1
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
2
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Chakravarty R, Rohra N, Jadhav S, Sarma HD, Jain R, Chakraborty S. Biochemical separation of Cetuximab-Fab from papain-digested antibody fragments and radiolabeling with 64Cu for potential use in radioimmunotheranostics. Appl Radiat Isot 2023; 196:110795. [PMID: 37004293 DOI: 10.1016/j.apradiso.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Engineered Fab fragments of monoclonal antibodies (mAbs) after radiolabeling with suitable radiometals have the potential to play a key role in personalized radioimmunotheranostics of cancer patients. In this study, we have generated Fab fragment of Cetuximab, a mAb targeting epidermal growth factor receptor (EGFR) expression and purified from the Fc and other fragments by ultrafiltration and affinity chromatography. The Cetuximab-Fab was conjugated with a suitable bifunctional chelator and radiolabeled with no-carrier-added (NCA) 64Cu produced via 64Zn (n, p) 64Cu reaction in a nuclear reactor. The radioimmunoconjugate obtained after size exclusion chromatographic separation possessed >95% radiochemical purity and it retained its integrity over at least three half-lives of the radiometal. Biodistribution studies was performed in fibrosarcoma tumor bearing Swiss mice, which demonstrated the explicit need for purification of the Cetuximab-Fab from Fc fragments. Enhanced and rapid tumor uptake with decent tumor-to-background ratio with prolonged retention was observed when radiolabeled purified Cetuximab-Fab was intravenously administered in animal models. Overall, this preclinical study established the pivotal role of separation science and technology to obtain the radioimmunoconjugate with requisite purity in order to demonstrate optimal pharmacokinetics and maximized treatment efficacy.
Collapse
|
4
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
5
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
6
|
Tolstik E, Gongalsky MB, Dierks J, Brand T, Pernecker M, Pervushin NV, Maksutova DE, Gonchar KA, Samsonova JV, Kopeina G, Sivakov V, Osminkina LA, Lorenz K. Raman and fluorescence micro-spectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells. Front Pharmacol 2022; 13:962763. [PMID: 36016563 PMCID: PMC9397571 DOI: 10.3389/fphar.2022.962763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterials are a central pillar in modern medicine. They are thought to optimize drug delivery, enhance therapeutic efficacy, and reduce side-effects. To foster this technology, analytical methods are needed to validate not only the localization and distribution of these nanomaterials, but also their compatibility with cells, drugs, and drug release. In the present work, we assessed nanoparticles based on porous silicon (pSiNPs) loaded with the clinically used tyrosine kinase inhibitor sunitinib for their effectiveness of drug delivery, release, and toxicity in colon cancer cells (HCT 116 cells) and cardiac myoblast cells (H9c2) using Raman micro-spectroscopy, high-resolution fluorescence microscopy, along with biological methods for toxicological effects. We produced pSiNPs with a size of about 100 nm by grinding mesoporous silicon layers. pSiNPs allowed an effective loading of sunitinib due to their high porosity. Photoluminescence properties of the nanoparticles within the visible spectrum allowed the visualization of their uptake in cardiac cells. Raman micro-spectroscopy allowed not only the detection of the uptake and distribution of pSiNPs within the cells via a characteristic silicon Raman band at about 518–520 cm−1, but also the localization of the drug based on its characteristic molecular fingerprints. Cytotoxicity studies by Western blot analyses of apoptotic marker proteins such as caspase-3, and the detection of apoptosis by subG1-positive cell fractions in HCT 116 and MTT analyses in H9c2 cells, suggest a sustained release of sunitinib from pSiNPs and delayed cytotoxicity of sunitinib in HCT 116 cells. The analyses in cardiac cells revealed that pSiNPs are well tolerated and that they may even protect from toxic effects in these cells to some extent. Analyses of the integrity of mitochondrial networks as an early indicator for apoptotic cellular effects seem to validate these observations. Our study suggests pSiNPs-based nanocontainers for efficient and safe drug delivery and Raman micro-spectroscopy as a reliable method for their detection and monitoring. Thus, the herein presented nanocontainers and analytical methods have the potential to allow an efficient advancement of nanoparticles for targeted and sustained intracellular drug release that is of need, e.g., in chronic diseases and for the prevention of cardiac toxicity.
