1
|
São Marcos BDF, dos Santos DL, de Sousa GF, Cruz LCDO, Barros BRDS, de Sena MGAM, Santos VEP, Oliveira THDA, Lagos de Melo CM, de Freitas AC. Immune Response Modulation by HPV16 Oncoproteins in Lung Cancer: Insights from Clinical and In Vitro Investigations. Viruses 2024; 16:1731. [PMID: 39599846 PMCID: PMC11599038 DOI: 10.3390/v16111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer has the highest mortality rates worldwide, and Human Papillomavirus (HPV) has been associated with its carcinogenesis. In this study, HPV16 genes' expressions were investigated in patient samples, along with the immunological response promoted by lymphocytes and monocytes in A549 cells transfected with HPV oncogenes and co-cultured with PBMC. An increase in the expression of E5 was observed in the patients' samples. In the in vitro analysis, a decrease in the number of monocytes and cytotoxic cells was observed when co-stimulated by E6 and E7, and it promoted an increase in the Th2 profile. In contrast, the high proliferation of cytotoxic cells in A549 cells transfected with E5, associated with the high expression of costimulatory molecules in monocytes, suggests a low capacity of E5 to inhibit the presentation of antigens by antigen-presenting cells (APC) and a possible use of E5 in future therapeutic strategies against lung cancers associated with HPV.
Collapse
Affiliation(s)
- Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Georon Ferreira de Sousa
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Leonardo Carvalho de Oliveira Cruz
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Bárbara Rafaela da Silva Barros
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Matheus Gardini Amâncio Marques de Sena
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | | | - Cristiane Moutinho Lagos de Melo
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| |
Collapse
|
2
|
Patterson MR, Meijers AS, Ryder EL, Wootton LM, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald DA, Cogan JA, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. Oncogene 2024; 43:2184-2198. [PMID: 38789663 PMCID: PMC11226402 DOI: 10.1038/s41388-024-03067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aniek S Meijers
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Emma L Ryder
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - James A Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Debra Evans
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, UK
| | - Janne E Darell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain M Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
- VCU Massey Cancer Center, VCU, Richmond, VA, USA
| | - Adel Samson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Jones RN, Miyauchi S, Roy S, Boutros N, Mayadev JS, Mell LK, Califano JA, Venuti A, Sharabi AB. Computational and AI-driven 3D structural analysis of human papillomavirus (HPV) oncoproteins E5, E6, and E7 reveal significant divergence of HPV E5 between low-risk and high-risk genotypes. Virology 2024; 590:109946. [PMID: 38147693 DOI: 10.1016/j.virol.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
There are over 220 identified genotypes of Human papillomavirus (HPV), and the HPV genome encodes 3 major oncogenes, E5, E6, and E7. Conservation and divergence in protein sequence and function between low-risk versus high-risk oncogenic HPV genotypes has not been fully characterized. Here, we used modern computational and structural folding algorithms to perform a comparative analysis of HPV E5, E6, and E7 between multiple low risk and high risk genotypes. We first identified significantly greater sequence divergence in E5 between low- and high-risk genotypes compared to E6 and E7. Next, we used AlphaFold to model the structure of papillomavirus proteins and complexes with high confidence, including some with no established consensus structure. We observed that HPV E5, but not E6 or E7, had a dramatically different 3D structure between low-risk and high-risk genotypes. To our knowledge, this is the first comparative analysis of HPV proteins using Alphafold artificial intelligence (AI) system. The marked differences in E5 sequence and structure in high-risk HPVs may contribute in important and underappreciated ways to the development of HPV-associated cancers.
