1
|
Jung J, Schneider EL, Zhang W, Song H, Zhang M, Chou W, Meher N, VanBrocklin HF, Barcellos-Hoff MH, Ozawa T, Gilbert MR, Santi DV. PLX038A, a long-acting SN-38, penetrates the blood-tumor-brain-barrier, accumulates and releases SN-38 in brain tumors to increase survival of tumor bearing mice. Sci Rep 2024; 14:14175. [PMID: 38898077 PMCID: PMC11187204 DOI: 10.1038/s41598-024-64186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Central nervous system tumors have resisted effective chemotherapy because most therapeutics do not penetrate the blood-tumor-brain-barrier. Nanomedicines between ~ 10 and 100 nm accumulate in many solid tumors by the enhanced permeability and retention effect, but it is controversial whether the effect can be exploited for treatment of brain tumors. PLX038A is a long-acting prodrug of the topoisomerase 1 inhibitor SN-38. It is composed of a 15 nm 4-arm 40 kDa PEG tethered to four SN-38 moieties by linkers that slowly cleave to release the SN-38. The prodrug was remarkably effective at suppressing growth of intracranial breast cancer and glioblastoma (GBM), significantly increasing the life span of mice harboring them. We addressed the important issue of whether the prodrug releases SN-38 systemically and then penetrates the brain to exert anti-tumor effects, or whether it directly penetrates the blood-tumor-brain-barrier and releases the SN-38 cargo within the tumor. We argue that the amount of SN-38 formed systemically is insufficient to inhibit the tumors, and show by PET imaging that a close surrogate of the 40 kDa PEG carrier in PLX038A accumulates and is retained in the GBM. We conclude that the prodrug penetrates the blood-tumor-brain-barrier, accumulates in the tumor microenvironment and releases its SN-38 cargo from within. Based on our results, we pose the provocative question as to whether the 40 kDa nanomolecule PEG carrier might serve as a "Trojan horse" to carry other drugs past the blood-tumor-brain-barrier and release them into brain tumors.
Collapse
Affiliation(s)
- Jinkyu Jung
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Tomoko Ozawa
- Brain Tumor Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel V Santi
- ProLynx, Inc, 135 Mississippi Street, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ravi H, Arias-Lorza AM, Costello JR, Han HS, Jeong DK, Klinz SG, Sachdev JC, Korn RL, Raghunand N. Pretherapy Ferumoxytol-enhanced MRI to Predict Response to Liposomal Irinotecan in Metastatic Breast Cancer. Radiol Imaging Cancer 2023; 5:e220022. [PMID: 36734848 PMCID: PMC10077095 DOI: 10.1148/rycan.220022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose To investigate ferumoxytol (FMX)-enhanced MRI as a pretreatment predictor of response to liposomal irinotecan (nal-IRI) for thoracoabdominal and brain metastases in women with metastatic breast cancer (mBC). Materials and Methods In this phase 1 expansion trial (ClinicalTrials.gov identifier, NCT01770353; 27 participants), 49 thoracoabdominal (19 participants; mean age, 48 years ± 11 [SD]) and 19 brain (seven participants; mean age, 54 years ± 8) metastases were analyzed on MR images acquired before, 1-4 hours after, and 16-24 hours after FMX administration. In thoracoabdominal metastases, tumor transverse relaxation rate (R*2) was normalized to the mean R*2 in the spleen (rR*2), and the tumor histogram metric rR*2,N, representing the average of rR*2 in voxels above the nth percentile, was computed. In brain metastases, a novel compartmentation index was derived by applying the MRI signal equation to phantom-calibrated coregistered FMX-enhanced MRI brain scans acquired before, 1-4 hours after, and 16-24 hours after FMX administration. The fraction of voxels with an FMX compartmentation index greater than 1 was computed over the whole tumor (FCIGT1) and from voxels above the 90th percentile R*2 (FCIGT1 R*2,90). Results rR*2,90 computed from pretherapy MRI performed 16-24 hours after FMX administration, without reference to calibration phantoms, predicted response to nal-IRI in thoracoabdominal metastases (accuracy, 74%). rR*2,90 performance was robust to the inclusion of some peritumoral tissue within the tumor region of interest. FCIGT1 R*2,90 provided 79% accuracy on cross-validation in prediction of response in brain metastases. Conclusion This first in-human study focused on mBC suggests that FMX-enhanced MRI biologic markers can be useful for pretherapy prediction of response to nal-IRI in patients with mBC. Keywords: MRI Contrast Agent, MRI, Breast, Head/Neck, Tumor Response, Experimental Investigations, Brain/Brain Stem Clinical trial registration no. NCT01770353 Supplemental material is available for this article. © RSNA, 2023 See also commentary by Daldrup-Link in this issue.