Collapse
Affiliation(s)
- E. Tolstik
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| | - M. B. Gongalsky
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - J. Dierks
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
| | - T. Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - M. Pernecker
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
| | - N. V. Pervushin
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | - D. E. Maksutova
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - K. A. Gonchar
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
| | - J. V. Samsonova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - G. Kopeina
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
| | - V. Sivakov
- Leibniz Institute of Photonic Technology, Department Functional Interfaces, Jena, Germany
| | - L. A. Osminkina
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
- Institute for Biological Instrumentation of Russian Academy of Sciences, Moscow, Russia
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| | - K. Lorenz
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: E. Tolstik, elen.tolstik@isas; L. A. Osminkina, ; K. Lorenz,
| |
Collapse
|
7
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
8
|
Mittelheisser V, Coliat P, Moeglin E, Goepp L, Goetz JG, Charbonnière LJ, Pivot X, Detappe A. Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110305. [PMID: 35289003 DOI: 10.1002/adma.202110305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tumor-targeted antibody (mAb)/fragment-conjugated nanoparticles (NPs) represent an innovative strategy for improving the local delivery of small molecules. However, the physicochemical properties of full mAb-NPs and fragment-NPs-that is, NP material, size, charge, as well as the targeting antibody moiety, and the linker conjugation strategies-remain to be optimized to achieve an efficient tumor targeting. A meta-analysis of 161 peer-reviewed studies is presented, which describes the use of tumor-targeted mAb-NPs and fragment-NPs from 2009 to 2021. The use of these targeted NPs is confirmed to result in significantly greater tumor uptake of NPs than that of naked NPs (7.9 ± 1.9% ID g-1 versus 3.2 ± 0.6% ID g-1 , respectively). The study further demonstrates that for lipidic NPs, fragment-NPs provide a significantly higher tumor uptake than full mAb-NPs. In parallel, for both polymeric and organic/inorganic NPs, full mAb-NPs yield a significant higher tumor uptake than fragment-NPs. In addition, for both lipidic and polymeric NPs, the tumor uptake is improved with the smallest sizes of the conjugates. Finally, the pharmacokinetics of the conjugates are demonstrated to be driven by the NPs and not by the antibody moieties, independently of using full mAb-NPs or fragment-NPs, confirming the importance of optimizing the NP design to improve the tumor uptake.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Pierre Coliat
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Eric Moeglin
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Lilian Goepp
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Loic J Charbonnière
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| |
Collapse
|
9
|
Hollow Multicomponent Capsules for Biomedical Applications: A Comprehensive Review. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractHollow capsules with multi-shelled or multicomponent structures are essential materials for various applications. Biomedical applications like disease diagnosis, therapy, and monitoring have special significance as they aim to improve health conditions. This review demonstrated a comprehensive overview of hollow, multifunctional structures incorporating meaningful use of nanotechnology and its’ unique prospects in medicine such as patient-specific treatment, multimodal imaging, multimodal therapy, simultaneous delivery of drugs and imaging probes, and actively targeted delivery. The internal hollow cavity provides safe and controlled drug release while also enabling transport of functional moieties to target sites. This review explored the performance of different organic, inorganic, and metallic multicomponent capsules that have been reported for biomedical applications, mainly diagnostic imaging and drug delivery. Material compositions, morphologies, and synthesis strategies involved in fabricating such multifunctional systems have been discussed in detail. It is expected that with time, more sophisticated and precise systems will come to light as the outcome of ongoing concentrated research efforts.
Collapse
|
10
|
Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021; 338:367-393. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The two major challenges in cancer treatment include lack of early detection and ineffective therapies with various side effects. Angiogenesis is the key process in the growth, survival, invasiveness, and metastasis of many of cancerous tumors. Imaging of the angiogenesis could lead to diagnosis of tumors in the early stage and evaluation of the therapeutic responses. Angiogenic blood vessels express specific molecular markers different from normal blood vessels (in level or kind). This fact would make the tumor vasculature a suitable site to target therapeutics and imaging agents within the tumor. Surface modified nanoparticles using peptide ligands with high binding affinity to the vasculature markers, provide efficient delivery of therapeutic and imaging agents, while avoiding undesirable side effects. In this review, we discuss discoveries of various tumor targeting peptides useful for tumor angiogenesis imaging and targeted therapy with emphasis on surface modified nanomedicines using vasculature targeting peptides.
Collapse
Affiliation(s)
- Elham Seyyednia
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Qi RQ, Liu W, Wang DY, Meng FQ, Wang HY, Qi HY. Development of local anesthetic drug delivery system by administration of organo-silica nanoformulations under ultrasound stimuli: in vitro and in vivo investigations. Drug Deliv 2021; 28:54-62. [PMID: 33342323 PMCID: PMC7751425 DOI: 10.1080/10717544.2020.1856220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The development of local anesthetic (LA) system is the application of commercial drug for the pain management that indorses the reversible obstructive mechanism of neural transmission through preventing the innervation process in human peripheral nerves. Ropivacaine (RV) is one of the greatest frequently used LA s with the actions of long-lasting and low-toxicity for the post-operative pain management. In this work, we have approached novel design and development of glycosylated chitosan (GCS) encapsulated mesoporous silica nanoparticles (GCS-MONPs)-based nano-scaffold for sustainable distributions and controlled/supported arrival of stacked RV for targeting sites, which can be activated by either outer ultrasound activating to discharge the payload, foundation on-request and dependable analgesia. The structural and morphology analyses result established that prepared nano-formulations have successful molecular interactions and RV loaded spherical morphological structures. The drug release profile of developed nanostructure with ultrasound-activation has been achieved 50% of drug release in 2 h and 90% of drug release was achieved in 12 h, which displays more controlled release when compared to free RV solution. The in vitro cell compatibility analysis exhibited GCS-MONPs with RV has improved neuron cell survival rates when compared to other samples due to its porous surface and suitable biopolymer proportions. The analysis of ex vitro and in vivo pain relief analysis demonstrated treated animal models have high compatibility with GCS-MONPs@RV, which was confirmed by histomorphology. This developed MONPs based formulations with ultrasound-irradiation gives a prospective technique to clinical agony the board through on-request and dependable help with discomfort.