Collapse
Affiliation(s)
- Riley N Jones
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Sayuri Miyauchi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Souvick Roy
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nathalie Boutros
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Jyoti S Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Aldo Venuti
- HPV-UNIT-UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, 92037, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Lim YX, D'Silva NJ. HPV-associated oropharyngeal cancer: in search of surrogate biomarkers for early lesions. Oncogene 2024; 43:543-554. [PMID: 38191674 PMCID: PMC10873204 DOI: 10.1038/s41388-023-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
The incidence of oropharyngeal cancer (OPSCC) has escalated in the past few decades; this has largely been triggered by high-risk human papillomavirus (HPV). Early cancer screening is needed for timely clinical intervention and may reduce mortality and morbidity, but the lack of knowledge about premalignant lesions for OPSCC poses a significant challenge to early detection. Biomarkers that identify individuals at high risk for OPSCC may act as surrogate markers for precancer but these are limited as only a few studies decipher the multistep progression from HPV infection to OPSCC development. Here, we summarize the current literature describing the multistep progression from oral HPV infection, persistence, and tumor development in the oropharynx. We also examine key challenges that hinder the identification of premalignant lesions in the oropharynx and discuss potential biomarkers for oropharyngeal precancer. Finally, we evaluate novel strategies to improve investigations of the biological process that drives oral HPV persistence and OPSCC, highlighting new developments in the establishment of a genetic progression model for HPV + OPSCC and in vivo models that mimic HPV + OPSCC pathogenesis.
Collapse
Affiliation(s)
- Yvonne X Lim
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Patterson MR, Meijers AS, Ryder EL, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald D, Cogan J, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574687. [PMID: 38293147 PMCID: PMC10827106 DOI: 10.1101/2024.01.08.574687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
|
6
|
Skolnik JM, Morrow MP. Vaccines for HPV-associated diseases. Mol Aspects Med 2023; 94:101224. [PMID: 37931422 DOI: 10.1016/j.mam.2023.101224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Human papillomavirus (HPV) infection represents a significant global health concern owing to its role in the etiology of conditions ranging from benign low-grade lesions to cancers of the cervix, head and neck, anus, vagina, vulva, and penis. Prophylactic vaccination programs, primarily targeting adolescent girls, have achieved dramatic reductions in rates of HPV infection and cervical cancer in recent years. However, there is a clear demand for a strategy to manage the needs of the many people who are already living with persistent HPV infection and/or HPV-associated conditions. Unlike prophylactic vaccines, which act to prevent HPV infection, therapeutic vaccination presents an opportunity to induce cellular immunity against established HPV infections and lesions and prevent progression to cancer. Several HPV vaccines are undergoing clinical development, using a range of platforms. Peptide- or protein-based vaccines, vector-based vaccines, whole-cell vaccines, and nucleic acid vaccines each offer relative merits and limitations for the delivery of HPV antigens and the subsequent generation of targeted immune responses. There has been particular interest in DNA-based vaccines, which elicit both cellular and humoral immune responses to provide long-lasting immunity. DNA vaccines offer several practical advantages over other vaccine platforms, including the potential for rapid and scalable manufacturing, targeting of many different antigens, and potential for repeat boosting. Furthermore, unlike vectored approaches, DNA vaccines are thermostable over extended time periods, which may enable shipping and storage. Several delivery strategies are available to address the main challenge of DNA vaccines, namely their relatively low transfection efficiency. We review the latest clinical data supporting the development of DNA vaccines and reflect on this exciting prospect in the management of HPV-related disease.
