1
|
Zhai Y, Li S, Wang H, Shan Y. Revealing the dynamic mechanism of cell-penetrating peptides across cell membranes at the single-molecule level. J Mater Chem B 2024; 12:5589-5593. [PMID: 38741568 DOI: 10.1039/d4tb00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cell-penetrating peptides (CPPs) have gained prominence in cellular drug delivery due to their extremely low toxicity and rapid cell internalization properties. Understanding the effect of CPPs' physicochemical properties on trans-membrane behavior will provide a better screening scheme for designing effective CPP-conjugated nano-drugs. Herein, the efficiency of the CPPs interacting with the cell membrane and the subsequent trans-membrane is revealed at the single-molecule level using single-molecule force spectroscopy (SMFS) and force tracing technique based on atomic force spectroscopy (AFM). The dynamic force spectroscopy (DFS) analysis indicates that cationic TAT48-60 and amphipathic MAP are more effective during the interaction with cell membrane due to the strong electrostatic interaction between CPPs and cell membrane. However, for the subsequent trans-membrane process, the hydrophobicity of Pep-7 plays a key role, showing a higher trans-membrane speed at the single-molecule level. Meanwhile, Pep-7 shows lower trans-membrane speed and probability on normal cells (Vero), which makes it more suitable as a peptide-based nano-drug to treat tumors avoiding harming normal cells. The dynamic parameters obtained in this study offer guidance for screening and modifying effective CPPs, targeting specific cell lines or tissues during the nano-drug design.
Collapse
Affiliation(s)
- Yuhang Zhai
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Hui Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
2
|
Determination of protein-protein interactions at the single-molecule level using optical tweezers. Q Rev Biophys 2022; 55:e8. [PMID: 35946323 DOI: 10.1017/s0033583522000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study protein–protein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.
Collapse
|
3
|
Molecular Recognition of Surface Trans-Sialidases in Extracellular Vesicles of the Parasite Trypanosoma cruzi Using Atomic Force Microscopy (AFM). Int J Mol Sci 2022; 23:ijms23137193. [PMID: 35806197 PMCID: PMC9266976 DOI: 10.3390/ijms23137193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Trans-sialidases (TS) are important constitutive macromolecules of the secretome present on the surface of Trypanosoma cruzi (T. cruzi) that play a central role as a virulence factor in Chagas disease. These enzymes have been related to infectivity, escape from immune surveillance and pathogenesis exhibited by this protozoan parasite. In this work, atomic force microscopy (AFM)-based single molecule-force spectroscopy is implemented as a suitable technique for the detection and location of functional TS on the surface of extracellular vesicles (EVs) released by tissue-culture cell-derived trypomastigotes (Ex-TcT). For that purpose, AFM cantilevers with functionalized tips bearing the anti-TS monoclonal antibody mAb 39 as a sense biomolecule are engineered using a covalent chemical ligation based on vinyl sulfonate click chemistry; a reliable, simple and efficient methodology for the molecular recognition of TS using the antibody-antigen interaction. Measurements of the breakdown forces between anti-TS mAb 39 antibodies and EVs performed to elucidate adhesion and forces involved in the recognition events demonstrate that EVs isolated from tissue-culture cell-derived trypomastigotes of T. cruzi are enriched in TS. Additionally, a mapping of the TS binding sites with submicrometer-scale resolution is provided. This work represents the first AFM-based molecular recognition study of Ex-TcT using an antibody-tethered AFM probe.
Collapse
|
4
|
Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy. MICROMACHINES 2022; 13:mi13010097. [PMID: 35056261 PMCID: PMC8777874 DOI: 10.3390/mi13010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we have combined nanolithography, chemical functionalization, electrical measurements and molecular recognition methods to correlate the current measured by the SiNW transistor with the presence of specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithography (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements confirmed that electrical current changes measured by the device were associated with the deposition of avidin molecules.
