1
|
Raines C, Clark M, Donohue C. Profiling Swallowing Safety and Physiology in People With Huntington's Disease. Neurogastroenterol Motil 2025:e70035. [PMID: 40145488 DOI: 10.1111/nmo.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Dysphagia is prevalent in individuals with Huntington's disease (HD), yet the underlying mechanisms of dysphagia remain unknown. We profiled swallowing safety and physiology in individuals with HD using the validated Penetration-Aspiration Scale (PAS) and the Modified Barium Swallow Impairment Profile (MBSImP). METHODS This retrospective study included 40 adults with HD who underwent videofluoroscopic swallow studies (VFSS) between 2018 and 2024 at Vanderbilt University Medical Center. Trained raters extracted demographics, disease characteristics (duration, United Huntington Disease Rating Scale [UHDRS] Motor Component Total scores, cytosine, adenine, guanine [CAG] repeats), and worst PAS scores from Epic. Two MBSImP-certified clinicians performed duplicate, independent, blinded ratings to obtain overall impairment and severity ratings. Inter- and intra-rater reliability, descriptive statistics, and Spearman's Rho correlations were performed. KEY RESULTS Swallowing safety profiles observed were 65% safe, 7.5% penetration, and 27.5% aspiration. 81% of aspirators did so silently. Relationships between PAS scores and disease duration (rs = 0.336, p = 0.036) and PAS scores and UHDRS motor scores (rs = 0.382, p = 0.020) were noted. 85% of MBSImP oral phase scores and 97.5% of pharyngeal phase scores had none-to-mild severity, while 15% and 2.5%, respectively, showed moderate severity. No significant correlations were observed between MBSImP scores, demographics, or disease characteristics. CONCLUSION & INFERENCES Individuals with HD exhibited greater impairments in swallowing efficiency than in safety, with the oral phase more affected than the pharyngeal. Relationships between swallowing safety and disease severity characteristics in HD suggest these metrics may serve as indicators of swallowing safety impairments, and that further assessment is warranted.
Collapse
Affiliation(s)
- Claudia Raines
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Innovative Research in Aerodigestive Disorders Laboratory, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Makenna Clark
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Innovative Research in Aerodigestive Disorders Laboratory, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cara Donohue
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Innovative Research in Aerodigestive Disorders Laboratory, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Giannoula A, De Paepe AE, Sanz F, Furlong LI, Camara E. Identifying time patterns in Huntington's disease trajectories using dynamic time warping-based clustering on multi-modal data. Sci Rep 2025; 15:3081. [PMID: 39856140 PMCID: PMC11759715 DOI: 10.1038/s41598-025-86686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
One of the principal goals of Precision Medicine is to stratify patients by accounting for individual variability. However, extracting meaningful information from Real-World Data, such as Electronic Health Records, still remains challenging due to methodological and computational issues. A Dynamic Time Warping-based unsupervised-clustering methodology is presented in this paper for the clustering of patient trajectories of multi-modal health data on the basis of shared temporal characteristics. Building on an earlier methodology, a new dimension of time-varying clinical and imaging features is incorporated, through an adapted cost-minimization algorithm for clustering on different, possibly overlapping, feature subsets. The model disease chosen is Huntington's disease (HD), characterized by progressive neurodegeneration. From a wide range of examined user-defined parameters, four case examples are highlighted to demonstrate the identified temporal patterns in multi-modal HD trajectories and to study how these differ due to the combined effects of feature weights and granularity threshold. For each identified cluster, polynomial fits that describe the time behavior of the assessed features are provided for an informative comparison, together with their averaged values. The proposed data-mining methodology permits the stratification of distinct time patterns of multi-modal health data in individuals that share a diagnosis, by employing user-customized criteria beyond the current clinical practice. Overall, this work bears implications for better analysis of individual variability in disease progression, opening doors to personalized preventative, diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Giannoula
- Research Group on Integrative Biomedical Informatics (GRIB), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Audrey E De Paepe
- Research Group on Integrative Biomedical Informatics (GRIB), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ferran Sanz