Collapse
Affiliation(s)
- Rong-Qin Qi
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Wei Liu
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Duan-Yu Wang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fan-Qing Meng
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Hong-Ying Wang
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Hai-Yan Qi
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| |
Collapse
|
12
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
13
|
Yang L, Kaziem AE, Lin Y, Li C, Tan Y, Huang S, Cheng D, Xu H, Zhang Z. Carboxylated β-cyclodextrin anchored hollow mesoporous silica enhances insecticidal activity and reduces the toxicity of indoxacarb. Carbohydr Polym 2021; 266:118150. [PMID: 34044957 DOI: 10.1016/j.carbpol.2021.118150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
In this study, a pesticide controlled release system with dual response characteristics of pH and enzyme triggering was developed. Indoxacarb (IDC) was loaded into hollow mesoporous silica (HMS) nanoparticles, carboxylated β-cyclodextrin (β-CD) acted as a capping molecule to couple with the amino-functionalized HMS, and their well-defined morphological structures were confirmed by scanning electron microscopy and transmission electron microscopy. The results showed that the prepared IDC loaded HMS-CD had high loading efficiency (26.42%, w/w) and showed excellent dual response properties to pH and the α-amylase enzyme. IDC loaded HMS-CD nanoparticles showed better insecticidal activity against Spodoptera frugiperda than applying the same dose of IDC emulsifiable concentrate, and the toxicity of IDC loaded HMS-CD to zebrafish was reduced by more than 5-fold, indicating that insecticide delivery systems based on β-CD-anchored HMS nanoparticles could potentially be applied for sustainable control of pests and reduce harm to non-target organisms and the environment.
Collapse
Affiliation(s)
- Liupeng Yang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Amir E Kaziem
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Yigang Lin
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Chao Li
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Tan
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - HanHong Xu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
15
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
16
|
Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, Almalki AH, Althobaiti YS. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int J Mol Sci 2021; 22:1631. [PMID: 33562829 PMCID: PMC7915670 DOI: 10.3390/ijms22041631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
| | - Alanoud S. Al-Hibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia;
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khawlah K. Alrabighi
- Batterjee Medical College for Sciences and Technology, Jeddah 21577, Saudi Arabia;
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Akram Alwithenani
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Atiah H. Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmaceutical Chemistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
17
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
18
|
Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111978. [PMID: 32771913 DOI: 10.1016/j.jphotobiol.2020.111978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
Common bacterial pathogens have become resistant to traditional antibiotics, representing an indispensable public health crisis. Photodynamic therapy (PDT), especially when common visible light sources are used as photodynamic power, is a promising bactericidal method. Based on the special photodynamic properties triggered by commonly available light emitting diode (LED) lamps, a kind of graphene quantum dots (GQDs) based composite system (termed GQDs@hMSN(EM)) was prepared through loading both GQDs and erythromycin (EM) into the hollow mesoporous silica nanoparticle (hMSN), aiming to achieve joint antimicrobial effect. Bacterial density experiments confirmed that GQDs@hMSN(EM) had combined antimicrobial effects from photodynamic effect and drug release on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In animal models, the healing degree of wounds infected by bacteria also confirmed that GQDs@hMSN(EM) group had the best therapeutic effect, with the significantly reduced inflammatory factors in blood. Different from traditional GQDs synthesized by solvothermal method, the as-prepared GQDs@hMSN can produce singlet oxygen (1O2) under light exposure to destroy the structure of bacteria, thus achieving highly efficient antimicrobial effect. The GQDs@hMSN(EM) in this work possesses good antimicrobial activity, sufficient drug loading, and controllable drug release ability, which provides a new opportunity for GQDs-based nanoplatform to enhance antimicrobial effect and reduce their drug resistance.
Collapse
|
19
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
20
|
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS NANO 2020; 14:3075-3095. [PMID: 32078303 PMCID: PMC7098057 DOI: 10.1021/acsnano.9b08142] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
Numerous studies have engineered nanoparticles with different physicochemical properties to enhance the delivery efficiency to solid tumors, yet the mean and median delivery efficiencies are only 1.48% and 0.70% of the injected dose (%ID), respectively, according to a study using a nonphysiologically based modeling approach based on published data from 2005 to 2015. In this study, we used physiologically based pharmacokinetic (PBPK) models to analyze 376 data sets covering a wide range of nanomedicines published from 2005 to 2018 and found mean and median delivery efficiencies at the last sampling time point of 2.23% and 0.76%ID, respectively. Also, the mean and median delivery efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of nanomedicines.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jim E. Riviere
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- 1Data
Consortium, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhoumeng Lin
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
21
|
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
23
|
Chen W, Cheng CA, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, Zink JI, Sletten EM. Shortwave Infrared Imaging with J-Aggregates Stabilized in Hollow Mesoporous Silica Nanoparticles. J Am Chem Soc 2019; 141:12475-12480. [PMID: 31353894 DOI: 10.1021/jacs.9b05195] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-Aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that J-aggregates of NIR fluorophore IR-140 can be prepared inside hollow mesoporous silica nanoparticles (HMSNs) to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging in vivo with 980 nm excitation.