Collapse
|
7
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
da Silva LL, Teles AM, Santos JMO, Souza de Andrade M, Medeiros R, Faustino-Rocha AI, Oliveira PA, dos Santos APA, Ferreira Lopes F, Braz G, Brito HO, da Costa RMG. Malignancy Associated with Low-Risk HPV6 and HPV11: A Systematic Review and Implications for Cancer Prevention. Cancers (Basel) 2023; 15:4068. [PMID: 37627099 PMCID: PMC10452364 DOI: 10.3390/cancers15164068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
High-risk human papillomavirus (HPV) is etiologically related to cervical cancer, other anogenital cancers and oropharyngeal carcinomas. Low-risk HPV, especially HPV6 and HPV11, cause genital warts and laryngeal papillomas. However, the accumulating data suggests that HPV6 and HPV11 may cause malignant lesions at non-cervical anatomic sites. This review aims to estimate the proportions of single and dual HPV6/11 infections in multiple cancers reported in the last 10 years in the Cochrane, Embasa and PubMed databases. Secondly, the genomes of HPV6/11 were compared with the most common high-risk genotype, HPV16, to determine the similarities and differences. A total of 11 articles were selected, including between one and 334 HPV+ cancer patients. The frequencies of single or dual HPV6/11 infections ranged between 0-5.5% for penile and 0-87.5% for laryngeal cancers and were null for vulvar, vaginal and oral cancers. The genomic similarities between HPV6/11 and HPV16 mainly involved the E7 gene, indicating a limited ability to block cell differentiation. The presence of single or dual HPV6/11 infections in variable proportions of penile and laryngeal cancers support the vaccination strategies that cover these genotypes, not only for preventing genital warts but also for cancer prevention. Other risk factors and co-carcinogens are likely to participate in epithelial carcinogenesis associated with low-risk HPV.
Collapse
Affiliation(s)
- Leandro Lima da Silva
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Amanda Mara Teles
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Animal Health, State University of Maranhão, São Luís 65099-110, MA, Brazil
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marcelo Souza de Andrade
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Paula Azevedo dos Santos
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Health Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil
| | - Fernanda Ferreira Lopes
- Post-Graduate Program in Odontology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Geraldo Braz
- Post-Graduate Program in Computing Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Haissa O. Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui M. Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Balaji D, Kalarani IB, Mohammed V, Veerabathiran R. Potential role of human papillomavirus proteins associated with the development of cancer. Virusdisease 2022; 33:322-333. [PMID: 36277412 PMCID: PMC9481806 DOI: 10.1007/s13337-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: "low-risk" and "high-risk." As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term "papillomaviruses" refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
10
|
Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022; 23:1818. [PMID: 35163748 PMCID: PMC8836588 DOI: 10.3390/ijms23031818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential. HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Daria A. Haręża
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
11
|
Mahmood HTNA, Tomas Bort E, Walker AJ, Grose RP, Chioni AM. FGF signalling facilitates cervical cancer progression. FEBS J 2021; 289:3440-3456. [PMID: 34951738 DOI: 10.1111/febs.16331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most frequently diagnosed cancers in women worldwide. While cervical cancer is caused by human papillomavirus (HPV), not all females infected with HPV develop the disease, suggesting that other factors might facilitate its progression. Growing evidence supports the involvement of the fibroblast growth factor receptor (FGFR) axis in several cancers, including gynecological. However, for cervical cancer, the molecular mechanisms that underpin the disease remain poorly understood, including the role of FGFR signaling. The aim of this study was to investigate FGF(R) signaling in cervical cancer through bioinformatic analysis of cell line and patient data and through detailed expression profiling, manipulation of the FGFR axis, and downstream phenotypic analysis in cell lines (HeLa, SiHa, and CaSki). Expression (protein and mRNA) analysis demonstrated that FGFR1b/c, FGFR2b/c, FGFR4, FGF2, FGF4, and FGF7 were expressed in all three lines. Interestingly, FGFR1 and 2 localized to the nucleus, supporting that nuclear FGFRs could act as transcription factors. Importantly, 2D and 3D cell cultures demonstrated that FGFR activation can facilitate cell functions correlated with invasive disease. Collectively, this study supports an association between FGFR signaling and cervical cancer progression, laying the foundations for the development of therapeutic approaches targeting FGFR in this disease.
