1
|
Zhang T, Tian E, Xiong Y, Shen X, Li Z, Yan X, Yang Y, Zhou Z, Wang Y, Wang P. Development of a RNA-protein complex based smart drug delivery system for 9-hydroxycamptothecin. Int J Biol Macromol 2024; 276:133871. [PMID: 39009257 DOI: 10.1016/j.ijbiomac.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Tong Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ernuo Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Ying Xiong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
2
|
Han Y, Liu D, Cheng Y, Ji Q, Liu M, Zhang B, Zhou S. Maintenance of mitochondrial homeostasis for Alzheimer's disease: Strategies and challenges. Redox Biol 2023; 63:102734. [PMID: 37159984 PMCID: PMC10189488 DOI: 10.1016/j.redox.2023.102734] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.
Collapse
Affiliation(s)
- Ying Han
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
4
|
|
5
|
Damrongrak K, Kloysawat K, Bunsupa S, Sakchasri K, Wongrakpanich A, Taresco V, Cuzzucoli Crucitti V, Garnett MC, Suksiriworapong J. Delivery of acetogenin-enriched Annona muricata Linn leaf extract by folic acid-conjugated and triphenylphosphonium-conjugated poly(glycerol adipate) nanoparticles to enhance toxicity against ovarian cancer cells. Int J Pharm 2022; 618:121636. [PMID: 35259439 DOI: 10.1016/j.ijpharm.2022.121636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
The study demonstrated the fabrication of new poly(glycerol adipate) (PGA) nanoparticles decorated with folic acid (FOL-PGA) and triphenylphosphonium (TPP-PGA) and the potential on the delivery of acetogenin-enriched Annona muricata Linn leaf extract to ovarian cancer cells. FOL-PGA and TPP-PGA were successfully synthesized and used to fabricate FOL-decorated nanoparticles (FOL-NPs) and FOL-/TPP- decorated nanoparticles (FOL/TPP-NPs) by blending two polymers at a mass ratio of 1:1. All nanoparticles had small size of around 100 nm, narrow size distribution and high negative surface charge about -30 mV. The stable FOL/TPP-NPs showed highest drug loading of 14.9 ± 1.9% at 1:5 ratio of extract to polymer and reached to 35.8 ± 2.1% at higher ratio. Both nanoparticles released the extract in a biphasic sustained release manner over 5 days. The toxicity of the extract to SKOV3 cells was potentiated by FOL-NPs and FOL/TPP-NPs by 2.0 - 2.6 fold through induction of cell apoptosis. FOL/TPP-NPs showed lower IC50 and higher cellular uptake as compared to FOL-NPs. FOL-NPs exhibited folate receptor-mediated endocytosis. FOL/TPP-NPs provided more advantages than FOL-NPs in terms of stability in physiological fluid, uptake efficiency and targeting ability to mitochondria and showed a promising potential PGA platform for targeted delivery of herbal cytotoxic extracts.
Collapse
Affiliation(s)
- Kanokporn Damrongrak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kiattiphant Kloysawat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krisada Sakchasri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Martin C Garnett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
6
|
Hao BB, Deng XZ, Yang JK, Jia YD, Shang XJ, Shi YL, Yan XQ. Preparation of Folic Conjugated Magnetic Silica Mesoporous Nanoparticles and Their Encapsulated 10-HCPT Anticancer Behavior. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Shi Y, Liu W, Wu X, Zhu J, Zhou D, Liu X. A Water-Soluble Polyacid Polymer Based on Hydrophilic Metal-Organic Frameworks Using Amphoteric Carboxylic Acid Ligands as Linkers for Hydroxycamptothecin Loading and Release In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2854. [PMID: 34835619 PMCID: PMC8618358 DOI: 10.3390/nano11112854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
The poor water solubility and severe side effects of hydroxycamptothecin (HCPT) limit its clinical application; therefore, it is necessary to synthesize applicable nanodrug carriers with good solubility to expand the applications of HCPT. In this study, a hydrophilic metal-organic framework (MOF) with amphoteric carboxylic acid ligands as linkers was first synthesized and characterized. Then, water-soluble acrylamide and methacrylic acid were applied as monomers to prepare a water-soluble polyacid polymer MOF@P, which had a solubility of 370 μg/mL. The effects of the MOF@P material on the HCPT loading and solubility were investigated. The results showed that the polymer material could improve the HCPT solubility in water. Moreover, the in vitro release study indicated that the MOF@P polymeric composite exhibited a sustained-release effect on HCPT, with a cumulative release rate of 30.18% in 72 h at pH 7.4. Furthermore, the cytotoxicity test demonstrated that the hydrophilic MOF and the MOF@P had low cell toxicities. The results indicate that the prepared MOF@P polymeric complex can be applied for the sustained release of HCPT in clinics.
Collapse
Affiliation(s)
| | | | | | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Y.S.); (W.L.); (X.W.); (D.Z.)
| | | | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Y.S.); (W.L.); (X.W.); (D.Z.)
| |
Collapse
|
8
|
Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama AR, Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 2020; 21:178. [PMID: 32591920 DOI: 10.1208/s12249-020-01731-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Its poor response to current treatment options in advanced stages and the need for efficient diagnosis in early stages call for the development of new therapeutic and diagnostic strategies. Some of them are based on the use of nanometric materials as carriers and releasers of therapeutic agents and fluorescent molecules, or even on the utilization of magnetic materials that provide very interesting properties. These nanoformulations present several advantages compared with the free molecular cargo, including increased drug solubility, bioavailability, stability, and tumor specificity. Moreover, tumor multidrug resistance has been decreased in some cases, leading to improved treatment effectiveness by reducing drug dose and potential side effects. Here, we present an updated overview of the latest advances in clinical research, in vivo studies, and patents regarding the application of nanoformulations in the treatment of CRC. Based on the information gathered, a wide variety of nanomaterials are being investigated in clinical research, even in advanced phases, i.e., close to reaching the market. In sum, these novel materials can offer remarkable advantages with respect to current therapies, which could be complemented or even replaced by these nanosystems in the near future.
Collapse
|