Collapse
Affiliation(s)
| | | | - Emily D Cosco
- Helmholtz Pioneer Campus, Helmholtz Zentrum München , D-85764 Neuherberg , Germany
| | - Shyam Ramakrishnan
- Helmholtz Pioneer Campus, Helmholtz Zentrum München , D-85764 Neuherberg , Germany
| | - Jakob G P Lingg
- Helmholtz Pioneer Campus, Helmholtz Zentrum München , D-85764 Neuherberg , Germany
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München , D-85764 Neuherberg , Germany
| | | | | |
Collapse
|
24
|
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. NANO CONVERGENCE 2019; 6:23. [PMID: 31304563 PMCID: PMC6626766 DOI: 10.1186/s40580-019-0193-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
Nanotechnology has the potential to circumvent several drawbacks of conventional therapeutic formulations. In fact, significant strides have been made towards the application of engineered nanomaterials for the treatment of cancer with high specificity, sensitivity and efficacy. Tailor-made nanomaterials functionalized with specific ligands can target cancer cells in a predictable manner and deliver encapsulated payloads effectively. Moreover, nanomaterials can also be designed for increased drug loading, improved half-life in the body, controlled release, and selective distribution by modifying their composition, size, morphology, and surface chemistry. To date, polymeric nanomaterials, metallic nanoparticles, carbon-based materials, liposomes, and dendrimers have been developed as smart drug delivery systems for cancer treatment, demonstrating enhanced pharmacokinetic and pharmacodynamic profiles over conventional formulations due to their nanoscale size and unique physicochemical characteristics. The data present in the literature suggest that nanotechnology will provide next-generation platforms for cancer management and anticancer therapy. Therefore, in this critical review, we summarize a range of nanomaterials which are currently being employed for anticancer therapies and discuss the fundamental role of their physicochemical properties in cancer management. We further elaborate on the topical progress made to date toward nanomaterial engineering for cancer therapy, including current strategies for drug targeting and release for efficient cancer administration. We also discuss issues of nanotoxicity, which is an often-neglected feature of nanotechnology. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field.
Collapse
Affiliation(s)
- P N Navya
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu, 638401, India.
| | - Anubhav Kaphle
- Melbourne Integrative Genomics, School of BioSciences/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S P Srinivas
- School of Optometry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts (UMass) Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Hemant Kumar Daima
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
25
|
Chakravarty R, Chakraborty S, Guleria A, Kumar C, Kunwar A, Nair KVV, Sarma HD, Dash A. Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized 198Au nanoparticles for targeted cancer therapy. Nucl Med Biol 2019; 72-73:1-10. [PMID: 31255874 DOI: 10.1016/j.nucmedbio.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The emerging concept of intrinsically radiolabeled nanoparticles has the potential to transform the preclinical and clinical studies by improving the in vivo stability and demonstrating minimal alteration in the inherent pharmacokinetics of the nanoparticles. In this paper, a simple and efficient single-step method for clinical scale synthesis of intrinsically radiolabeled 198Au nanoparticles conjugated with cyclic arginine-glycine-aspartate peptide (198AuNP-RGD) is reported for potential use in targeted cancer therapy. METHODS Large radioactive doses (>37 GBq) of 198AuNP-RGD were synthesized by reaction of 198Au-HAuCl4 with cyclic RGD peptide. The synthesized nanoparticles were characterized by various analytical techniques. In vitro cell binding studies were carried out in B16F10 (murine melanoma) cell line. Biodistribution studies were carried out in melanoma tumor bearing C57BL/6 mice to demonstrate the tumor targeting ability of 198AuNP-RGD. The therapeutic efficacy of 198AuNP-RGD was evaluated by carrying out systematic tumor regression studies in melanoma tumor bearing mice after intravenous administration of the radioactive doses. RESULTS Well dispersed and biocompatible nanoparticles (~12.5 nm diameter) could be synthesized with excellent radiochemical and colloidal stability. In vitro studies exhibited the cell binding affinity and specificity of 198AuNP-RGD towards melanoma cell line. A high uptake of 8.7 ± 2.1%ID/g in the tumor was observed within 4 h post-injection (p.i.). Significant decrease in tumor uptake of 198AuNP-RGD (2.9 ± 0.8%ID/g) at 4 h p.i. on co-injection of a blocking dose of the peptide suggested that tumor localization of the intrinsically radiolabeled nanoparticles was receptor mediated. Administration of 37.0 MBq of 198AuNP-RGD resulted in significant regression of tumor growth with no apparent body weight loss over a period of 15 d. CONCLUSIONS Overall, these promising results demonstrate the suitability of 198AuNP-RGD as an advanced functional nanoplatform for targeted cancer therapy.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Apurav Guleria
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - K V Vimalnath Nair
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
26
|
Shahbazi-Gahrouei D, Moradi Khaniabadi P, Moradi Khaniabadi B, Shahbazi-Gahrouei S. Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:38. [PMID: 31143239 PMCID: PMC6521609 DOI: 10.4103/jrms.jrms_437_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Medical imaging modalities are used for different types of cancer detection and diagnosis. Recently, there have been a lot of studies on developing novel nanoparticles as new medical imaging contrast agents for the early detection of cancer. The aim of this review article is to categorize the medical imaging modalities accompanying with using nanoparticles to improve potential imaging for cancer detection and hence valuable therapy in the future. Nowadays, nanoparticles are becoming potentially transformative tools for cancer detection for a wide range of imaging modalities, including computed tomography (CT), magnetic resonance imaging, single photon emission CT, positron emission tomography, ultrasound, and optical imaging. The study results seen in the recent literature provided and discussed the diagnostic performance of imaging modalities for cancer detections and their future directions. With knowledge of the correlation between the application of nanoparticles and medical imaging modalities and with the development of targeted contrast agents or nanoprobes, they may provide better cancer diagnosis in the future.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bita Moradi Khaniabadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
27
|
Bai M, Dong H, Su X, Jin Y, Sun S, Zhang Y, Yang Y, Guo H. Hollow mesoporous silica nanoparticles as delivery vehicle of foot-and-mouth disease virus-like particles induce persistent immune responses in guinea pigs. J Med Virol 2019; 91:941-948. [PMID: 30701562 PMCID: PMC6594029 DOI: 10.1002/jmv.25417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
Foot‐and‐mouth disease (FMD) is an acute and febrile infectious disease, which can cause great economic losses. Virus‐like particles (VLPs) as an advantageous antigen can induce significant specific immune response. To improve immunity of VLPs, especially, make it induce persistent immune response, the hollow mesoporous silica nanoparticles (HMSNs) as a potential nano‐adjuvant were synthesized and loaded the FMD virus (FMDV) VLPs. They were injected into guinea pigs and the specific immune response was detected. The results confirmed that HMSNs/VLPs can induce persistent humoral immunity with high‐level antibody titer for more than three months. HMSNs also improve the T‐lymphocyte proliferation and IFN‐γ induced by FMDV VLPs, and provides the ideal protection against FMDV challenge. These consequences indicated that HMSNs were good protein delivery vehicle and potential nano‐adjuvant of vaccines. We synthesized Hollow mesoporous silica nanoparticles (HMSNs), as a delivery vehicle, are ideal candidate and have many unique structural features, including relatively larger surface areas, and controlled release capability, especially, good biocompatibility compared to golden nanoparticles as adjuvant. VLPs are composed of one or more structural proteins of virus, and without viral genetic material. As a new type of safe vaccine, FMDV VLPs can induce excellent immune response as traditional vaccines. To improve specific and persistent immune responses of FMDV VLPs, It is first time that HMSN was used as delivery of FMDV VLPs. The results confirmed that HMSNs can improve specific and persistent immune responses of FMDV VLPs, as new generation adjuvant.
