1
|
Benhaghnazar RL, Medina-Kauwe L. Adenovirus-Derived Nano-Capsid Platforms for Targeted Delivery and Penetration of Macromolecules into Resistant and Metastatic Tumors. Cancers (Basel) 2023; 15:3240. [PMID: 37370850 PMCID: PMC10296971 DOI: 10.3390/cancers15123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Macromolecular therapeutics such as nucleic acids, peptides, and proteins have the potential to overcome treatment barriers for cancer. For example, nucleic acid or peptide biologics may offer an alternative strategy for attacking otherwise undruggable therapeutic targets such as transcription factors and similar oncologic drivers. Delivery of biological therapeutics into tumor cells requires a robust system of cell penetration to access therapeutic targets within the cell interior. A highly effective means of accomplishing this may be borrowed from cell-penetrating pathogens such as viruses. In particular, the cell entry function of the adenovirus penton base capsid protein has been effective at penetrating tumor cells for the intracellular deposition of macromolecular therapies and membrane-impermeable drugs. Here, we provide an overview describing the evolution of tumor-targeted penton-base-derived nano-capsids as a framework for discussing the requirements for overcoming key barriers to macromolecular delivery. The development and pre-clinical testing of these proteins for therapeutic delivery has begun to also uncover the elusive mechanism underlying the membrane-penetrating function of the penton base. An understanding of this mechanism may unlock the potential for macromolecular therapeutics to be effectively delivered into cancer cells and to provide a treatment option for tumors resisting current clinical therapies.
Collapse
Affiliation(s)
| | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Farkas DL. Biomedical Applications of Translational Optical Imaging: From Molecules to Humans. Molecules 2021; 26:molecules26216651. [PMID: 34771060 PMCID: PMC8587670 DOI: 10.3390/molecules26216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a powerful investigational tool in biomedicine, at all levels of structural organization. Its multitude of features (intensity, wavelength, polarization, interference, coherence, timing, non-linear absorption, and even interactions with itself) able to create contrast, and thus images that detail the makeup and functioning of the living state can and should be combined for maximum effect, especially if one seeks simultaneously high spatiotemporal resolution and discrimination ability within a living organism. The resulting high relevance should be directed towards a better understanding, detection of abnormalities, and ultimately cogent, precise, and effective intervention. The new optical methods and their combinations needed to address modern surgery in the operating room of the future, and major diseases such as cancer and neurodegeneration are reviewed here, with emphasis on our own work and highlighting selected applications focusing on quantitation, early detection, treatment assessment, and clinical relevance, and more generally matching the quality of the optical detection approach to the complexity of the disease. This should provide guidance for future advanced theranostics, emphasizing a tighter coupling-spatially and temporally-between detection, diagnosis, and treatment, in the hope that technologic sophistication such as that of a Mars rover can be translationally deployed in the clinic, for saving and improving lives.
Collapse
Affiliation(s)
- Daniel L. Farkas
- PhotoNanoscopy and Acceleritas Corporations, 13412 Ventura Boulevard, Sherman Oaks, CA 91423, USA; ; Tel.: +1-310-600-7102
- Clinical Photonics Corporation, 8591 Skyline Drive, Los Angeles, CA 90046, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front Bioeng Biotechnol 2020; 8:627. [PMID: 32626700 PMCID: PMC7311577 DOI: 10.3389/fbioe.2020.00627] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.
Collapse
Affiliation(s)
- Manuela Sushnitha
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Alonso-Valenteen F, Pacheco S, Srinivas D, Rentsendorj A, Chu D, Lubow J, Sims J, Miao T, Mikhael S, Hwang JY, Abrol R, Medina Kauwe LK. HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo. Nucleic Acids Res 2019; 47:11020-11043. [PMID: 31617560 PMCID: PMC6868389 DOI: 10.1093/nar/gkz900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
RNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base. Our recombinant penton base chimera contains polypeptide domains designed for noncovalent assembly with anionic molecules and tumor homing. Here, structural modeling, molecular dynamics simulations, and functional assays suggest that it forms pentameric units resembling viral capsomeres that assemble into larger capsid-like structures when combined with siRNA cargo. Pentamerization forms a barrel lined with charged residues mediating pH-responsive dissociation and exposing masked domains, providing insight on the endosomolytic mechanism. The therapeutic impact was examined on tumors expressing high levels of HER3/ErbB3 that are resistant to clinical inhibitors. Our findings suggest that our construct may utilize ligand mimicry to avoid host attack and target the siRNA to HER3+ tumors by forming multivalent capsid-like structures.
