.3390/cancers14246251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Spinal meningiomas are the most common primary intradural spinal tumors. Although they are a separate entity, a large portion of the knowledge on spinal meningiomas is based on findings in intracranial meningiomas. Therefore, a comprehensive review of all the literature on spinal meningiomas was performed. METHODS Electronic databases were searched for all studies on spinal meningiomas dating from 2000 and onward. Findings of matching studies were pooled to strengthen the current body of evidence. RESULTS A total of 104 studies were included. The majority of patients were female (72.83%), elderly (peak decade: seventh), and had a world health organization (WHO) grade 1 tumor (95.7%). Interestingly, the minority of pediatric patients had a male overrepresentation (62.0% vs. 27.17%) and higher-grade tumors (33.3% vs. 4.3%). Sensory and motor dysfunction and pain were the most common presenting symptoms. Despite a handful of studies reporting promising findings associated with the use of non-surgical treatment options, the literature still suffers from contradictory results and limitations of study designs. CONCLUSIONS Elderly females with WHO grade 1 tumors constituted the stereotypical type of patient. Compared to surgical alternatives, the evidence for the use of non-surgical treatments is still relatively weak.
Collapse
|
2
|
Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy. Ther Deliv 2016; 6:453-68. [PMID: 25996044 DOI: 10.4155/tde.14.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malignant glioma is a relentless burden to both patients and clinicians, and calls for innovation to overcome the limitations in current management. Glioma therapy using viruses has been investigated to accentuate the nature of a virus, killing a host tumor cell during its replication. As virus mediated approaches progress with promising therapeutic advantages, combination therapy with chemotherapy and oncolytic viruses has emerged as a more synergistic and possibly efficacious therapy. Here, we will review malignant glioma as well as prior experience with oncolytic viruses, chemotherapy and combination of the two, examining how the combination can be optimized in the future.
Collapse
|
3
|
Kim JW, Auffinger B, Spencer DA, Miska J, Chang AL, Kane JR, Young JS, Kanojia D, Qiao J, Mann JF, Zhang L, Wu M, Ahmed AU, Aboody KS, Strong TV, Hébert CD, Lesniak MS. Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters. J Transl Med 2016; 14:134. [PMID: 27184224 PMCID: PMC4868110 DOI: 10.1186/s12967-016-0895-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/05/2016] [Indexed: 11/11/2022] Open
Abstract
Background CRAd-S-pk7 is a conditionally replicative oncolytic adenoviral vector that contains a survivin promoter and a pk7 fiber modification that confer tumor-specific transcriptional targeting and preferential replication in glioma while sparing the surrounding normal brain parenchyma. Methods This IND-enabling study performed under GLP conditions evaluated the toxicity and biodistribution of CRAd-S-pk7 administered as a single intracerebral dose to Syrian hamsters, a permissive model of adenoviral replication. Two hundred and forty animals were stereotactically administered either vehicle (n = 60) or CRAd-S-pk7 at 2.5 × 107, 2.5 × 108, or 2.5 × 109 viral particles (vp)/animal (each n = 60) on day 1. The animals were closely monitored for toxicology evaluation, assessment of viral distribution, and immunogenicity of CRAd-S-pk7. Results Changes in hematology, clinical chemistry, and coagulation parameters were minor and transient, and consistent with the inflammatory changes observed microscopically. These changes were considered to be of little toxicological significance. The vector remained localized primarily in the brain and to some degree in the tissues at the incision site. Low levels of vector DNA were detected in other tissues in a few animals suggesting systemic circulation of the virus. Viral DNA was detected in brains of hamsters for up to 62 days. However, microscopic changes and virus-related toxicity to the central nervous system were considered minor and decreased in incidence and severity over time. Such changes are not uncommon in studies using adenoviral vectors. Conclusion This study provides safety and toxicology data justifying a clinical trial of CRAd-S-pk7 loaded in FDA-approved HB1.F3.CD neural stem cell carriers administered at the tumor resection bed in humans with recurrent malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julius Woongki Kim
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Brenda Auffinger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Drew A Spencer
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Alan L Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Joshua Robert Kane
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jacob S Young
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jian Qiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jill F Mann
- Southern Research Institute, Birmingham, AL, USA
| | - Lingjiao Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | | | | | | | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
5
|
Karsy M, Guan J, Sivakumar W, Neil JA, Schmidt MH, Mahan MA. The genetic basis of intradural spinal tumors and its impact on clinical treatment. Neurosurg Focus 2015; 39:E3. [DOI: 10.3171/2015.5.focus15143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic alterations in the cells of intradural spinal tumors can have a significant impact on the treatment options, counseling, and prognosis for patients. Although surgery is the primary therapy for most intradural tumors, radiochemothera-peutic modalities and targeted interventions play an ever-evolving role in treating aggressive cancers and in addressing cancer recurrence in long-term survivors. Recent studies have helped delineate specific genetic and molecular differences between intradural spinal tumors and their intracranial counterparts and have also identified significant variation in therapeutic effects on these tumors. This review discusses the genetic and molecular alterations in the most common intradural spinal tumors in both adult and pediatrie patients, including nerve sheath tumors (that is, neurofibroma and schwannoma), meningioma, ependymoma, astrocytoma (that is, low-grade glioma, anaplastic astrocytoma, and glioblastoma), hemangioblastoma, and medulloblastoma. It also examines the genetics of metastatic tumors to the spinal cord, arising either from the CNS or from systemic sources. Importantly, the impact of this knowledge on therapeutic options and its application to clinical practice are discussed.
Collapse
|