Collapse
Affiliation(s)
- Harshan Ravi
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Andres M Arias-Lorza
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - James R Costello
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Hyo Sook Han
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Daniel K Jeong
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Stephan G Klinz
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Jasgit C Sachdev
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Ronald L Korn
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Natarajan Raghunand
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| |
Collapse
|
3
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Liu Y, Li X, Pen R, Zuo W, Chen Y, Sun X, Gou J, Guo Q, Wen M, Li W, Yu S, Liu H, Huang M. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed Eng Online 2022; 21:53. [PMID: 35918704 PMCID: PMC9344698 DOI: 10.1186/s12938-022-01012-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Background CPT-11 (irinotecan) is one of the most efficient agents used for colorectal cancer chemotherapy. However, as for many other chemotherapeutic drugs, how to minimize the side effects of CPT-11 still needs to be thoroughly described. Objectives This study aimed to develop the CPT-11-loaded DSPE-PEG 2000 targeting EGFR liposomal delivery system and characterize its targeting specificity and therapeutic effect on colorectal cancer (CRC) cells in vitro and in vivo. Results The synthesized liposome exhibited spherical shapes (84.6 ± 1.2 nm to 150.4 nm ± 0.8 nm of estimated average sizes), good stability, sustained release, and enough drug loading (55.19%). For in vitro experiments, SW620 cells treated with CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome showed lower survival extended level of intracellular ROS production. In addition, it generated an enhanced apoptotic cell rate by upregulating the protein expression of both cleaved-caspase-3 and cleaved-caspase-9 compared with those of SW620 cells treated with free CPT-11. Importantly, the xenograft model showed that both the non-target and EGFR-targeted liposomes significantly inhibited tumor growth compared to free CPT-11. Conclusions Compared with the non-target CPT-11-loaded DSPE-PEG2000 liposome, CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome treatment showed much better antitumor activity in vitro in vivo. Thus, our findings provide new assets and expectations for CRC targeting therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-022-01012-8.
Collapse
Affiliation(s)
- Yongwei Liu
- Department of Infection, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China.
| | - Xinghui Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Renqun Pen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Wei Zuo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Ya Chen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Xiuying Sun
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Juhua Gou
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Qianwen Guo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Maoling Wen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Wuqi Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing, 400038, China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China.
| | - Min Huang
- Department of Digestion, The Affiliated Hospital of North Sichuan Medical College, No.1, MaoYuan South Rd, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
5
|