Collapse
|
5
|
Li S, Pang X, Zhao J, Zhang Q, Shan Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. NANOSCALE 2021; 13:17318-17324. [PMID: 34642724 DOI: 10.1039/d1nr05547j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As potential ligands, targeted peptides have become an important part in the construction of intelligent drug delivery systems (DDSs). The targeting interaction of peptides with receptors is a key point affecting the efficacy of targeted nano-drugs. Herein, three common peptides (HAIYPRH (T7), YHWYGYTPQNVI (GE11), and RGD) that have been widely used in cancer targeted therapy and tumor diagnostics, targeting the corresponding receptors (transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and ανβ3 integrin receptor), were selected as examples to study the targeting interacton on living cell surface at the single-molecule level by using single-molecule force spectroscopy (SMFS) based on atomic force microscopy (AFM). The dissociation activation energy in the absence of an external force (ΔGβ,0) of T7-TfR, GE11-EGFR, and RGD-ανβ3 integrin is evaluated at single-molecule level. Among these three peptide-receptor pairs, the T7-TfR bond is the most stable with a smaller dissociation kinetic rate constant at zero force (Koff), larger kinetic on-rate constant (Kon), and shorter interaction time (τ). Furthermore, T7 can target TfR even more effectively on A549 cell membrane after treatment with drugs. Our methodology can also be applicable to the study of other ligand targeted DDSs.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
6
|
Lo Giudice C, Dumitru AC, Alsteens D. Probing ligand-receptor bonds in physiologically relevant conditions using AFM. Anal Bioanal Chem 2019; 411:6549-6559. [PMID: 31410537 DOI: 10.1007/s00216-019-02077-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Cell surface receptors, often called transmembrane receptors, are key cellular components as they control and mediate cell communication and signalling, converting extracellular signals into intracellular signals. Elucidating the molecular details of ligand binding (cytokine, growth factors, hormones, pathogens,...) to cell surface receptors and how this binding triggers conformational changes that initiate intracellular signalling is needed to improve our understanding of cellular processes and for rational drug design. Unfortunately, the molecular complexity and high hydrophobicity of membrane proteins significantly hamper their structural and functional characterization in conditions mimicking their native environment. With its piconewton force sensitivity and (sub)nanometer spatial resolution, together with the capability of operating in liquid environment and at physiological temperature, atomic force microscopy (AFM) has proven to be one of the most powerful tools to image and quantify receptor-ligand bonds in situ under physiologically relevant conditions. In this article, a brief overview of the rapid evolution of AFM towards quantitative biological mapping will be given, followed by selected examples highlighting the main advances that AFM-based ligand-receptor studies have brought to the fields of cell biology, immunology, microbiology, and virology, along with future prospects and challenges. Graphical abstract.
Collapse
Affiliation(s)
- Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Herman K, Weiss M, Lekka M, Ptak A. How Complex Is the Concanavalin A-Carboxypeptidase Y Interaction? ACS Chem Biol 2019; 14:1611-1618. [PMID: 31287283 DOI: 10.1021/acschembio.9b00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectin-carbohydrate interactions can be exploited in ultrasensitive biochemical recognition or medical diagnosis. For this purpose, besides the high specificity of the interactions, an appropriate methodology for their quantitative and detailed characterization is demanded. In this work, we determine the unbinding properties of the concanavalin A-carboxypeptidase Y complex, which is important for characterization of glycoproteins on the surface of biological cells. To achieve the goal, we have developed a methodology based on dynamic force spectroscopy measurements and two advanced theoretical models of force-induced unbinding. Our final results allowed excluding both, rebinding processes and the multibarrier character of the interaction potential, as possible explanations of the concanavalin A-carboxypeptidase Y unbinding mechanisms. Such characteristics as the position and height of the activation barrier and the force-free dissociation rate were determined. We hope our paper contributes to a better understanding of the unbinding processes in receptor-ligand complexes.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| | - Marek Weiss
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Cracow, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| |
Collapse
|
8
|
Ma VPY, Salaita K. DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900961. [PMID: 31069945 PMCID: PMC6663650 DOI: 10.1002/smll.201900961] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Indexed: 05/24/2023]
Abstract
The ease of tailoring DNA nanostructures with sub-nanometer precision has enabled new and exciting in vivo applications in the areas of chemical sensing, imaging, and gene regulation. A new emerging paradigm in the field is that DNA nanostructures can be engineered to study molecular mechanics. This new development has transformed the repertoire of capabilities enabled by DNA to include detection of molecular forces in living cells and elucidating the fundamental mechanisms of mechanotransduction. This Review first describes fundamental aspects of force-induced melting of DNA hairpins and duplexes. This is then followed by a survey of the currently available force sensing DNA probes and different fluorescence-based force readout modes. Throughout the Review, applications of these probes in studying immune receptor signaling, including the T cell receptor and B cell receptor, as well as Notch and integrin signaling, are discussed.
