1
|
Yu Y, Zhang N, Xiang B, Ding N, Liu J, Huang J, Zhao M, Zhao Y, Wang Y, Ma Z. In vivo characterization of cerebrovascular impairment induced by amyloid β peptide overload in glymphatic clearance system using swept-source optical coherence tomography. NEUROPHOTONICS 2023; 10:015005. [PMID: 36817752 PMCID: PMC9933996 DOI: 10.1117/1.nph.10.1.015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Antiamyloid β ( A β ) immunotherapy is a promising therapeutic strategy for Alzheimer's disease (AD) but generates large amounts of soluble A β peptides that could overwhelm the clearance pathway, leading to serious side effects. Direct implications of A β in glymphatic drainage transport for cerebral vasculature and tissue are not well known. Studies are needed to resolve this issue and pave the way to better monitoring abnormal vascular events that may occur in A β -modifying therapies for AD. AIM The objective is to characterize the modification of cerebral vasculature and tissue induced by soluble A β abundantly present in the glymphatic clearance system. APPROACH A β 1 - 42 peptide was injected intracerebroventricularly and swept-source optical coherence tomography (SS-OCT) was used to monitor the progression of changes in the brain microvascular network and tissue in vivo over 14 days. Parameters reflecting vascular morphology and structure as well as tissue status were quantified and compared before treatment. RESULTS Vascular perfusion density, vessel length, and branch density decreased sharply and persistently following peptide administration. In comparison, vascular average diameter and vascular tortuosity were moderately increased at the late stage of monitoring. Endpoint density gradually increased, and the global optical attenuation coefficient value decreased significantly over time. CONCLUSIONS A β burden in the glymphatic system directly contributes to cerebrovascular structural and morphological abnormalities and global brain tissue damage, suggesting severe deleterious properties of soluble cerebrospinal fluid- A β . We also show that OCT can be used as an effective tool to monitor cerebrovascular dynamics and tissue property changes in response to therapeutic treatments in drug discovery research.
Collapse
Affiliation(s)
- Yao Yu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Ning Zhang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Ben Xiang
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Ning Ding
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Jian Liu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Jiangmei Huang
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Min Zhao
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Yuqian Zhao
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Yi Wang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Zhenhe Ma
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| |
Collapse
|
2
|
Automatic Segmentation of Laser-Induced Injury OCT Images Based on a Deep Neural Network Model. Int J Mol Sci 2022; 23:ijms231911079. [PMID: 36232378 PMCID: PMC9570418 DOI: 10.3390/ijms231911079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Optical coherence tomography (OCT) has considerable application potential in noninvasive diagnosis and disease monitoring. Skin diseases, such as basal cell carcinoma (BCC), are destructive; hence, quantitative segmentation of the skin is very important for early diagnosis and treatment. Deep neural networks have been widely used in the boundary recognition and segmentation of diseased areas in medical images. Research on OCT skin segmentation and laser-induced skin damage segmentation based on deep neural networks is still in its infancy. Here, a segmentation and quantitative analysis pipeline of laser skin injury and skin stratification based on a deep neural network model is proposed. Based on the stratification of mouse skins, a laser injury model of mouse skins induced by lasers was constructed, and the multilayer structure and injury areas were accurately segmented by using a deep neural network method. First, the intact area of mouse skin and the damaged areas of different laser radiation doses are collected by the OCT system, and then the labels are manually labeled by experienced histologists. A variety of deep neural network models are used to realize the segmentation of skin layers and damaged areas on the skin dataset. In particular, the U-Net model based on a dual attention mechanism is used to realize the segmentation of the laser-damage structure, and the results are compared and analyzed. The segmentation results showed that the Dice coefficient of the mouse dermis layer and injury area reached more than 0.90, and the Dice coefficient of the fat layer and muscle layer reached more than 0.80. In the evaluation results, the average surface distance (ASSD) and Hausdorff distance (HD) indicated that the segmentation results are excellent, with a high overlap rate with the manually labeled area and a short edge distance. The results of this study have important application value for the quantitative analysis of laser-induced skin injury and the exploration of laser biological effects and have potential application value for the early noninvasive detection of diseases and the monitoring of postoperative recovery in the future.