- Research Group on Integrative Biomedical Informatics (GRIB), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Estela Camara
- Cognition and Brain Plasticity Unit, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
3
|
Quintas S, Sanles‐Falagan R, Berbís MÁ. I 123-FP-CIT (DaTSCAN) SPECT beyond the Most Common Causes of Parkinsonism: A Systematic Review. Mov Disord Clin Pract 2024; 11:613-625. [PMID: 38693679 PMCID: PMC11145110 DOI: 10.1002/mdc3.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND As the diagnosis of Parkinson's disease (PD) is fundamentally clinical, the usefulness of ioflupane (123I) single-photon emission computed tomography (SPECT) or DaTSCAN as a diagnostic tool has been a matter of debate for years. The performance of DaTSCAN is generally recommended in the follow-up of patients with a clinically uncertain diagnosis, especially in those with a suspected essential tremor, drug-induced parkinsonism, or vascular parkinsonism. However, there is a dearth of DaTSCAN findings regarding neurodegenerative parkinsonisms besides PD and atypical parkinsonisms. To date, a specific nigrostriatal dopamine uptake pattern that would help differentiate PD from the most frequent atypical parkinsonisms is yet to be described. This fact is further complicated by the possible visualization of abnormalities in the uptake pattern in patients with rarer neurodegenerative parkinsonisms. OBJECTIVES We aimed to summarize the current literature regarding DaTSCAN findings in patients with rare neurodegenerative parkinsonisms. METHODS The PubMed database was systematically screened for studies in English or Spanish up to October 15, 2023, using search terms "DaTSCAN", "ioflupane", "DaT-SPECT", "123I-FP-CIT SPECT", "dopamine transporter imaging", and "[123I] FP-CIT SPECT". Duplicated publications and studies regarding PD, atypical parkinsonisms, dystonia-parkinsonism, essential tremor, and parkinsonism due to non-degenerative causes were excluded. RESULTS The obtained results were reviewed and summarized, including DaTSCAN findings in fragile X-associated tremor/ataxia syndrome, prion diseases, Huntington's disease, spinocerebellar ataxia, hereditary spastic paraparesis, metabolic disorders, and other diseases (anti-IgLON5 disease, ring chromosome 20 syndrome, chorea-acanthocytosis, and neuronal ceroid lipofuscinosis). CONCLUSIONS This review highlights the need to determine in the future the utility and cost-effectiveness of DaTSCAN, both as a diagnostic and a prognostic tool, in patients with parkinsonian symptoms in rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonia Quintas
- Department of NeurologyLa Princesa University HospitalMadridSpain
| | | | - M. Álvaro Berbís
- Department of RadiologyHT Médica, San Juan de Dios HospitalCórdobaSpain
- Faculty of MedicineAutonomous University of MadridMadridSpain
| |
Collapse
|
4
|
Barrett MJ, Negida A, Mukhopadhyay N, Kim JK, Nawaz H, Jose J, Testa C. Optimizing Screening for Intrastriatal Interventions in Huntington's Disease Using Predictive Models. Mov Disord 2024; 39:855-862. [PMID: 38465778 PMCID: PMC11102310 DOI: 10.1002/mds.29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Intrastriatal delivery of potential therapeutics in Huntington's disease (HD) requires sufficient caudate and putamen volumes. Currently, volumetric magnetic resonance imaging is rarely done in clinical practice, and these data are not available in large research cohorts such as Enroll-HD. OBJECTIVE The objective of this study was to investigate whether predictive models can accurately classify HD patients who exceed caudate and putamen volume thresholds required for intrastriatal therapeutic interventions. METHODS We obtained and merged data for 1374 individuals across three HD cohorts: IMAGE-HD, PREDICT-HD, and TRACK-HD/TRACK-ON. We imputed missing data for clinical variables with >72% non-missing values and used the model-building algorithm BORUTA to identify the 10 most important variables. A random forest algorithm was applied to build a predictive model for putamen volume >2500 mm3 and caudate volume >2000 mm3 bilaterally. Using the same 10 predictors, we constructed a logistic regression model with predictors significant at P < 0.05. RESULTS The random forest model with 1000 trees and minimal terminal node size of 5 resulted in 83% area under the curve (AUC). The logistic regression model retaining age, CAG repeat size, and symbol digit modalities test-correct had 85.1% AUC. A probability cutoff of 0.8 resulted in 5.4% false positive and 66.7% false negative rates. CONCLUSIONS Using easily obtainable clinical data and machine learning-identified initial predictor variables, random forest, and logistic regression models can successfully identify people with sufficient striatal volumes for inclusion cutoffs. Adopting these models in prescreening could accelerate clinical trial enrollment in HD and other neurodegenerative disorders when volume cutoffs are necessary enrollment criteria. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthew J. Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmed Negida