Collapse
Affiliation(s)
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Anthony J Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
12
|
Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer. Acta Pharmacol Sin 2021; 42:1981-1990. [PMID: 33633364 PMCID: PMC8633276 DOI: 10.1038/s41401-021-00616-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/17/2021] [Indexed: 01/31/2023] Open
Abstract
Although most human papillomavirus (HPV) infections are harmless, persistent infection with high-risk types of HPV is known to be the leading cause of cervical cancer. Following the infection of the epithelium and integration into the host genome, the oncogenic proteins E6 and E7 disrupt cell cycle control by inducing p53 and retinoblastoma (Rb) degradation. Despite the FDA approval of prophylactic vaccines, there are still issues with cervical cancer treatment; thus, many therapeutic approaches have been developed to date. Due to strong immunogenicity, a high capacity for packaging foreign DNA, safety, and the ability to infect a myriad of cells, adenoviruses have drawn attention of researchers. Adenovirus vectors have been used for different purposes, including as oncolytic agents to kill cancer cells, carrier for RNA interference to block oncoproteins expression, vaccines for eliciting immune responses, especially in cytotoxic T lymphocytes (CTLs), and gene therapy vehicles for restoring p53 and Rb function.
Collapse
|
13
|
The impact of HPV infection on human glycogen and lipid metabolism - a review. Biochim Biophys Acta Rev Cancer 2021; 1877:188646. [PMID: 34763025 DOI: 10.1016/j.bbcan.2021.188646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Reinterpretation of the Wartburg effect leads to understanding aerobic glycolysis as a process that provides considerable amount of molecular precursors for the production of lipids, nucleotides and amino acids that are necessary for continuous growth and rapid proliferation characteristic for cancer cells. Human papilloma virus (HPV) is a number one cause of cervical carcinoma with 99% of the cervical cancer patients being HPV positive. This tight link between HPV and cancer raises the question if and how HPV impact cells to reprogram their metabolism? Focusing on early phase proteins E1, E2, E5, E6 and E7 we demonstrate that HPV activates plethora of metabolic pathways and directly influences enzymes of the glycolysis pathway to promote the Warburg effect by increasing glucose uptake, activating glycolysis and pentose phosphate pathway, increasing the level of lactate dehydrogenase A synthesis and inhibiting β-oxidation. Our considerations lead to conclusion that HPV is substantially involved in metabolic cell reprogramming toward neoplastic phenotype and its metabolic activity is the fundamental reason of its oncogenicity.
Collapse
|
14
|
Gupta B, Kumar A, Sridevi P. A Comprehensive in Silico Analysis for Identification of Immunotherapeutic Epitopes of HPV-18. Int J Pept Res Ther 2021; 27:2717-2726. [PMID: 34566544 PMCID: PMC8451162 DOI: 10.1007/s10989-021-10285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 10/28/2022]
Abstract
Human papillomavirus (HPV) remains the major cause of cervical cancer, globally. High risk HPV (Hr-HPV) 16 and 18 together account for more than 70% of cervical cancer cases, whereas the hr-HPV-18 is the second most prevalent hr-HPV type, causing about 5.2% of all cancers worldwide. Considering the high prevalence and mortality rate, cervical cancer remains a noteworthy health problem among women. As of now, no registered immunotherapies are available after the HPV infection. Thus, developing an immunotherapeutic candidate against hr-HPV would be of major clinical benefit. Nowadays, the T-and B-cell peptide based targeted vaccines have been considered as the best candidate for vaccine development against viral infections. In this study, both prophylactic and therapeutic vaccine candidates against hr-HPV-18 were predicted. To achieve this, the prediction of T-and B-cell epitopes of major histocompatibility complex (MHC) were accomplished, that can be used for HPV immunotherapy. For MHC-I, a maximum number (20) of potent peptides were found, against HLA-B*51:01 (L1 = 9, L2 = 6, E2 = 4, and E4 = 1) having percentile value < 1 and, immunogenicity scores higher than 0.5, followed by HLA-A*11:01 (L1 = 8, E2 = 7 L2 = 2, and E6 = 1, E7 = 1); 19 epitopes. For MHC-II, the highest number of peptides found, against the HLA-DRB1*04:01 (L2 = 10, E5 = 7, and E4 = 4), HLA-DRB1*04:05 (E5 = 7, E2 = 5, E4 = 5, and L1 = 4) HLA-DPA1*01:03/DPB1*04:01 (E7 = 7, E6 = 5, L2 = 5, and E2 = 2), HLA-DRB5*01:01(E6 = 6, L1 = 6, and L2 = 6); peptides 21, 21, 19 and 18 respectively. For B-cell, total 94, 16 amino acid long B-cell epitopes were predicted. In conclusion, these predicted epitopes can be valuable candidates for in vitro or in vivo therapeutic vaccine studies against hr-HPV-18 associated cancer.