Collapse
Affiliation(s)
- Felix Alonso-Valenteen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayuri Pacheco
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Dustin Srinivas
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Altan Rentsendorj
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Chu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jay Lubow
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Sims
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tianxin Miao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simoun Mikhael
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jae Youn Hwang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Ravinder Abrol
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Lali K Medina Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Sims JD, Taguiam JM, Alonso-Valenteen F, Markman J, Agadjanian H, Chu D, Lubow J, Abrol R, Srinivas D, Jain A, Han B, Qu Y, Mirzadehgan P, Hwang JY, Rentsendorj A, Chung A, Lester J, Karlan BY, Gray HB, Gross Z, Giuliano A, Cui X, Medina-Kauwe LK. Resistance to receptor-blocking therapies primes tumors as targets for HER3-homing nanobiologics. J Control Release 2018; 271:127-138. [PMID: 29288681 PMCID: PMC5807213 DOI: 10.1016/j.jconrel.2017.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/09/2017] [Accepted: 12/21/2017] [Indexed: 01/28/2023]
Abstract
Resistance to anti-tumor therapeutics is an important clinical problem. Tumor-targeted therapies currently used in the clinic are derived from antibodies or small molecules that mitigate growth factor activity. These have improved therapeutic efficacy and safety compared to traditional treatment modalities but resistance arises in the majority of clinical cases. Targeting such resistance could improve tumor abatement and patient survival. A growing number of such tumors are characterized by prominent expression of the human epidermal growth factor receptor 3 (HER3) on the cell surface. This study presents a "Trojan-Horse" approach to combating these tumors by using a receptor-targeted biocarrier that exploits the HER3 cell surface protein as a portal to sneak therapeutics into tumor cells by mimicking an essential ligand. The biocarrier used here combines several functions within a single fusion protein for mediating targeted cell penetration and non-covalent self-assembly with therapeutic cargo, forming HER3-homing nanobiologics. Importantly, we demonstrate here that these nanobiologics are therapeutically effective in several scenarios of resistance to clinically approved targeted inhibitors of the human EGF receptor family. We also show that such inhibitors heighten efficacy of our nanobiologics on naïve tumors by augmenting HER3 expression. This approach takes advantage of a current clinical problem (i.e. resistance to growth factor inhibition) and uses it to make tumors more susceptible to HER3 nanobiologic treatment. Moreover, we demonstrate a novel approach in addressing drug resistance by taking inhibitors against which resistance arises and re-introducing these as adjuvants, sensitizing tumors to the HER3 nanobiologics described here.
Collapse
Affiliation(s)
| | | | | | | | | | - David Chu
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jay Lubow
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Anjali Jain
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bingchen Han
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | - Alice Chung
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Harry B Gray
- California Institute of Technology, Pasadena, CA, USA
| | - Zeev Gross
- Technion-Israel Institute, Haifa, Israel
| | | | | | - Lali K Medina-Kauwe
- Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 2017; 147:155-168. [PMID: 28946131 DOI: 10.1016/j.biomaterials.2017.09.020] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.