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nitai Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jin K. Kim
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Huma Nawaz
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jefin Jose
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudia Testa
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Therapeutic targeting of Huntington's disease: Molecular and clinical approaches. Biochem Biophys Res Commun 2023; 655:18-24. [PMID: 36913762 DOI: 10.1016/j.bbrc.2023.02.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant ailment that affects a larger population. Due to its complex pathology operating at DNA, RNA, and protein levels, it is regarded as a protein-misfolding disease and an expansion repeat disorder. Despite the availability of early genetic diagnostics, disease-modifying treatments are still missing. Importantly, potential therapies are starting to make their way through clinical trials. Still, clinical trials are ongoing to discover potential drugs to relieve HD symptoms. However, now being aware of the root cause, the clinical studies are focused on molecular therapies to target it. The road to success has not been without bumps since a big phase III trial of tominersen was unexpectedly discontinued due to exceeding risks than drug's benefit to the patients. Although the trial's conclusion was disappointing, there is still cause to be optimistic about what this technique may achieve. We have reviewed the present disease-modifying therapies in clinical development for HD and examined the current landscape of developing clinical therapies. We further investigated the pharmaceutical development of Huntington's medicine in the pharma industries and addressed the existing challenges in their therapeutic success.
Collapse
|
6
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
7
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain. Molecules 2023; 28:1402. [PMID: 36771072 PMCID: PMC9921215 DOI: 10.3390/molecules28031402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD). METHODS To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. RESULTS The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. CONCLUSION The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Caligiuri M, Culbert B, Prasad N, Snell C, Hall A, Smirnova A, Churchill E, Corey-Bloom J. Graphomotor Dysfluency as a Predictor of Disease Progression in Premanifest Huntington's Disease. J Huntingtons Dis 2023; 12:283-292. [PMID: 37182891 DOI: 10.3233/jhd-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Prior studies have relied on conventional observer-based severity ratings such as the Unified Huntington's Disease Rating Scale (UHDRS) to identify early motor markers of decline in Huntington's disease (HD). OBJECTIVE The present study examined the predictive utility of graphomotor measures handwriting and drawing movements. METHODS Seventeen gene-positive premanifest HD subjects underwent comprehensive clinical, cognitive, motor, and graphomotor assessments at baseline and at follow-up intervals ranging from 9-36 months. Baseline graphomotor assessments were subjected to linear multiple regression procedures to identify factors associated with change on the comprehensive UHDRS index. RESULTS Subjects were followed for an average of 21.2 months. Three multivariate regression models based on graphomotor variables derived from a complex loop task, a maximum speed circle drawing task and a combined task returned adjusted R2 coefficients of 0.76, 0.71, and 0.80 respectively accounting for a significant portion of the variability in cUHDRS change score. The best-fit model based on the combined tasks indicated that greater decline on the cUHDRS was associated with increased pen movement dysfluency and stroke-stroke variability at baseline. CONCLUSION Performance on multiple measures of graphomotor dysfluency assessed during the premanifest or prodromal stage in at-risk HD individuals was associated with decline on a multidimensional index of HD morbidity preceding an HD diagnosis.
Collapse
Affiliation(s)
| | - Braden Culbert
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Nikita Prasad
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Chase Snell
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Andrew Hall
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Anna Smirnova
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Emma Churchill
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
9
|
Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P, Mestre TA, Panagoulias J, Ross CA, Zauderer M, Mullin AP, Romero K, Sivakumaran S, Turner EC, Long JD, Sampaio C. A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21:632-644. [PMID: 35716693 DOI: 10.1016/s1474-4422(22)00120-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK.