Collapse
Affiliation(s)
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Ebner A, Wildling L, Gruber HJ. Functionalization of AFM Tips and Supports for Molecular Recognition Force Spectroscopy and Recognition Imaging. Methods Mol Biol 2019; 1886:117-151. [PMID: 30374865 DOI: 10.1007/978-1-4939-8894-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Linking of sensor molecules (e.g., antibodies) to an AFM tip converts it into a biosensor by which single target molecules (e.g., antigens) can be detected and localized on the sample surface. Moreover, the mechanism of interaction can be studied by force spectroscopy if purified target molecules are linked to an ultra-flat surface, such as mica or silicon (nitride). Rapid imaging of the binding sites and force spectroscopy studies are greatly facilitated if 6-10 nm long polyethylene glycol (PEG) chains are used as flexible tethers between the sensor molecule and the tip. Here, we describe a set of methods by which a variety of proteins, oligonucleotides, or small molecules can be tethered to silicon (nitride) tips or to mica. Methods are included which afford site-specific and oriented coupling of the sensor molecules.
Collapse
Affiliation(s)
- A Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - L Wildling
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - H J Gruber
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
10
|
Biswas S, Leitao S, Theillaud Q, Erickson BW, Fantner GE. Reducing uncertainties in energy dissipation measurements in atomic force spectroscopy of molecular networks and cell-adhesion studies. Sci Rep 2018; 8:9390. [PMID: 29925929 PMCID: PMC6010446 DOI: 10.1038/s41598-018-26979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/23/2018] [Indexed: 11/28/2022] Open
Abstract
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.
Collapse
Affiliation(s)
- Soma Biswas
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015, Lausanne, Switzerland
| | - Samuel Leitao
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015, Lausanne, Switzerland
| | - Quentin Theillaud
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015, Lausanne, Switzerland
| | - Blake W Erickson
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015, Lausanne, Switzerland
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Senapati S, Biswas S, Manna S, Ros R, Lindsay S, Zhang P. A Y-Shaped Three-Arm Structure for Probing Bivalent Interactions between Protein Receptor-Ligand Using AFM and SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6930-6940. [PMID: 29783836 DOI: 10.1021/acs.langmuir.8b00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of this research was to develop linkage chemistry for the study of bivalent interactions between a receptor and its ligand using atomic force microscopy (AFM) and surface plasmon resonance (SPR). We conceived a three-arm structure composed of flexible chains connected to a large rigid core with orthogonal functional groups at their ends for formation and attachment (or immobilization) of bivalent ligands. To demonstrate the principle, we chose the well-known biotin-streptavidin interaction as a model system. On the basis of a crystal structure of the biotin-streptavidin complex, we designed and synthesized a bisbiotin ligand to have a Y shape with two biotin motifs on its arms for binding and a functional group on its stem for immobilization or attachment, referred to as y-bisbiotin. First, we found that the y-bisbiotin ligand stabilized the streptavidin more than its monobiotin counterpart did in solution, which indicates that the bivalent interaction was synergistic. The y-bisbiotin was attached to AFM tips through a click reaction for the force measurement experiments, which showed that unbinding the bisbiotin from streptavidin needed twice the force of unbinding a monobiotin. For the SPR study, we added a ω-thiolated alkyl chain to y-bisbiotin for its incorporation into a monolayer. The SPR data indicated that the streptavidin dissociated from a mixed monolayer bearing y-bisbiotin much slower than from the one bearing monobiotin. This work demonstrates unique chemistry for the study of bivalent interactions using AFM and SPR.