Awasthi N, Schwarz MA, Zhang C, Klinz SG, Meyer-Losic F, Beaufils B, Thiagalingam A, Schwarz RE. Augmenting Experimental Gastric Cancer Activity of Irinotecan through Liposomal Formulation and Antiangiogenic Combination Therapy. Mol Cancer Ther 2022; 21:1149-1159. [PMID: 35500018 PMCID: PMC9377761 DOI: 10.1158/1535-7163.mct-21-0860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Gastric adenocarcinoma (GAC) is the third most common cause of cancer-related deaths worldwide. Combination chemotherapy remains the standard treatment for advanced GAC. Liposomal irinotecan (nal-IRI) has improved pharmacokinetics (PK) and drug biodistribution compared with irinotecan (IRI, CPT-11). Angiogenesis plays a crucial role in the progression and metastasis of GAC. We evaluated the antitumor efficacy of nal-IRI in combination with novel antiangiogenic agents in GAC mouse models. Animal survival studies were performed in peritoneal dissemination xenografts. Tumor growth and PK studies were performed in subcutaneous xenografts. Compared with controls, extension in animal survival by nal-IRI and IRI was >156% and >94%, respectively. The addition of nintedanib or DC101 extended nal-IRI response by 13% and 15%, and IRI response by 37% and 31% (MKN-45 xenografts); nal-IRI response by 11% and 3%, and IRI response by 16% and 40% (KATO-III xenografts). Retardation of tumor growth was greater with nal-IRI (92%) than IRI (71%). Nintedanib and DC101 addition tend to augment nal-IRI or IRI response in this model. The addition of antiangiogenic agents enhanced tumor cell proliferation inhibition effects of nal-IRI or IRI. The tumor vasculature was decreased by nintedanib (65%) and DC101 (58%), while nal-IRI and IRI alone showed no effect. PK characterization in GAC xenografts demonstrated that compared with IRI, nal-IRI treatment groups had higher retention, circulation time, and tumor levels of CPT-11 and its active metabolite SN-38. These findings indicate that nal-IRI, alone and in combination with antiangiogenic agents, has the potential for improving clinical GAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Margaret A. Schwarz
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
- Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Guangming, Shenzhen, China
| | | | | | | | | | - Roderich E. Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
6
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
7
|
Triple-negative breast cancer brain metastasis: an update on druggable targets, current clinical trials, and future treatment options. Drug Discov Today 2022; 27:1298-1314. [DOI: 10.1016/j.drudis.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
|
8
|
Nanoliposomal Irinotecan and Metronomic Temozolomide for Patients With Recurrent Glioblastoma: BrUOG329, A Phase I Brown University Oncology Research Group Trial. Am J Clin Oncol 2021; 44:49-52. [PMID: 33284237 DOI: 10.1097/coc.0000000000000780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liposomal formulations may improve the solubility and bioavailability of drugs potentially increasing their ability to cross the blood-brain barrier. We performed a phase I study to determine the maximum tolerated dose and preliminary efficacy of pegylated nanoliposomal irinotecan (nal-IRI)+metronomic temozolomide (TMZ) in patients with recurrent glioblastoma. PATIENTS AND METHODS Patients with glioblastoma who progressed after at least 1 line of therapy were eligible. All patients received TMZ 50 mg/m2/d until disease progression. Three dose levels of nal-IRI were planned, 50, 70, and 80 mg/m2, intravenously every 2 weeks. Patients were accrued in a 3+3 design. The study included a preliminary assessment after the first 13 evaluable patients. The trial would be terminated early if 0 or 1 responses were observed in these patients. RESULTS Twelve patients were treated over 2 dose levels (nal-IRI 50 and 70 mg/m2). At dose level 2, nal-IRI 70 mg/m2, 2 of 3 patients developed dose-limiting toxicities including 1 patient who developed grade 4 neutropenia and grade 3 diarrhea and anorexia and 1 patient with grade 3 diarrhea, hypokalemia fatigue, and anorexia. Accrual to dose level 1 was expanded to 9 patients. The Drug Safety Monitoring Board (DSMB) reviewed the data of the initial 12 patients-there were 0/12 responses (0%) and the median progression-free survival was 2 months and accrual was halted. CONCLUSIONS The maximum tolerated dose of nal-IRI was 50 mg/m2 every 2 weeks with TMZ 50 mg/m2/d. The dose-limiting toxicities were diarrhea and neutropenia. No activity was seen at interim analysis and the study was terminated.