| | - Scott Schobel
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Klaus Romero
- Critical Path Institute, Tucson, Arizona 85718, USA
| | | | | | - Jeffrey D Long
- Department of Psychiatry, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA; Clinical Pharmacology Laboratory, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
10
|
Alpaugh M, Masnata M, de Rus Jacquet A, Lepinay E, Denis HL, Saint-Pierre M, Davies P, Planel E, Cicchetti F. Passive immunization against phosphorylated tau improves features of Huntington's disease pathology. Mol Ther 2022; 30:1500-1522. [PMID: 35051614 PMCID: PMC9077324 DOI: 10.1016/j.ymthe.2022.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Eva Lepinay
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Peter Davies
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
11
|
Alpaugh M, Denis HL, Cicchetti F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol Psychiatry 2022; 27:269-280. [PMID: 34711942 DOI: 10.1038/s41380-021-01350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
12
|
Kaur T, Brooks AF, Lapsys A, Desmond TJ, Stauff J, Arteaga J, Winton WP, Scott PJH. Synthesis and Evaluation of a Fluorine-18 Radioligand for Imaging Huntingtin Aggregates by Positron Emission Tomographic Imaging. Front Neurosci 2021; 15:766176. [PMID: 34924935 PMCID: PMC8675899 DOI: 10.3389/fnins.2021.766176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the huntingtin gene (HTT) triggers aggregation of huntingtin protein (mHTT), which is the hallmark pathology of neurodegenerative Huntington's disease (HD). Development of a high affinity 18F radiotracer would enable the study of Huntington's disease pathology using a non-invasive imaging modality, positron emission tomography (PET) imaging. Herein, we report the first synthesis of fluorine-18 imaging agent, 6-(5-((5-(2,2-difluoro-2-(fluoro-18F)ethoxy)pyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one ([18F]1), a radioligand for HD and its preclinical evaluation in vitro (autoradiography of post-mortem HD brains) and in vivo (rodent and non-human primate brain PET). [18F]1 was synthesized in a 4.1% RCY (decay corrected) and in an average molar activity of 16.5 ± 12.5 GBq/μmol (445 ± 339 Ci/mmol). [18F]1 penetrated the blood-brain barrier of both rodents and primates, and specific saturable binding in post-mortem brain slices was observed that correlated to mHTT aggregates identified by immunohistochemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Shedding a new light on Huntington's disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry 2021; 26:5441-5463. [PMID: 32514103 DOI: 10.1038/s41380-020-0787-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.
Collapse
|
14
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
15
|
Bartl S, Oueslati A, Southwell AL, Siddu A, Parth M, David LS, Maxan A, Salhat N, Burkert M, Mairhofer A, Friedrich T, Pankevych H, Balazs K, Staffler G, Hayden MR, Cicchetti F, Smrzka OW. Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: Implications for the treatment of Huntington's disease. Neurobiol Dis 2020; 141:104943. [PMID: 32407769 DOI: 10.1016/j.nbd.2020.104943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property which may serve as a new therapeutic focus. Accordingly, we set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region close to the aa586 caspase-6 cleavage site of the HTT protein. This monoclonal antibody, designated C6-17, effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, we demonstrate that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates. These findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake suggesting that this antibody could interfere with the pathological processes of mutHTT spreading in vivo.
Collapse
Affiliation(s)
| | - Abid Oueslati
- Université Laval/Centre de recherche du CHU, Québec, Canada
| | | | - Alberto Siddu
- Université Laval/Centre de recherche du CHU, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | - Oskar W Smrzka
- AFFiRiS AG, Vienna, Austria; Ablevia biotech GmbH, Vienna, Austria
| |
Collapse
|
16
|
Gosset P, Maxan A, Alpaugh M, Breger L, Dehay B, Tao Z, Ling Z, Qin C, Cisbani G, Fortin N, Vonsattel JPG, Lacroix S, Oueslati A, Bezard E, Cicchetti F. Evidence for the spread of human-derived mutant huntingtin protein in mice and non-human primates. Neurobiol Dis 2020; 141:104941. [PMID: 32422281 DOI: 10.1016/j.nbd.2020.104941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, substantial evidence has emerged to suggest that spreading of pathological proteins contributes to disease pathology in numerous neurodegenerative disorders. Work from our laboratory and others have shown that, despite its strictly genetic nature, Huntington's disease (HD) may be another condition in which this mechanism contributes to pathology. In this study, we set out to determine if the mutant huntingtin protein (mHTT) present in post-mortem brain tissue derived from HD patients can induce pathology in mice and/or non-human primates. For this, we performed three distinct sets of experiments where homogenates were injected into the brains of adult a) Wild-type (WT) and b) BACHD mice or c) non-human primates. Neuropathological assessments revealed that, while changes in the endogenous huntingtin were not apparent, mHTT could spread between cellular elements and brain structures. Furthermore, behavioural differences only occurred in the animal model of HD which already overexpressed mHTT. Taken together, our results indicate that mHTT derived from human brains has only a limited capacity to propagate between cells and does not depict prion-like characteristics. This contrasts with recent work demonstrating that other forms of mHTT - such as fibrils of a pathological polyQ length or fibroblasts and induced pluripotent stem cells derived from HD cases - can indeed disseminate disease throughout the brain in a prion-like fashion.