Collapse
|
12
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
13
|
Vera AM, Carrión-Vázquez M. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy. Angew Chem Int Ed Engl 2016; 55:13970-13973. [PMID: 27735106 DOI: 10.1002/anie.201605284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Indexed: 11/08/2022]
Abstract
Single-molecule force spectroscopy based on atomic force microscopy (AFM-SMFS) has allowed the measurement of the intermolecular forces involved in protein-protein interactions at the molecular level. While intramolecular interactions are routinely identified directly by the use of polyprotein fingerprinting, there is a lack of a general method to directly identify single-molecule intermolecular unbinding events. Here, we have developed an internally controlled strategy to measure protein-protein interactions by AFM-SMFS that allows the direct identification of dissociation force peaks while ensuring single-molecule conditions. Single-molecule identification is assured by polyprotein fingerprinting while the intermolecular interaction is reported by a characteristic increase in contour length released after bond rupture. The latter is due to the exposure to force of a third protein that covalently connects the interacting pair. We demonstrate this strategy with a cohesin-dockerin interaction.
Collapse
Affiliation(s)
- Andrés M Vera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-, 28002, Madrid, Spain.
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-, 28049, Cantoblanco, Madrid, Spain.
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-, 28002, Madrid, Spain.
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-, 28049, Cantoblanco, Madrid, Spain.
| |
Collapse
|
14
|
Vera AM, Carrión-Vázquez M. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrés M. Vera
- Instituto Cajal; Consejo Superior de Investigaciones Científicas; Avda. Doctor Arce 37, E- 28002 Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-; 28049 Cantoblanco Madrid Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal; Consejo Superior de Investigaciones Científicas; Avda. Doctor Arce 37, E- 28002 Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-; 28049 Cantoblanco Madrid Spain
| |
Collapse
|
15
|
Teixeira SR, Lloyd C, Yao S, Whitaker IS, Francis L, Conlan RS, Azzopardi E. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude. Biosens Bioelectron 2016; 85:395-402. [PMID: 27196256 DOI: 10.1016/j.bios.2016.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 11/19/2022]
Abstract
α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases.
Collapse
Affiliation(s)
- Sofia Rodrigues Teixeira
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8QQ, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Catherine Lloyd
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8QQ, UK; Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Seydou Yao
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Iain S Whitaker
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Lewis Francis
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Ernest Azzopardi
- Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| |
Collapse
|
16
|
Ma CD, Acevedo-Vélez C, Wang C, Gellman SH, Abbott NL. Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2985-2995. [PMID: 26895750 DOI: 10.1021/acs.langmuir.5b04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report an investigation of the adhesive force generated between the hydrophobic tip of an atomic force microscope (AFM) and surfaces presenting oligopeptides immobilized using either short (∼1 nm) or long (∼60 nm) tethers. Specifically, we used either sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SSMCC) or 10 kDa polyethylene glycol (PEG) end-functionalized with maleimide and N-hydroxysuccinimide groups to immobilize helical oligomers of β-amino acids (β-peptides) to mixed monolayers presenting tetraethylene glycol (EG4) and amine-terminated EG4 (EG4N) groups. When SSMCC was used to immobilize the β-peptides, we measured the adhesive interaction between the AFM tip and surface to rupture through a single event with magnitude consistent with the interaction of a single β-peptide with the AFM tip. Surprisingly, this occurred even when, on average, multiple β-peptides were located within the interaction area between the AFM tip and surface. In contrast, when using the long 10 kDa PEG tether, we observed the magnitude of the adhesive interaction as well as the dynamics of the rupture events to unmask the presence of the multiple β-peptides within the interaction area. To provide insight into these observations, we formulated a simple mechanical model of the interaction of the AFM tip with the immobilized β-peptides and used the model to demonstrate that adhesion measurements performed using short tethers (but not long tethers) are dominated by the interaction of single β-peptides because (i) the mechanical properties of the short tether are highly nonlinear, thus causing one β-peptide to dominate the adhesion force at the point of rupture, and (ii) the AFM cantilever is mechanically unstable following the rupture of the adhesive interaction with a single β-peptide. Overall, our study reveals that short tethers offer the basis of an approach that facilitates measurement of adhesive interactions with single molecules presented at surfaces.
Collapse
Affiliation(s)
- C Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Chenxuan Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Gonzalez L, Rodrigues M, Maria Benito A, Pérez-García L, Puig-Vidal M, Otero J. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions. NANOTECHNOLOGY 2015; 26:495502. [PMID: 26572065 DOI: 10.1088/0957-4484/26/49/495502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin-streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s(-1)). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies.