Collapse
Affiliation(s)
- Bharti Gupta
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, 484887 Madhya Pradesh India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, 484887 Madhya Pradesh India
| |
Collapse
|
15
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
16
|
The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 2021; 40:2112-2129. [PMID: 33627786 PMCID: PMC7979541 DOI: 10.1038/s41388-021-01679-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Protein ubiquitination is a critical regulator of cellular homeostasis. Aberrations in the addition or removal of ubiquitin can result in the development of cancer and key components of the ubiquitination machinery serve as oncogenes or tumour suppressors. An emerging target in the development of cancer therapeutics are the deubiquitinase (DUB) enzymes that remove ubiquitin from protein substrates. Whether this class of enzyme plays a role in cervical cancer has not been fully explored. By interrogating the cervical cancer data from the TCGA consortium, we noted that the DUB USP13 is amplified in ~15% of cervical cancer cases. We confirmed that USP13 expression was increased in cervical cancer cell lines, cytology samples from patients with cervical disease and in cervical cancer tissue. Depletion of USP13 inhibited cervical cancer cell proliferation. Mechanistically, USP13 bound to, deubiquitinated and stabilised Mcl-1, a pivotal member of the anti-apoptotic BCL-2 family. Furthermore, reduced Mcl-1 expression partially contributed to the observed proliferative defect in USP13 depleted cells. Importantly, the expression of USP13 and Mcl-1 proteins correlated in cervical cancer tissue. Finally, we demonstrated that depletion of USP13 expression or inhibition of USP13 enzymatic activity increased the sensitivity of cervical cancer cells to the BH3 mimetic inhibitor ABT-263. Together, our data demonstrates that USP13 is a potential oncogene in cervical cancer that functions to stabilise the pro-survival protein Mcl-1, offering a potential therapeutic target for these cancers.
Collapse
|
17
|
Silva RCDO, da Silva Júnior AHP, Gurgel APAD, Barros Junior MR, Santos DL, de Lima RDCP, Batista MVA, Pena LJ, Chagas BS, Freitas AC. Structural and functional impacts of E5 genetic variants of human papillomavirus type 31. Virus Res 2020; 290:198143. [PMID: 32871208 DOI: 10.1016/j.virusres.2020.198143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
Persistent infections caused by high-risk human papillomavirus (HR-HPV) are important, for the development of cervical lesions, but environmental and genetic factors are also related in the process of carcinogenesis. Among the genetic factors, the genetic variants of HR-HPV appear to be related to the risk of persistent infections. Therefore, the present study investigates variants of HPV31 E5 oncogene in cervical scraping samples from Brazilian women to assess their functional and structural effects, in order to identify possible repercussions of these variants on the infectious and carcinogenic process. Our results detected nucleotide changes previously described in the HPV31 E5 oncogene, which may play a critical role in the development of cancer due to its ability to promote cell proliferation and signal transmission. In our study, the interaction percentage of the 31E5 sequence generated by the Immune Epitope Server database and the Analysis Resource (IEDB) allowed us to include possible immunogenic epitopes with the MHC-I and MHC-II molecules, which may represent a possible relationship between protein suppression of the immune system. In the structural analysis of the HPV31 E5 oncoprotein, the N5D, I48 V, P56A, F80I and V64I polymorphisms can be found inserted within transmembrane regions. The P56A mutation has been predicted to be highly stabilizing and, therefore, can cause a change in protein function. Regarding the interaction of the E5 protein from HPV31 with the signaling of NF-kB pathway, we observed that in all variants of the E5 gene from HPV-31, the activity of the NF-kB pathway was increased compared to the prototype. Our study contributes to a more refined design of studies with the E5 gene from HPV31 and provides important data for a better understanding of how variants can be distinguished under their clinical consequences.