Collapse
Affiliation(s)
- Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xin Su
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Yingpeng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yunshang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| |
Collapse
|
28
|
Dash A, Chakravarty R. Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2019; 9:30-66. [PMID: 30911436 PMCID: PMC6420712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Targeted molecular imaging with positron emission tomography (PET) constitutes a successful technique for detecting and diagnosing disease conditions promptly and accurately, and for effectively prognosticating outcomes and treating patients with a tailored and more individualized intervention. In order to expand the success of PET in nuclear medicine, it is important to assure access to radiotracers of desired quantities and qualities. In this context, the benefit of accessing PET radiotracers through a radionuclide generator (RNG) cannot be overstated, as generators offer the potential of enriching the PET radiotracer arsenal at the medical centers both with and without onsite cyclotrons. While RNG technology to avail PET tracers is in its infancy, their use is expected to revitalize current PET practices and seems poised to broaden the palette of PET in nuclear medicine in the foreseeable future. In this review, we discuss the principles of RNGs, assess major parent/daughter pairs of interest for PET, RNGs currently in use in clinical PET, and identify the potentially useful RNGs which have made substantial progress or are likely to be used in daily clinical practices in the near future. Availability of the parent radionuclides required for PET RNGs is an important criterion and hence their production will also be reviewed. This overview outlines a critical assessment of RNGs to avail PET tracers, the contemporary status of RNGs, and key challenges and apertures to the near future.
Collapse
Affiliation(s)
- Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| |
Collapse
|
29
|
Ravindran Girija A, Balasubramanian S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics 2019; 3:1-40. [PMID: 30662821 PMCID: PMC6328307 DOI: 10.7150/ntno.27877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022] Open
Abstract
Theragnostics is considered as an emerging treatment strategy that integrates therapeutics and diagnostics thus allowing delivery of therapeutics and simultaneous monitoring of the progression of treatment. Among the different types of inorganic nanomaterials that are being used for nanomedicine, core shell mesoporous silica nanoparticles have emerged as promising multifunctional nanoplatform for theragnostic application. Research in the design of core/shell mesoporous silica nanoparticles is steadily diversifying owing to the various interesting properties of these nanomaterials that are advantageous for advanced biomedical applications. Core/shell mesoporous silica nanoparticles, have garnered substantial attention in recent years because of their exceptional properties including large surface area, low density, ease of functionalization, high loading capacity of drugs, control of the morphology, particle size, tunable hollow interior space and mesoporous shell and possibility of incorporating multifunctional interior core material. In the past decade researcher's demonstrated tremendous development in design of functionalized core/shell mesoporous silica nanoparticles with different inorganic functional nanomaterial incorporated into mesoporous nanosystem for simultaneous therapeutic and diagnostic (theragnostic) applications in cancer. In this review, we recapitulate the progress in commonly used synthetic strategies and theragnostic applications of core/shell mesoporous silica nanoparticles with special emphasis on therapeutic and diagnostic modalities. Finally, we discuss the challenges and some perspectives on the future research and development of theragnostic core/shell mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Aswathy Ravindran Girija
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes 5095, SA, Australia
| | - Sivakumar Balasubramanian
- School of Engineering, University of South Australia Mawson Lakes Campus, Mawson Lakes 5095, SA, Australia
| |
Collapse
|
30
|
Asweto CO, Hu H, Liang S, Wang L, Liu M, Yang H, Duan J, Sun Z. Gene profiles to characterize the combined toxicity induced by low level co-exposure of silica nanoparticles and benzo[a]pyrene using whole genome microarrays in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:47-55. [PMID: 30036756 DOI: 10.1016/j.ecoenv.2018.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Several studies have suggested that air pollutants combine exposure have greater adverse effects. However, limited studies were available on the combined toxicity of silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P). The study was to evaluate the toxic effect and mechanisms of low-dose exposure of SiNPs, B[a]P and co-exposure in zebrafish embryos. In this study, zebrafish embryos received intravenous microinjection of SiNPs and B[a]P, and then was used to select differentially expressed genes by microarray analysis. Multiple bioinformatics analyses and STC analysis were done to identify key genes, pathways and biological processes and the expression trend of genes in each group. 1) 3065 differentially expressed genes were identified in zebrafish embryos. 2) These differentially expressed genes were involved in multiple biological processes and cellular processes such as immunity, response to stimuli, cell proliferation, adhesion, signaling transduction, and embryonic development. 3) Dynamic Gene Network analysis was used to identify a subgroup of 26 core genes that involved in multiple biological processes and cellular processes. 4) Pathway analysis and Signal-net analysis indicated that the MAPK signaling pathway, calcium signaling pathway, p53 signaling pathway, PI3k/Akt signaling pathway, and several pathways associated with immune response were the most prominent significant pathways induced by co-exposure of SiNPs and B[a]P in zebrafish embryos. Our study demonstrated that the molecular actions of co-treated with SiNPs and B[a]P on the immune system, inflammatory process and cardiovascular development had more severe toxicity than single exposure.