Collapse
Affiliation(s)
- Laura Gonzalez
- SIC-BIO, Bioelectronics and Nanobioengineering Group, Department of Electronics, University of Barcelona, C/Marti i Franques, 1, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Fuhrmann A. Advances in the Theory of Single-Molecule Force Spectroscopy: Bond Potentials and Mobilities. Biophys J 2015; 109:851. [PMID: 26331241 PMCID: PMC4564686 DOI: 10.1016/j.bpj.2015.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Alexander Fuhrmann
- Bioengineering Department, University of California at San Diego, La Jolla, California.
| |
Collapse
|
19
|
Farrance OE, Paci E, Radford SE, Brockwell DJ. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments. ACS NANO 2015; 9:1315-1324. [PMID: 25646767 DOI: 10.1021/nn505135d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The atomic force microscope (AFM) is able to manipulate biomolecules and their complexes with exquisite force sensitivity and distance resolution. This capability, complemented by theoretical models, has greatly improved our understanding of the determinants of mechanical strength in proteins and revealed the diverse effects of directional forces on the energy landscape of biomolecules. In unbinding experiments, the interacting partners are usually immobilized on their respective substrates via extensible linkers. These linkers affect both the force and contour length (Lc) of the complex at rupture. Surprisingly, while the former effect is well understood, the latter is largely neglected, leading to incorrect estimations of Lc, a parameter that is often used as evidence for the detection of specific interactions and remodeling events and for the inference of interaction regions. To address this problem, a model that predicts contour length measurements from single-molecule forced-dissociation experiments is presented that considers attachment position on the AFM tip, geometric effects, and polymer dynamics of the linkers. Modeled data are compared with measured contour length distributions from several different experimental systems, revealing that current methods underestimate contour lengths. The model enables nonspecific interactions to be identified unequivocally, allows accurate determination of Lc, and, by comparing experimental and modeled distributions, enables partial unfolding events before rupture to be identified unequivocally.
Collapse
Affiliation(s)
- Oliver E Farrance
- Astbury Centre for Structural and Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds, West Yorkshire, LS2 9JT, U.K
| | | | | | | |
Collapse
|
20
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
21
|
Christenson W, Yermolenko I, Plochberger B, Camacho-Alanis F, Ros A, Ugarova TP, Ros R. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices. Ultramicroscopy 2013; 136:211-5. [PMID: 24239757 DOI: 10.1016/j.ultramic.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin-fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition.
Collapse
Affiliation(s)
- W Christenson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA; Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 2013; 42:388-404. [PMID: 24006131 DOI: 10.1007/s10439-013-0904-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Molecular biomechanics includes two themes: the study of mechanical aspects of biomolecules and the study of molecular biology of the cell using mechanical tools. The two themes are interconnected for obvious reasons. The present review focuses on one of the interconnected areas-the mechanical regulation of molecular interaction and conformational change. Recent conceptual developments are summarized, including catch bonds, regulation of molecular interaction by the history of force application, and cyclic mechanical reinforcement. These studies elucidate the mechanochemistry of some of the candidate mechanosensing molecules, thereby providing a natural connection to mechanobiology.
Collapse
|
23
|
Razvag Y, Gutkin V, Reches M. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10102-10109. [PMID: 23859476 DOI: 10.1021/la4015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.
Collapse
Affiliation(s)
- Yair Razvag
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
24
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
25
|
Practical single molecule force spectroscopy: How to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods 2013; 60:142-50. [DOI: 10.1016/j.ymeth.2013.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 11/21/2022] Open
|
26
|
Ritzefeld M, Walhorn V, Anselmetti D, Sewald N. Analysis of DNA interactions using single-molecule force spectroscopy. Amino Acids 2013; 44:1457-75. [PMID: 23468137 DOI: 10.1007/s00726-013-1474-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 11/25/2022]
Abstract
Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | | | | | | |
Collapse
|
27
|
Hentschel C, Wagner H, Smiatek J, Heuer A, Fuchs H, Zhang X, Studer A, Chi L. AFM-based force spectroscopy on polystyrene brushes: effect of brush thickness on protein adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1850-1856. [PMID: 23343216 DOI: 10.1021/la302212h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.