Collapse
Affiliation(s)
- Philippe Gosset
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Ludivine Breger
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux CNRS UMR 5293, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux CNRS UMR 5293, France
| | - Zhu Tao
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Zhang Ling
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China.
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto, ON M5S 1A8, Canada
| | - Nadia Fortin
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | | | - Steve Lacroix
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Abid Oueslati
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Erwan Bezard
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux CNRS UMR 5293, France
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
17
|
Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis 2019; 132:104569. [DOI: 10.1016/j.nbd.2019.104569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
|
18
|
Barth AL, Ray A. Progressive Circuit Changes during Learning and Disease. Neuron 2019; 104:37-46. [PMID: 31600514 DOI: 10.1016/j.neuron.2019.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
A critical step toward understanding cognition, learning, and brain dysfunction will be identification of the underlying cellular computations that occur in and across discrete brain areas, as well as how they are progressively altered by experience or disease. These computations will be revealed by targeted analyses of the neurons that perform these calculations, defined not only by their firing properties but also by their molecular identity and how they are wired within the local and broad-scale network of the brain. New studies that take advantage of sophisticated genetic tools for cell-type-specific identification and control are revealing how learning and neurological disorders initiate and successively change the properties of defined neural circuits. Understanding the temporal sequence of adaptive or pathological synaptic changes across multiple synapses within a network will shed light into how small-scale neural circuits contribute to higher cognitive functions during learning and disease.
Collapse
Affiliation(s)
- Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Huffman C. Exercise Interventions for the Management of Huntington's Disease. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol 2019; 137:981-1001. [PMID: 30788585 PMCID: PMC6531424 DOI: 10.1007/s00401-019-01973-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/02/2022]
Abstract
In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington’s disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.
Collapse
|
21
|
Zhang N, Bailus BJ, Ring KL, Ellerby LM. iPSC-based drug screening for Huntington's disease. Brain Res 2015; 1638:42-56. [PMID: 26428226 DOI: 10.1016/j.brainres.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ningzhe Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Barbara J Bailus
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Karen L Ring
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
22
|
Schiefer J, Werner CJ, Reetz K. Clinical diagnosis and management in early Huntington's disease: a review. Degener Neurol Neuromuscul Dis 2015; 5:37-50. [PMID: 32669911 PMCID: PMC7337146 DOI: 10.2147/dnnd.s49135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
This review focuses on clinical diagnosis and both pharmacological and nonpharmacological therapeutic options in early stages of the autosomal dominant inherited neurodegenerative Huntington's disease (HD). The available literature has been reviewed for motor, cognitive, and psychiatric alterations, which are the three major symptom domains of this devastating progressive disease. From a clinical point of view, one has to be aware that the HD phenotype can vary highly across individuals and during the course of the disease. Also, symptoms in juvenile HD can differ substantially from those with adult-onset of HD. Although there is no cure of HD and management is limited, motor and psychiatric symptoms often respond to pharmacotherapy, and nonpharmacological approaches as well as supportive care are essential. International treatment recommendations based on study results, critical statements, and expert opinions have been included. This review is restricted to symptomatic and supportive approaches since all attempts to establish a cure for the disease or modifying therapies have failed so far.
Collapse
Affiliation(s)
| | | | - Kathrin Reetz
- Euregional Huntington Center
- Jülich Aachen Research Alliance (JARA) – Translational Brain Medicine, Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|