Collapse
Affiliation(s)
- Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lijing Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Mengdi Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Han Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
31
|
Wang J, Ni D, Shen Z, Ren Y, Liu Y, Fan W, Wu Y, Zhang G, Zhang H, Wu R, Feng X, Bu W, Yao Z. Exogenous Amino Acid-Loaded Nanovehicles: Stepping across Endogenous Magnetic Resonance Spectroscopy. Adv Healthc Mater 2018; 7:e1800317. [PMID: 30118170 DOI: 10.1002/adhm.201800317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Magnetic resonance spectroscopy (MRS) allows the assessment of metabolic contents and biochemical information in vivo. It provides essential compositional information in the diagnosis and monitoring of central nervous system (CNS) diseases, especially brain tumors. Conventional MRS is usually confined to endogenous metabolites that may lack specificity for certain disease such as differentiating glioma from other tumor and non-tumorous lesions. Therefore, exogenous MRS contrast agents (CAs) that may improve the sensitivity and specificity of MRS are highly desirable for its clinical use. In this work, a novel MRS CA, β-alanine loaded hollow mesoporous silica nanospheres, with a high biosafety profile and characteristic MRS spectrum was synthesized and investigated. This new CA is further tested to realize the accurate functional MRS diagnosis of brain glioma with high sensitivity. The general approach of synthesizing disease specific CA for MRS may lead to a new era of molecular imaging.
Collapse
Affiliation(s)
- Jing Wang
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| | - Dalong Ni
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P. R. China
| | - Zhiwei Shen
- Department of Radiology2nd Affiliated HospitalShantou University Shantou 515065 P. R. China
| | - Yan Ren
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P. R. China
| | - Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yue Wu
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| | - Guishan Zhang
- Department of Radiology2nd Affiliated HospitalShantou University Shantou 515065 P. R. China
| | - Hua Zhang
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| | - Renhua Wu
- Department of Radiology2nd Affiliated HospitalShantou University Shantou 515065 P. R. China
| | - Xiaoyuan Feng
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| | - Wenbo Bu
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Zhenwei Yao
- Department of RadiologyHuashan HospitalFudan University Shanghai 200040 P. R. China
| |
Collapse
|
32
|
Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydr Polym 2018; 197:157-166. [DOI: 10.1016/j.carbpol.2018.05.092] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
|
33
|
Biodistribution and Excretion of Intravenously Injected Mesoporous Silica Nanoparticles: Implications for Drug Delivery Efficiency and Safety. Enzymes 2018; 43:155-180. [PMID: 30244806 DOI: 10.1016/bs.enz.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are currently attracting a high interest for use as drug carriers in vivo. To date only data on the biodistribution in small animals are available. As any nanoparticle system, the MSNs typically accumulate in the RES organs lung, liver, and spleen upon intravenous (i.v.) administration. However, the literature data are partly inconclusive, which can be connected to the wide variability of the experimental designs, differing for example in particle size and shape, mesopore size, and surface functionalization, as well as the animal models used, the amount administered, and the means for particle detection. The present review is an attempt to summarize the literature to date with main focus on the increasing number of studies related to quantitative full body distributions. Whenever possible, attempts are also made to discuss differences in experimental observations between studies. Finally, an outlook is given listing some open issues, and highlighting the need for more standardized experimental designs in order to allow for a faster identification of optimal particle characteristics for drug delivery applications of MSNs.
Collapse
|
34
|
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018; 10:E118. [PMID: 30082647 PMCID: PMC6160987 DOI: 10.3390/pharmaceutics10030118] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advancements in drug delivery technologies utilizing a variety of carriers have resulted in a path-breaking revolution in the approach towards diagnosis and therapy alike in the current times. Need for materials with high thermal, chemical and mechanical properties have led to the development of mesoporous silica nanoparticles (MSNs). These ordered porous materials have garnered immense attention as drug carriers owing to their distinctive features over the others. They can be synthesized using a relatively simple process, thus making it cost effective. Moreover, by controlling the parameters during the synthesis; the morphology, pore size and volume and particle size can be transformed accordingly. Over the last few years, a rapid increase in research on MSNs as drug carriers for the treatment of various diseases has been observed indicating its potential benefits in drug delivery. Their widespread application for the loading of small molecules as well as macromolecules such as proteins, siRNA and so forth, has made it a versatile carrier. In the recent times, researchers have sorted to several modifications in the framework of MSNs to explore its potential in drug resistant chemotherapy, antimicrobial therapy. In this review, we have discussed the synthesis of these multitalented nanoparticles and the factors influencing the size and morphology of this wonder carrier. The second part of this review emphasizes on the applications and the advances made in the MSNs to broaden the spectrum of its use especially in the field of biomedicine. We have also touched upon the lacunae in the thorough understanding of its interaction with a biological system which poses a major hurdle in the passage of this carrier to the clinical level. In the final part of this review, we have discussed some of the major patents filed in the field of MSNs for therapeutic purpose.