Collapse
|
9
|
Sachdev JC, Munster P, Northfelt DW, Han HS, Ma C, Maxwell F, Wang T, Belanger B, Zhang B, Moore Y, Thiagalingam A, Anders C. Phase I study of liposomal irinotecan in patients with metastatic breast cancer: findings from the expansion phase. Breast Cancer Res Treat 2020; 185:759-771. [PMID: 33201358 PMCID: PMC7921078 DOI: 10.1007/s10549-020-05995-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Purpose Metastatic breast cancer (mBC) remains incurable and is associated with low survival rates. This study assessed the efficacy and safety of liposomal irinotecan in heavily pretreated patients with mBC, with or without active brain metastases (BM). Methods Following the dose escalation phase and determination of recommended phase 2 dose, the expansion phase of this phase I, open-label, non-randomized study, assigned adult women to cohorts based on mBC subtype: cohort 1, hormone receptor +/human epidermal growth factor receptor 2−; cohort 2, triple-negative breast cancer; or cohort 3, any mBC subtype with active BM. Patients received liposomal irinotecan 50 or 70 mg/m2 free base every 2 weeks. Here, we report secondary outcomes including best overall response (BOR), objective response rate (ORR), and treatment-emergent adverse events (TEAEs). Results For non-central nervous system (non-CNS) disease across all cohorts (intent-to-treat population, N = 29), the ORR was 34.5% (95% confidence interval: 17.94–54.33), with a BOR of partial response in 10 patients (34.5%), stable disease in five (17.2%), progressive disease in 10 (34.5%); four patients were unevaluable (13.8%). The ORR for the CNS cohort was 30.0% (95% confidence interval: 6.67–65.25) using modified Response Evaluation Criteria in Solid Tumors. Common grade 3 or higher TEAEs were diarrhea (27.6%), nausea (17.2%), fatigue (13.8%), asthenia (10.3%), and hypokalemia (10.3%). Serious treatment-related TEAEs were reported in six patients (20.7%). No treatment-related TEAEs resulted in death. Conclusions Liposomal irinotecan monotherapy demonstrated antitumor activity in heavily pretreated patients with mBC, with or without BM. The observed safety profile was consistent with that in previous studies. Clinical trial registration: Trial registration ID NCT01770353. Electronic supplementary material The online version of this article (10.1007/s10549-020-05995-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasgit C Sachdev
- HonorHealth Research Institute, 10510 N. 92nd Street, Suite 200, Scottsdale, AZ, 85258, USA. .,Translational Genomics Research Institute, Phoenix, AZ, USA.
| | | | | | | | - Cynthia Ma
- Washington University, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
11
|
Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. Int J Pharm 2020; 581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|
12
|
Liposomal Irinotecan Accumulates in Metastatic Lesions, Crosses the Blood-Tumor Barrier (BTB), and Prolongs Survival in an Experimental Model of Brain Metastases of Triple Negative Breast Cancer. Pharm Res 2018; 35:31. [PMID: 29368289 DOI: 10.1007/s11095-017-2278-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE The blood-tumor barrier (BTB) limits irinotecan distribution in tumors of the central nervous system. However, given that the BTB has increased passive permeability we hypothesize that liposomal irinotecan would improve local exposure of irinotecan and its active metabolite SN-38 in brain metastases relative to conventional irinotecan due to enhanced-permeation and retention (EPR) effect. METHODS Female nude mice were intracardially or intracranially implanted with human brain seeking breast cancer cells (brain metastases of breast cancer model). Mice were administered vehicle, non-liposomal irinotecan (50 mg/kg), liposomal irinotecan (10 mg/kg and 50 mg/kg) intravenously starting on day 21. Drug accumulation, tumor burden, and survival were evaluated. RESULTS Liposomal irinotecan showed prolonged plasma drug exposure with mean residence time (MRT) of 17.7 ± 3.8 h for SN-38, whereas MRT was 3.67 ± 1.2 for non-liposomal irinotecan. Further, liposomal irinotecan accumulated in metastatic lesions and demonstrated prolonged exposure of SN-38 compared to non-liposomal irinotecan. Liposomal irinotecan achieved AUC values of 6883 ± 4149 ng-h/g for SN-38, whereas non-liposomal irinotecan showed significantly lower AUC values of 982 ± 256 ng-h/g for SN-38. Median survival for liposomal irinotecan was 50 days, increased from 37 days (p<0.05) for vehicle. CONCLUSIONS Liposomal irinotecan accumulates in brain metastases, acts as depot for sustained release of irinotecan and SN-38, which results in prolonged survival in preclinical model of breast cancer brain metastasis.