Collapse
|
3
|
Optical Technologies for the Improvement of Skin Cancer Diagnosis: A Review. SENSORS 2021; 21:s21010252. [PMID: 33401739 PMCID: PMC7795742 DOI: 10.3390/s21010252] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/04/2023]
Abstract
The worldwide incidence of skin cancer has risen rapidly in the last decades, becoming one in three cancers nowadays. Currently, a person has a 4% chance of developing melanoma, the most aggressive form of skin cancer, which causes the greatest number of deaths. In the context of increasing incidence and mortality, skin cancer bears a heavy health and economic burden. Nevertheless, the 5-year survival rate for people with skin cancer significantly improves if the disease is detected and treated early. Accordingly, large research efforts have been devoted to achieve early detection and better understanding of the disease, with the aim of reversing the progressive trend of rising incidence and mortality, especially regarding melanoma. This paper reviews a variety of the optical modalities that have been used in the last years in order to improve non-invasive diagnosis of skin cancer, including confocal microscopy, multispectral imaging, three-dimensional topography, optical coherence tomography, polarimetry, self-mixing interferometry, and machine learning algorithms. The basics of each of these technologies together with the most relevant achievements obtained are described, as well as some of the obstacles still to be resolved and milestones to be met.
Collapse
|
4
|
Wan B, Ganier C, Du-Harpur X, Harun N, Watt FM, Patalay R, Lynch MD. Applications and future directions for optical coherence tomography in dermatology. Br J Dermatol 2020; 184:1014-1022. [PMID: 32974943 DOI: 10.1111/bjd.19553] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
Optical coherence tomography (OCT) is a noninvasive optical imaging method that can generate high-resolution en face and cross-sectional images of the skin in vivo to a maximum depth of 2 mm. While OCT holds considerable potential for noninvasive diagnosis and disease monitoring, it is poorly understood by many dermatologists. Here we aim to equip the practising dermatologist with an understanding of the principles of skin OCT and the potential clinical indications. We begin with an introduction to the technology and discuss the different modalities of OCT including angiographic (dynamic) OCT, which can image cutaneous blood vessels at high resolution. Next we review clinical applications. OCT has been most extensively investigated in the diagnosis of keratinocyte carcinomas, particularly basal cell carcinoma. To date, OCT has not proven sufficiently accurate for the robust diagnosis of malignant melanoma; however, the evaluation of abnormal vasculature with angiographic OCT is an area of active investigation. OCT, and in particular angiographic OCT, also shows promise in monitoring the response to therapy of inflammatory dermatoses, such as psoriasis and connective tissues disease. We additionally discuss a potential role for artificial intelligence in improving the accuracy of interpretation of OCT imaging data.
Collapse
Affiliation(s)
- B Wan
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - C Ganier
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - X Du-Harpur
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| | - N Harun
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - F M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - R Patalay
- St John's Institute of Dermatology, King's College London, London, UK
| | - M D Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK.,St John's Institute of Dermatology, King's College London, London, UK
| |
Collapse
|
5
|
Auksorius E, Boccara AC. Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28887875 DOI: 10.1117/1.jbo.22.9.096002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/09/2017] [Indexed: 05/05/2023]
Abstract
Images recorded below the surface of a finger can have more details and be of higher quality than the conventional surface fingerprint images. This is particularly true when the quality of the surface fingerprints is compromised by, for example, moisture or surface damage. However, there is an unmet need for an inexpensive fingerprint sensor that is able to acquire high-quality images deep below the surface in short time. To this end, we report on a cost-effective full-field optical coherent tomography system comprised of a silicon camera and a powerful near-infrared LED light source. The system, for example, is able to record 1.7 cm×1.7 cmen face images in 0.12 s with the spatial sampling rate of 2116 dots per inch and the sensitivity of 93 dB. We show that the system can be used to image internal fingerprints and sweat ducts with good contrast. Finally, to demonstrate its biometric performance, we acquired subsurface fingerprint images from 240 individual fingers and estimated the equal-error-rate to be ∼0.8%. The developed instrument could also be used in other en face deep-tissue imaging applications because of its high sensitivity, such as in vivo skin imaging.
Collapse
|
6
|
Goulart VP, dos Santos MO, Latrive A, Freitas AZ, Correa L, Zezell DM. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051007. [PMID: 25415566 DOI: 10.1117/1.jbo.20.5.051007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.