Collapse
Affiliation(s)
- Ruany C de O Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Ana P A D Gurgel
- Department of Engineering and Environment, Federal University of Paraiba, Paraiba, Brazil
| | - Marconi R Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Daffany L Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Rita de C P de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Marcus V A Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Federal University of Sergipe, Sergipe, Brazil
| | - Lindomar J Pena
- Department of Virology and Experimental Therapy, Research Center Aggeu Magalhães, Oswaldo Cruz Foundation, Pernambuco, Brazil
| | - Bárbara S Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Antonio C Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil.
| |
Collapse
|
18
|
Gutierrez-Xicotencatl L, Pedroza-Saavedra A, Chihu-Amparan L, Salazar-Piña A, Maldonado-Gama M, Esquivel-Guadarrama F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol Cancer Res 2020; 19:167-179. [PMID: 33106372 DOI: 10.1158/1541-7786.mcr-20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is recognized as the main etiologic agent associated with cervical cancer. HPVs are epitheliotropic, and the ones that infect the mucous membranes are classified into low-risk (LR) and high-risk (HR) types. LR-HPVs produce benign lesions, whereas HR-HPVs produce lesions that may progress to cancer. HR-HPV types 16 and 18 are the most frequently found in cervical cancer worldwide. E6 and E7 are the major HPV oncogenic proteins, and they have been profusely studied. Moreover, it has been shown that the HPV16 E5 (16E5) oncoprotein generates transformation, although the molecular mechanisms through which it carries out its activity have not been well defined. In contrast to E6 and E7, the E5 open reading frame is lost during the integration of the episomal HPV DNA into the cellular genome. This suggests that E5 acts at the early stages of the transformation process. In this review, we focused on the biochemical characteristics and functions of the HPV E5 oncoprotein, mainly on its association with growth factor receptors and other cellular proteins. Knowledge of the HPV E5 biology is important to understand the role of this oncoprotein in maintaining the viral cycle through the modulation of proliferation, differentiation, and apoptosis, as well as the alteration of other processes, such as survival, adhesion, migration, and invasion during early carcinogenesis. Finally, we summarized recent research that uses the E5 oncoprotein as a therapeutic target, promising a novel approach to the treatment of cervical cancer in its early stages.
Collapse
Affiliation(s)
- Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Lilia Chihu-Amparan
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
19
|
Vashisht S, Mishra H, Mishra PK, Ekielski A, Talegaonkar S. Structure, Genome, Infection Cycle and Clinical Manifestations Associated with Human Papillomavirus. Curr Pharm Biotechnol 2020; 20:1260-1280. [PMID: 31376818 DOI: 10.2174/1389201020666190802115722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 11/22/2022]
Abstract
A small, non-enveloped, obligatory parasite, Human papillomavirus (HPV) is known to be the cause of a range of malignancies. These entail benign infections like genital warts as well as malignant, life-threatening conditions such as cervical cancer. Since a very high mortality rate is associated with HPV caused cancers (cervical cancer is a 2nd leading cause of death caused due to cancer among women globally), there is an escalating need to understand and search for ways to combat such medical conditions. Under the same light, the given article provides an insight into the world of this versatile pathogen. Distinct aspects related to HPV have been discussed here. Emphasis has been laid upon the composition, function and assembly of capsid proteins (structural studies) and various genetic elements and their gene products (genomic studies). The essence of the mechanism behind the development of persistent infection and modes responsible for the transmission of the infectious particles has been briefly covered. Finally, the review outlines various infections and diseases caused by HPV with a major focus on their clinical and histological manifestations.