Collapse
Affiliation(s)
- Carsten Hentschel
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This chapter introduces atomic force microscopy (AFM) as an important tool for protein nanotechnology. A short review of AFM-based imaging, mapping, and spectroscopy of protein samples is given. AFM imaging of β-lactoglobulin nanofibrils in air is demonstrated. Basic concepts of AFM are described. Protocols for β-lactoglobulin nanofibrils and multiwall carbon nanotubes (MWCNT) samples preparation are defined. The operation of the microscope is described using MWCNT and the NanoScope E instrument in contact mode as an example. Nanostructure manipulation based on AFM nano-sweeping is demonstrated.
Collapse
|
29
|
Rettler E, Hoeppener S, Sigusch BW, Schubert US. Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation. J Mater Chem B 2013; 1:2789-2806. [DOI: 10.1039/c3tb20120a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Fuhrmann A, Getfert S, Fu Q, Reimann P, Lindsay S, Ros R. Long lifetime of hydrogen-bonded DNA basepairs by force spectroscopy. Biophys J 2012; 102:2381-90. [PMID: 22677392 DOI: 10.1016/j.bpj.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022] Open
Abstract
Electron-tunneling data suggest that a noncovalently-bonded complex of three molecules, two recognition molecules that present hydrogen-bond donor and acceptor sites via a carboxamide group, and a DNA base, remains bound for seconds. This is surprising, given that imino-proton exchange rates show that basepairs in a DNA double helix open on millisecond timescales. The long lifetime of the three-molecule complex was confirmed using force spectroscopy, but measurements on DNA basepairs are required to establish a comparison with the proton-exchange data. Here, we report on a dynamic force spectroscopy study of complexes between the bases adenine and thymine (A-T, two-hydrogen bonds) and 2-aminoadenine and thymine (2AA-T, three-hydrogen bonds). Bases were tethered to an AFM probe and mica substrate via long, covalently linked polymer tethers. Data for bond-survival probability versus force and the rupture-force distributions were well fitted by the Bell model. The resulting lifetime of the complexes at zero pulling force was ~2 s for two-hydrogen bonds (A-T) and ~4 s for three-hydrogen bonds (2AA-T). Thus, DNA basepairs in an AFM pulling experiment remain bonded for long times, even without the stabilizing influence of base-stacking in a double helix. This result suggests that the pathways for opening, and perhaps the open states themselves, are very different in the AFM and proton-exchange measurements.
Collapse
|
31
|
Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 2011; 15:710-8. [DOI: 10.1016/j.cbpa.2011.07.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/17/2022]
|
32
|
Kaur P, Fuhrmann A, Ros R, Kutner LO, Schneeweis LA, Navoa R, Steger K, Xie L, Yonan C, Abraham R, Grace MJ, Lindsay S. Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging. Biophys J 2011; 100:243-50. [PMID: 21190677 DOI: 10.1016/j.bpj.2010.11.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/12/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022] Open
Abstract
Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance-possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics.
Collapse
Affiliation(s)
- Parminder Kaur
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Madwar C, Kwan WC, Deng L, Ramström O, Schmidt R, Zou S, Cuccia LA. Perfluorophenyl azide immobilization chemistry for single molecule force spectroscopy of the concanavalin A/mannose interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16677-16680. [PMID: 20964389 DOI: 10.1021/la1036579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The versatility of perfluorophenyl azide (PFPA) derivatives makes them useful for attaching a wide variety of biomolecules and polymers to surfaces. Herein, a single molecule force spectroscopy (SMFS) study of the concanavalin A/mannose interaction was carried out using PFPA immobilization chemistry. SMFS of the concanavalin A/mannose interaction yielded an average unbinding force of 70-80 pN for loading rates between 8000 and 40,000 pN/s for mannose surfaces on aminated glass, and an unbinding force of 57 ± 20 pN at 6960 pN/s for mannose surfaces on gold-coated glass. Dynamic force spectroscopy was used to determine the dissociation rate constant, k(off), for this interaction to be 0.16 s(-1).
Collapse
Affiliation(s)
- Carolin Madwar
- Department of Chemistry & Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | | | | | | | | | | | | |
Collapse
|