Collapse
Affiliation(s)
- Alessandro Parodi
- Department of Pharmacology, University of Illinois, Chicago College of Medicine, Chicago, IL, USA
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Noemi Arrighetti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per Lo Studio e La Cura Dei Tumori, Milan, Italy
| | - Claudia Corbo
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
8
|
Sims JD, Hwang JY, Wagner S, Alonso-Valenteen F, Hanson C, Taguiam JM, Polo R, Harutyunyan I, Karapetyan G, Sorasaenee K, Ibrahim A, Marban E, Moats R, Gray HB, Gross Z, Medina-Kauwe LK. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity. J Control Release 2015; 217:92-101. [PMID: 26334483 DOI: 10.1016/j.jconrel.2015.08.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
Water-soluble corroles with inherent fluorescence can form stable self-assemblies with tumor-targeted cell penetration proteins, and have been explored as agents for optical imaging and photosensitization of tumors in pre-clinical studies. However, the limited tissue-depth of excitation wavelengths limits their clinical applicability. To examine their utility in more clinically-relevant imaging and therapeutic modalities, here we have explored the use of corroles as contrast enhancing agents for magnetic resonance imaging (MRI), and evaluated their potential for tumor-selective delivery when encapsulated by a tumor-targeted polypeptide. We have found that a manganese-metallated corrole exhibits significant T1 relaxation shortening and MRI contrast enhancement that is blocked by particle formation in solution but yields considerable MRI contrast after tissue uptake. Cell entry but not low pH enables this. Additionally, the corrole elicited tumor-toxicity through the loss of mitochondrial membrane potential and cytoskeletal breakdown when delivered by the targeted polypeptide. The protein-corrole particle (which we call HerMn) exhibited improved therapeutic efficacy compared to current targeted therapies used in the clinic. Taken together with its tumor-preferential biodistribution, our findings indicate that HerMn can facilitate tumor-targeted toxicity after systemic delivery and tumor-selective MR imaging activatable by internalization.
Collapse
Affiliation(s)
- Jessica D Sims
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Youn Hwang
- Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Shawn Wagner
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Chris Hanson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Michael Taguiam
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Polo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ira Harutyunyan
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Reseach Institute, Children's Hospital, Keck Medical School of USC, Los Angeles, USA
| | - Gevorg Karapetyan
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Reseach Institute, Children's Hospital, Keck Medical School of USC, Los Angeles, USA
| | - Karn Sorasaenee
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Reseach Institute, Children's Hospital, Keck Medical School of USC, Los Angeles, USA
| | - Ahmed Ibrahim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marban
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rex Moats
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Reseach Institute, Children's Hospital, Keck Medical School of USC, Los Angeles, USA
| | - Harry B Gray
- Department of Chemistry, California Institute of Technology, Pasadena, CA, USA
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute, Haifa, Israel
| | - Lali K Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Geffen School of Medicine, University of California-Los Angeles, USA.
| |
Collapse
|
9
|
Bell IR, Sarter B, Koithan M, Banerji P, Banerji P, Jain S, Ives J. Integrative nanomedicine: treating cancer with nanoscale natural products. Glob Adv Health Med 2014; 3:36-53. [PMID: 24753994 PMCID: PMC3921611 DOI: 10.7453/gahmj.2013.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Finding safer and more effective treatments for specific cancers remains a significant challenge for integrative clinicians and researchers worldwide. One emerging strategy is the use of nanostructured forms of drugs, vaccines, traditional animal venoms, herbs, and nutraceutical agents in cancer treatment. The recent discovery of nanoparticles in traditional homeopathic medicines adds another point of convergence between modern nanomedicine and alternative interventional strategies. A way in which homeopathic remedies could initiate anticancer effects includes cell-to-cell signaling actions of both exogenous and endogenous (exosome) nanoparticles. The result can be a cascade of modulatory biological events with antiproliferative and pro-apoptotic effects. The Banerji Protocols reflect a multigenerational clinical system developed by homeopathic physicians in India who have treated thousands of patients with cancer. A number of homeopathic remedy sources from the Banerji Protocols (eg, Calcarea phosphorica; Carcinosin-tumor-derived breast cancer tissue prepared homeopathically) overlap those already under study in nonhomeopathic nanoparticle and nanovesicle tumor exosome cancer vaccine research. Past research on antineoplastic effects of nano forms of botanical extracts such as Phytolacca, Gelsemium, Hydrastis, Thuja, and Ruta as well as on homeopathic remedy potencies made from the same types of source materials suggests other important overlaps. The replicated finding of silica, silicon, and nano-silica release from agitation of liquids in glassware adds a proven nonspecific activator and amplifier of immunological effects. Taken together, the nanoparticulate research data and the Banerji Protocols for homeopathic remedies in cancer suggest a way forward for generating advances in cancer treatment with natural product-derived nanomedicines.