Collapse
Affiliation(s)
- Srishti Vashisht
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India
| | - Harshita Mishra
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pawan K Mishra
- Department of Wood Processing, Mendel University in Brno, Brno, Czech Republic
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India.,School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Vonsky M, Shabaeva M, Runov A, Lebedeva N, Chowdhury S, Palefsky JM, Isaguliants M. Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:782-799. [PMID: 31509729 DOI: 10.1134/s0006297919070095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infection is responsible for approximately 5% of all cancers and is associated with 30% of all pathogen-related cancers. Cervical cancer is the third most common cancer in women worldwide; about 70% of cervical cancer cases are caused by the high-risk HPVs (HR HPVs) of genotypes 16 and 18. HPV infection occurs mainly through sexual contact; however, viral transmission via horizontal and vertical pathways is also possible. After HPV infection of basal keratinocytes or ecto-endocervical transition zone cells, viral DNA persists in the episomal form. In most cases, infected cells are eliminated by the immune system. Occasionally, elimination fails, and HPV infection becomes chronic. Replication of HPVs in dividing epithelial cells is accompanied by increased expression of the E6 and E7 oncoproteins. These oncoproteins are responsible for genomic instability, disruption of the cell cycle, cell proliferation, immortalization, and malignant transformation of HPV-infected cells. Besides, E6 and E7 oncoproteins induce immunosuppression, preventing the detection of HPV-infected and transformed cells by the immune system. HPV integration into the genome of the host cell leads to the upregulation of E6 and E7 expression and contributes to HPV-associated malignization. Prophylactic HPV vaccines can prevent over 80% of HPV-associated anogenital cancers. The vaccine elicits immune response that prevents initial infection with a given HPV type but does not eliminate persistent virus once infection has occurred and does not prevent development of the HPV-associated neoplasias, which necessitates the development of therapeutic vaccines to treat chronic HPV infections and HPV-associated malignancies.
Collapse
Affiliation(s)
- M Vonsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Almazov National Medical Research Center, St. Petersburg, 197341, Russia
| | - M Shabaeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia.
| | - A Runov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Almazov National Medical Research Center, St. Petersburg, 197341, Russia.,Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| | - N Lebedeva
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Moscow Regional Center of AIDS and Infectious Diseases Prevention and Treatment, Moscow, 129110, Russia
| | - S Chowdhury
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - J M Palefsky
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA.
| | - M Isaguliants
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.,Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, SE-171 77, Sweden.,Riga Stradins University, Department of Pathology, Riga, LV-1007, Latvia
| |
Collapse
|
21
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
22
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
23
|
A large-scale immunoinformatics analysis of the human papillomaviruses reveals a common E5 oncoprotein-pattern to evade the immune response. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Wasson CW, Morgan EL, Müller M, Ross RL, Hartley M, Roberts S, Macdonald A. Human papillomavirus type 18 E5 oncogene supports cell cycle progression and impairs epithelial differentiation by modulating growth factor receptor signalling during the virus life cycle. Oncotarget 2017; 8:103581-103600. [PMID: 29262586 PMCID: PMC5732752 DOI: 10.18632/oncotarget.21658] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 02/04/2023] Open
Abstract
Deregulation of proliferation and differentiation-dependent signalling pathways is a hallmark of human papillomavirus (HPV) infection. Although the manipulation of these pathways by E6 and E7 has been extensively studied, controversies surround the role of the E5 oncoprotein during a productive virus life cycle. By integrating primary keratinocytes harbouring wild type or E5 knockout HPV18 genomes with pharmacological and gain/loss of function models, this study aimed to provide molecular information about the role of E5 in epithelial proliferation and differentiation. We show that E5 contributes to cell cycle progression and unscheduled host DNA synthesis in differentiating keratinocytes. E5 function correlates with increased EGFR activation in differentiating cells and blockade of this pathway impairs differentiation-dependent cell cycle progression of HPV18 containing cells. Our findings provide a functional requirement of enhanced EGFR signalling for suprabasal cellular DNA synthesis during the virus life cycle. They also reveal an unrecognised contribution of E5 towards the impaired keratinocyte differentiation observed during a productive HPV infection. E5 suppresses a signalling axis consisting of the keratinocyte growth factor receptor (KGFR) pathway. Inhibition of this pathway compensates for the loss of E5 in knockout cells and re-instates the delay in differentiation. The negative regulation of KGFR involves suppression by the EGFR pathway. Thus our data reveal an unappreciated role for E5-mediated EGFR signalling in orchestrating the balance between proliferation and differentiation in suprabasal cells.