Collapse
Affiliation(s)
- Viviane P Goulart
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Moisés O dos Santos
- Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vargas, 1200, Parque 10 de Novembro, Manaus, 69050-020, AM, Brazil
| | - Anne Latrive
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Anderson Z Freitas
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Luciana Correa
- Universidade de Sao Paulo, Faculdade de Odontologia, Av. Lineu Prestes, 2227, Sao Paulo, 05508-000, SP, Brazil
| | - Denise M Zezell
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| |
Collapse
|
7
|
Calin MA, Parasca SV, Savastru R, Calin MR, Dontu S. Optical techniques for the noninvasive diagnosis of skin cancer. J Cancer Res Clin Oncol 2013; 139:1083-104. [PMID: 23552870 DOI: 10.1007/s00432-013-1423-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/21/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this paper is to provide an overview of the most investigated optical diagnostic techniques: optical coherence tomography, fluorescence spectrometry, reflectance spectrometry, Raman spectroscopy, and confocal microscopy. METHODS A search of three databases was conducted using specific keywords and explicit inclusion and exclusion criteria for the analysis of the performances of these techniques in the pre- and postoperative diagnosis of skin cancers. RESULTS Optical coherence tomography has shown promising results in the assessment of deep margins of skin tumors and inflammatory skin diseases, but differentiating premalignant from malignant lesions proved to be less effective. Fluorescence spectroscopy proved to be effective in revealing the biochemical composition of tissue; early detection of malignant melanoma was reliable only with stepwise two-photon excitation of melanin, while tumoral margin assessment and differential diagnosis between malignant and non-malignant lesions showed some conflicting results. Characterization of the structural properties of tissue can be made using diffuse reflectance spectrometry, and the values of the specificity and sensitivity of this method are ranging between 72-92 % and 64-92 %, respectively. Raman spectroscopy proved to have better results both in carcinoma and melanoma diagnosis with sensitivities and specificities above 90 % and high above 50 %, respectively. Confocal microscopy is the closest technique to pathological examination and has gained the most clinical acceptance, despite the need for a standardization of the interpretation algorithm. CONCLUSIONS In conclusion, these optical techniques proved to be effective in the diagnosis of skin cancer, but further studies are needed in finding the appropriate method or combination of methods that can have wide clinical applications.
Collapse
Affiliation(s)
- Mihaela Antonina Calin
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor Street, PO Box MG5, 077125 Magurele, Ilfov, Romania.
| | | | | | | | | |
Collapse
|
8
|
Alex A, Weingast J, Weinigel M, Kellner-Höfer M, Nemecek R, Binder M, Pehamberger H, König K, Drexler W. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. JOURNAL OF BIOPHOTONICS 2013; 6:352-362. [PMID: 22711418 DOI: 10.1002/jbio.201200085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 05/28/2023]
Abstract
A preliminary clinical trial using state-of-the-art multiphoton tomography (MPT) and optical coherence tomography (OCT) for three-dimensional (3D) multimodal in vivo imaging of normal skin, nevi, scars and pathologic skin lesions has been conducted. MPT enabled visualization of sub-cellular details with axial and transverse resolutions of <2 μm and <0.5 μm, respectively, from a volume of 0.35 × 0.35 × 0.2 mm(3) at a frame rate of 0.14 Hz (512 × 512 pixels). State-of-the-art OCT, operating at a center wavelength of 1300 nm, was capable of acquiring 3D images depicting the layered architecture of skin with axial and transverse resolutions ~8 μm and ~20 μm, respectively, from a volume of 7 × 3.5 × 1.5 mm(3) at a frame rate of 46 Hz (1024 × 1024 pixels). This study demonstrates the clinical diagnostic potential of MPT/OCT for pre-screening relatively large areas of skin using 3D OCT to identify suspicious regions at microscopic level and subsequently using high resolution MPT to obtain zoomed in, sub-cellular level information of the respective regions.
Collapse
Affiliation(s)
- Aneesh Alex
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blatter C, Weingast J, Alex A, Grajciar B, Wieser W, Drexler W, Huber R, Leitgeb RA. In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. BIOMEDICAL OPTICS EXPRESS 2012; 3:2636-46. [PMID: 23082302 PMCID: PMC3469999 DOI: 10.1364/boe.3.002636] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 05/17/2023]
Abstract
We demonstrate noninvasive structural and microvascular contrast imaging of different human skin diseases in vivo using an intensity difference analysis of OCT tomograms. The high-speed swept source OCT system operates at 1310 nm with 220 kHz A-scan rate. It provides an extended focus by employing a Bessel beam. The studied lesions were two cases of dermatitis and two cases of basal cell carcinoma. The lesions show characteristic vascular patterns that are significantly different from healthy skin. In case of inflammation, vessels are dilated and perfusion is increased. In case of basal cell carcinoma, the angiogram shows a denser network of unorganized vessels with large vessels close to the skin surface. Those results indicate that assessing vascular changes yields complementary information with important insight into the metabolic demand.
Collapse
Affiliation(s)
- Cedric Blatter
- Center of Medical Physics and Biomedical Engineering, Medical
University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Jessika Weingast
- Department of Dermatology, Division of General Dermatology,
Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna,
Austria
| | - Aneesh Alex
- Center of Medical Physics and Biomedical Engineering, Medical
University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Branislav Grajciar
- Center of Medical Physics and Biomedical Engineering, Medical
University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Wieser
- Lehrstuhl für BioMolekulare Optik,
Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 Munich,
Germany
| | - Wolfgang Drexler
- Center of Medical Physics and Biomedical Engineering, Medical
University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Robert Huber
- Lehrstuhl für BioMolekulare Optik,
Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 Munich,
Germany
| | - Rainer A. Leitgeb
- Center of Medical Physics and Biomedical Engineering, Medical
University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|