Collapse
Affiliation(s)
- Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences,Manipal Academy of Higher Education, Manipal 576104, India.
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences,Manipal Academy of Higher Education, Manipal 576104, India.
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
35
|
Yang D, Yao X, Dong J, Wang N, Du Y, Sun S, Gao L, Zhong Y, Qian C, Hong H. Design and Investigation of Core/Shell GQDs/hMSN Nanoparticles as an Enhanced Drug Delivery Platform in Triple-Negative Breast Cancer. Bioconjug Chem 2018; 29:2776-2785. [PMID: 30011184 DOI: 10.1021/acs.bioconjchem.8b00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the excellent photoluminescent properties and singlet oxygen (1O2) generating efficiency, graphene quantum dots (GQDs) with maximal emission in near-infrared region (NIR) exhibited great potential in cancer imaging and therapy. However, GQDs can be cleared quickly via the renal system in vivo because of their ultrasmall size, which leads to the compromised cancer cell killing efficacy. Here, we report a hybrid nanoplatform, where GQDs were incorporated into the cavity of hollow mesoporous silica nanoparticles (hMSN) to form GQDs@hMSN-PEG nanoparticles (NPs). Optical characterization indicated that GQDs@hMSN-PEG NPs still maintained good absorption and emission properties from GQDs, and the composite NPs still possessed similar 1O2 generating efficiency. GQDs@hMSN-PEG NPs exhibited good biocompatibility in vitro and in vivo. High cargo-loading efficiency was achieved for doxorubicin (DOX), and the formed GQDs@hMSN(DOX)-PEG NPs showed the feasibility of tumor-oriented drug delivery. The extended retention time in tumor and good drug loading efficacy confirmed that GQDs@hMSN-PEG could serve as one promising candidate for combinational cancer treatment where photodynamic therapy and chemotherapy modules can be integrated into one system.
Collapse
Affiliation(s)
| | | | | | | | | | - Shian Sun
- Xuzhou Air Force College , Xuzhou , Jiangsu 221000 , China
| | - Liping Gao
- Xuzhou Cancer Hospital , Xuzhou , Jiangsu 221000 , China
| | | | | | - Hao Hong
- Department of Radiology , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
| |
Collapse
|
36
|
Understanding the Connection between Nanoparticle Uptake and Cancer Treatment Efficacy using Mathematical Modeling. Sci Rep 2018; 8:7538. [PMID: 29795392 PMCID: PMC5967303 DOI: 10.1038/s41598-018-25878-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have shown great promise in improving cancer treatment efficacy while reducing toxicity and treatment side effects. Predicting the treatment outcome for nanoparticle systems by measuring nanoparticle biodistribution has been challenging due to the commonly unmatched, heterogeneous distribution of nanoparticles relative to free drug distribution. We here present a proof-of-concept study that uses mathematical modeling together with experimentation to address this challenge. Individual mice with 4T1 breast cancer were treated with either nanoparticle-delivered or free doxorubicin, with results demonstrating improved cancer kill efficacy of doxorubicin loaded nanoparticles in comparison to free doxorubicin. We then developed a mathematical theory to render model predictions from measured nanoparticle biodistribution, as determined using graphite furnace atomic absorption. Model analysis finds that treatment efficacy increased exponentially with increased nanoparticle accumulation within the tumor, emphasizing the significance of developing new ways to optimize the delivery efficiency of nanoparticles to the tumor microenvironment.
Collapse
|
37
|
Gajbhiye KR, Gajbhiye V, Siddiqui IA, Gajbhiye JM. cRGD functionalised nanocarriers for targeted delivery of bioactives. J Drug Target 2018; 27:111-124. [PMID: 29737883 DOI: 10.1080/1061186x.2018.1473409] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The integrins αvβ3 play a very imperative role in angiogenesis and are overexpressed in endothelial cells of the tumour. Recent years have witnessed huge exploration in the field of αvβ3 integrin-mediated bioactive targeting for treatment of cancer. In these studies, the cRGD peptide has been employed extensively owing to their binding capacity to the αvβ3 integrin. Principally, RGD-based approaches comprise of antagonist molecules of the RGD sequence, drug-RGD conjugates, and most importantly tethering of the nanocarrier surface with the RGD peptide as targeting ligand. Targeting tumour vasculature or cells via cRGD conjugated nanocarriers have emerged as a promising technique for delivering chemotherapeutic drugs and imaging agents for cancer theranostics. In this review, primary emphasis has been given on the application of cRGD-anchored nanocarriers for targeted delivery of drugs, imaging agents, etc. for tumour therapy.
Collapse
Affiliation(s)
- K R Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| | - V Gajbhiye
- b Nanobioscience , Agharkar Research Institute , Pune , India
| | - Imtiaz A Siddiqui
- c Department of Dermatology , University of Wisconsin , Madison , WI , USA
| | - J M Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
38
|
Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS NANO 2018; 12:2106-2121. [PMID: 29462554 PMCID: PMC5878691 DOI: 10.1021/acsnano.7b07252] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The importance of medical imaging in the diagnosis and monitoring of cancer cannot be overstated. As personalized cancer treatments are gaining popularity, a need for more advanced imaging techniques has grown significantly. Nanoparticles are uniquely suited to fill this void, not only as imaging contrast agents but also as companion diagnostics. This review provides an overview of many ways nanoparticle imaging agents have contributed to cancer imaging, both preclinically and in the clinic, as well as charting future directions in companion diagnostics. We conclude that, while nanoparticle-based imaging agents are not without considerable scientific and developmental challenges, they enable enhanced imaging in nearly every modality, hold potential as in vivo companion diagnostics, and offer precise cancer treatment and maximize intervention efficacy.