Collapse
Affiliation(s)
- Christopher W Wasson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rebecca L Ross
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Margaret Hartley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Zhu Y, Wang Y, Hirschhorn J, Welsh KJ, Zhao Z, Davis MR, Feldman S. Human Papillomavirus and Its Testing Assays, Cervical Cancer Screening, and Vaccination. Adv Clin Chem 2017. [PMID: 28629588 DOI: 10.1016/bs.acc.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) was found to be the causative agent for cervical cancer in the 1980s with almost 100% of cervical cancer cases testing positive for HPV. Since then, many studies have been conducted to elucidate the molecular basis of HPV, the mechanisms of carcinogenesis of the virus, and the risk factors for HPV infection. Traditionally, the Papanicolaou test was the primary screening method for cervical cancer. Because of the discovery and evolving understanding of the role of HPV in cervical dysplasia, HPV testing has been recommended as a new method for cervical cancer screening by major professional organizations including the American Cancer Society, American Society for Colposcopy and Cervical Pathology, and the American Society for Clinical Pathology. In order to detect HPV infections, many sensitive and specific HPV assays have been developed and used clinically. Different HPV assays with various principles have shown their unique advantages and limitations. In response to a clear causative relationship between high-risk HPV and cervical cancer, HPV vaccines have been developed which utilize virus-like particles to create an antibody response for the prevention of HPV infection. The vaccines have been shown in long-term follow-up studies to be effective for up to 8 years; however, how this may impact screening for vaccinated women remains uncertain. In this chapter, we will review the molecular basis of HPV, its pathogenesis, and the epidemiology of HPV infection and associated cervical cancer, discuss the methods of currently available HPV testing assays as well as recent guidelines for HPV screening, and introduce HPV vaccines as well as their impact on cervical cancer screening and treatments.
Collapse
Affiliation(s)
- Yusheng Zhu
- Pennsylvania State University Hershey Medical Center, Hershey, PA, United States.
| | - Yun Wang
- Medical University of South Carolina, Charleston, SC, United States
| | - Julie Hirschhorn
- Pennsylvania State University Hershey Medical Center, Hershey, PA, United States
| | - Kerry J Welsh
- National Institute of Health, Bethesda, MD, United States
| | - Zhen Zhao
- National Institute of Health, Bethesda, MD, United States
| | - Michelle R Davis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Feldman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Emerging Roles of Viroporins Encoded by DNA Viruses: Novel Targets for Antivirals? Viruses 2015; 7:5375-87. [PMID: 26501313 PMCID: PMC4632388 DOI: 10.3390/v7102880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Studies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle. Recent discoveries have identified proteins encoded by the small DNA tumor viruses that display a number of viroporin like properties. This review article summarizes the recent developments in our understanding of these novel viroporins; describes their roles in the virus life cycles and in pathogenesis and speculates on their potential as targets for anti-viral therapeutic intervention.
Collapse
|