Collapse
Affiliation(s)
- Iris R Bell
- Department of Family and Community Medicine, The University of Arizona College of Medicine, Tucson (Dr Bell), United States
| | - Barbara Sarter
- Hahn School of Nursing and Health Sciences, University of San Diego, California, and Bastyr University - California (Dr Sarter), United States
| | - Mary Koithan
- College of Nursing, The University of Arizona (Drs Koithan), United States
| | | | - Pratip Banerji
- PBH Research Foundation, Kolkata, India (Drs Banerji), India
| | - Shamini Jain
- Samueli Institute, Alexandria, Virginia (Dr Jain), United States
| | - John Ives
- Samueli Institute, Alexandria, Virginia (Dr Ives), United States
| |
Collapse
|
10
|
Hwang JY, Farkas DL, Medina-Kauwe LK. Analysis of targeted viral protein nanoparticles delivered to HER2+ tumors. J Vis Exp 2013. [PMID: 23851334 DOI: 10.3791/50396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The HER2+ tumor-targeted nanoparticle, HerDox, exhibits tumor-preferential accumulation and tumor-growth ablation in an animal model of HER2+ cancer. HerDox is formed by non-covalent self-assembly of a tumor targeted cell penetration protein with the chemotherapy agent, doxorubicin, via a small nucleic acid linker. A combination of electrophilic, intercalation, and oligomerization interactions facilitate self-assembly into round 10-20 nm particles. HerDox exhibits stability in blood as well as in extended storage at different temperatures. Systemic delivery of HerDox in tumor-bearing mice results in tumor-cell death with no detectable adverse effects to non-tumor tissue, including the heart and liver (which undergo marked damage by untargeted doxorubicin). HER2 elevation facilitates targeting to cells expressing the human epidermal growth factor receptor, hence tumors displaying elevated HER2 levels exhibit greater accumulation of HerDox compared to cells expressing lower levels, both in vitro and in vivo. Fluorescence intensity imaging combined with in situ confocal and spectral analysis has allowed us to verify in vivo tumor targeting and tumor cell penetration of HerDox after systemic delivery. Here we detail our methods for assessing tumor targeting via multimode imaging after systemic delivery.
Collapse
Affiliation(s)
- Jae Youn Hwang
- Department of Biomedical Engineering, University of Southern California, CA, USA
| | | | | |
Collapse
|
11
|
Abstract
The outer shell of the adenovirus capsid comprises three major types of protein (hexon, penton base and fiber) that perform the majority of functions facilitating the early stages of adenovirus infection. These stages include initial cell-surface binding followed by receptor-mediated endocytosis, endosomal penetration and cytosolic entry, and intracellular trafficking toward the nucleus. Numerous studies have shown that the penton base contributes to several of these steps and have supported the development of this protein into a delivery agent for therapeutic molecules. Studies revealing that the fiber and hexon bear unexpected properties of cell entry and/or nuclear homing have supported the development of these capsid proteins, as well into potential delivery vehicles. This review summarizes the findings to date of the protein-cell activities of these capsid proteins in the absence of the whole virus and their potential for therapeutic application with regard to the delivery of foreign molecules.
Collapse
|
12
|
Photoexcitation of tumor-targeted corroles induces singlet oxygen-mediated augmentation of cytotoxicity. J Control Release 2012; 163:368-73. [PMID: 23041277 DOI: 10.1016/j.jconrel.2012.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
The tumor-targeted corrole particle, HerGa, displays preferential toxicity to tumors in vivo and can be tracked via fluorescence for simultaneous detection, imaging, and treatment. We have recently uncovered an additional feature of HerGa in that its cytotoxicity is enhanced by light irradiation. In the present study, we have elucidated the cellular mechanisms for HerGa photoexcitation-mediated cell damage using fluorescence optical imaging. In particular, we found that light irradiation of HerGa produces singlet oxygen, causing mitochondrial damage and cytochrome c release, thus promoting apoptotic cell death. An understanding of the mechanisms of cell death induced by HerGa, particularly under conditions of light-mediated excitation, may direct future efforts in further customizing this nanoparticle for additional therapeutic applications and enhanced potency.
Collapse
|
13
|
Hwang JY, Park J, Kang BJ, Lubow DJ, Chu D, Farkas DL, Shung KK, Medina-Kauwe LK. Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles. PLoS One 2012; 7:e34463. [PMID: 22509306 PMCID: PMC3317981 DOI: 10.1371/journal.pone.0034463] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 01/24/2023] Open
Abstract
This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic.
Collapse
Affiliation(s)
- Jae Youn Hwang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|