Collapse
Affiliation(s)
- Emily B. Ehlerding
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Piotr Grodzinski
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christina H. Liu
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
39
|
Ni D, Jiang D, Ehlerding EB, Huang P, Cai W. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc Chem Res 2018; 51:778-788. [PMID: 29489335 DOI: 10.1021/acs.accounts.7b00635] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (64Cu, 89Zr, 18F, 68Ga, 124I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO2), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO2, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Emily B. Ehlerding
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
40
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
41
|
Shi S, Chen F, Goel S, Graves SA, Luo H, Theuer CP, Engle JW, Cai W. In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. NANO-MICRO LETTERS 2018; 10:65. [PMID: 30393713 PMCID: PMC6199109 DOI: 10.1007/s40820-018-0216-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem 64Cu-NOTA-QD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellent imaging capability and more reliable diagnostic outcomes. By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform, as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.
Collapse
Affiliation(s)
- Sixiang Shi
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705-2275, USA
| | - Shreya Goel
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Haiming Luo
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705-2275, USA
| | | | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Weibo Cai
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
42
|
A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160:65-72. [DOI: 10.1016/j.colsurfb.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
43
|
Lunova M, Prokhorov A, Jirsa M, Hof M, Olżyńska A, Jurkiewicz P, Kubinová Š, Lunov O, Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci Rep 2017; 7:16049. [PMID: 29167516 PMCID: PMC5700114 DOI: 10.1038/s41598-017-16447-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrey Prokhorov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
44
|
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
45
|
Chakravarty R, Chakraborty S, Guleria A, Kunwar A, Sarma HD, Dash A. Facile One-Pot Synthesis of Intrinsically Radiolabeled 64
Cu-Human Serum Albumin Nanocomposite for Cancer Targeting. ChemistrySelect 2017. [DOI: 10.1002/slct.201701237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| | - Apurav Guleria
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| | - Amit Kunwar
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| | - Ashutosh Dash
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre, Trombay; Mumbai 400 085 India
| |
Collapse
|
46
|
Xue H, Yu Z, Liu Y, Yuan W, Yang T, You J, He X, Lee RJ, Li L, Xu C. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. Int J Nanomedicine 2017; 12:5271-5287. [PMID: 28769563 PMCID: PMC5533569 DOI: 10.2147/ijn.s135306] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application.
Collapse
Affiliation(s)
- Huiying Xue
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhaoyang Yu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yong Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Weigang Yuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Jia You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Xingxing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert J Lee
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
47
|
Hong SH, Kim H, Choi Y. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. NANOTECHNOLOGY 2017; 28:185102. [PMID: 28393763 DOI: 10.1088/1361-6528/aa66b0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.
Collapse
Affiliation(s)
- Suk Ho Hong
- Molecular Imaging & Therapy Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | | | | |
Collapse
|
48
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
49
|
Peng C, Gao X, Xu J, Du B, Ning X, Tang S, Bachoo RM, Yu M, Ge WP, Zheng J. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. NANO RESEARCH 2017; 10:1366-1376. [PMID: 29034063 PMCID: PMC5639726 DOI: 10.1007/s12274-017-1472-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A major clinical translational challenge in nanomedicine is the potential of toxicity associated with the uptake and long-term retention of non-degradable nanoparticles (NPs) in major organs. The development of inorganic NPs that undergo renal clearance could potentially resolve this significant biosafety concern. However, it remains unclear whether inorganic NPs that can be excreted by the kidneys remain capable of targeting tumors with poor permeability. Glioblastoma multiforme, the most malignant orthotopic brain tumor, presents a unique challenge for NP delivery because of the blood-brain barrier and robust blood-tumor barrier of reactive microglia and macroglia in the tumor microenvironment. Herein, we used an orthotopic murine glioma model to investigate the passive targeting of glutathione-coated gold nanoparticles (AuNPs) of 3 nm in diameter that undergo renal clearance and 18-nm AuNPs that fail to undergo renal clearance. Remarkably, we report that 3-nm AuNPs were able to target intracranial tumor tissues with higher efficiency (2.3× relative to surrounding non-tumor normal brain tissues) and greater specificity (3.0×) than did the larger AuNPs. Pharmacokinetics studies suggested that the higher glioma targeting ability of the 3-nm AuNPs may be attributed to the longer retention time in circulation. The total accumulation of the 3-nm AuNPs in major organs was significantly less (8.4×) than that of the 18-nm AuNPs. Microscopic imaging of blood vessels and renal-clearable AuNPs showed extravasation of NPs from the leaky blood-tumor barrier into the tumor interstitium. Taken together, our results suggest that the 3-nm AuNPs, characterized by enhanced permeability and retention, are able to target brain tumors and undergo renal clearance.
Collapse
Affiliation(s)
- Chuanqi Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xiaofei Gao
- Children's Research Institute, Department of Pediatrics, Department of Neuroscience, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Xu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shaoheng Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Robert M Bachoo
- Simmons Cancer Center, Annette G. Strauss Center for Neuro-Oncology, Department of Internal Medicine, Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Woo-Ping Ge
- Children's Research Institute, Department of Pediatrics, Department of Neuroscience, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
50
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|