Collapse
|
13
|
Louis N, Liu S, He X, Drummond DC, Noble CO, Goldman S, Mueller S, Bankiewicz K, Gupta N, Hashizume R. New therapeutic approaches for brainstem tumors: a comparison of delivery routes using nanoliposomal irinotecan in an animal model. J Neurooncol 2017; 136:475-484. [PMID: 29170909 DOI: 10.1007/s11060-017-2681-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
Despite the advances in imaging, surgery and radiotherapy, the majority of patients with brainstem gliomas die within 2 years after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which prevents total surgical resection and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. The development of new therapeutic approaches which can circumvent the BBB is a potential path to improve outcomes for these children. Convection-enhanced delivery (CED) and intranasal delivery (IND) are strategies that permit direct drug delivery into the central nervous system and are an alternative to intravenous injection (IV). We treated rats bearing human brainstem tumor xenografts with nanoliposomal irinotecan (CPT-11) using CED, IND, and IV. A single treatment of CED irinotecan had a similar effect on overall survival as multiple treatments by IV route. IND CPT-11 showed significantly increased survival of animals with brainstem tumors, and demonstrated the promise of this non-invasive approach of drug delivery bypassing the BBB when combined with nanoliposomal chemotherapy. Our results indicated that using CED and IND of nanoliposomal therapy increase likelihood of practical therapeutic approach for the treatment of brainstem gliomas.
Collapse
Affiliation(s)
- Nundia Louis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Tarry 2-709, Chicago, IL, 60611, USA
| | - Sharon Liu
- Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Xingyao He
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Tarry 2-709, Chicago, IL, 60611, USA
| | | | | | - Stewart Goldman
- Department of Pediatrics - Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Krystof Bankiewicz
- Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Tarry 2-709, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother Pharmacol 2017; 79:603-610. [PMID: 28233053 DOI: 10.1007/s00280-017-3247-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Preclinical activity of irinotecan has been seen in glioma models, but only modest efficacy has been noted in clinical studies, perhaps related to drug distribution and/or pharmacokinetic limitations. In preclinical testing, irinotecan liposome injection (nal-IRI) results in prolongation of drug exposure and higher tissue levels of drug due to slower metabolism and the effect of enhanced permeability and retention. The objective of the current study was to assess the safety and pharmacokinetics (PK) of nal-IRI and to determine the maximum tolerated dose (MTD) in patients with recurrent high-grade glioma stratified based on UGT1A1 genotyping. METHODS This phase I study stratified patients with recurrent high-grade glioma into 2 groups by UGT1A1 status: homozygous WT ("WT") vs heterozygous WT/*28 ("HT"). Patients who were homozygous *28 were ineligible. The design was a standard 3 + 3 phase I design. WT patients were started at 120 mg/m2 intravenously every 3 weeks with dose increases in 60 mg/m2 increments. HT patients were started at 60 mg/m2, with dose increases in 30 mg/m2 increments. The assessment period for dose-limiting toxicity was 1 cycle (21 days). RESULTS In the WT cohort (n = 16), the MTD was 120 mg/m2. In the HT cohort (n = 18), the MTD was 150 mg/m2. Dose-limiting toxicity in both cohorts included diarrhea, some with associated dehydration and/or fatigue. PK results were comparable to those seen in other PK studies of nal-IRI; UGT1A1*28 genotype (WT vs. HT) did not affect PK parameters. CONCLUSIONS Nal-IRI had no unexpected toxicities when given intravenously. Of note, UGT1A1 genotype did not correlate with toxicity or affect PK profile.
Collapse
|
15
|
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11:5381-5414. [PMID: 27799765 PMCID: PMC5077137 DOI: 10.2147/ijn.s117210] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
Collapse
Affiliation(s)
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
|
17
|
Adkins CE, Nounou MI, Hye T, Mohammad AS, Terrell-Hall T, Mohan NK, Eldon MA, Hoch U, Lockman PR. NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer 2015; 15:685. [PMID: 26463521 PMCID: PMC4604629 DOI: 10.1186/s12885-015-1672-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Brain metastases are an increasing problem in women with invasive breast cancer. Strategies designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases leading to brain tumor cytotoxicity. Methods Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg), or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively). Results NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102 and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg NKTR-102) compared to conventional irinotecan treated animals. Conclusions Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in this study are clinically achieved with 145 mg/m2 NKTR-102, such as those used in the BEACON trial, underlining translational relevance of these results. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1672-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris E Adkins
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Mohamed I Nounou
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt.
| | - Tanvirul Hye
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Afroz S Mohammad
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Tori Terrell-Hall
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Neel K Mohan
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|