1
|
Almeida TL, Moreira AF, de Oliveira JL, Rogerio CB, Kiihl SF, Fraceto LF, de Jesus MB. A multiparametric and orthogonal approach indicates low toxicity for zein nanoparticles in a repellent formulation. Toxicol In Vitro 2024; 95:105747. [PMID: 38043627 DOI: 10.1016/j.tiv.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.
Collapse
Affiliation(s)
- Tuanny Leite Almeida
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Aline Francisca Moreira
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Jhones Luiz de Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Carolina Barbara Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Samara Flamini Kiihl
- Departamento de Estatística, Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Marcelo Bispo de Jesus
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Balci-Ozyurt A, Yirün A, Cakır DA, Zeybek ND, Oral D, Sabuncuoğlu S, Erkekoğlu P. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin. Toxicol Mech Methods 2024; 34:109-121. [PMID: 37794599 DOI: 10.1080/15376516.2023.2259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Bahçeşehir University School of Pharmacy, İstanbul, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Deniz Arca Cakır
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - N Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Didem Oral
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Düzce University Faculty of Pharmacy, Düzce, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
3
|
Fonseca E, Vázquez M, Rodriguez-Lorenzo L, Mallo N, Pinheiro I, Sousa ML, Cabaleiro S, Quarato M, Spuch-Calvar M, Correa-Duarte MA, López-Mayán JJ, Mackey M, Moreda A, Vasconcelos V, Espiña B, Campos A, Araújo MJ. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131915. [PMID: 37413800 DOI: 10.1016/j.jhazmat.2023.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - María Vázquez
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Natalia Mallo
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Maria Lígia Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Santiago Cabaleiro
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Spuch-Calvar
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Mick Mackey
- IRMRC - Indigo Rock Marine Research Centre, Gearhies, Bantry, Co., Cork P75 AX07, Ireland
| | - Antonio Moreda
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Biology Department, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
5
|
Zhang H, Chen Y, Wang J, Wang Y, Wang L, Duan Z. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: Facts and mechanisms. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105757. [PMID: 36208504 DOI: 10.1016/j.marenvres.2022.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is predicted to increase the average temperature of aquatic environments. Temperature changes modulate the toxicity of emerging chemical contaminants, such as nanoparticles (NPs). However, current hazard assessments of waterborne NPs seldom consider the influence of temperature. In this review, we gathered and analyzed the effects of temperature on the toxicity of waterborne NPs in different organisms. There was a general decrease in bioavailability with increasing temperature in algae and plants due to NPs aggregation, thus, reducing their toxicities. However, the agglomerated large particles caused by the increase in temperature induce a shading effect and inhibit algal photosynthesis. The toxicity of NPs in microorganisms and aquatic animals increases with increasing temperature. This may be due to the significant influence of high temperature on the uptake and excretion of chemicals across membranes, which increase the production of reactive oxygen species and enhance oxidative damage to organisms. High temperature also affect the formation and composition of a protein corona on NPs, altering their toxicity. Our results provide new insights into the toxicity of NPs in the context of global warming, and highlight the deficiencies of current research on NPs.
Collapse
Affiliation(s)
- Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yizhuo Chen
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
7
|
Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9:931759. [PMID: 35911959 PMCID: PMC9334523 DOI: 10.3389/fmolb.2022.931759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has been developed rapidly in recent decades and widely applied in ocular disease therapy. Nano-drug delivery systems overcome the bottlenecks of current ophthalmic drug delivery and are characterized with strong biocompatibility, stability, efficiency, sustainability, controllability, and few side effects. Nanoparticles have been identified as a promising and generally safe ophthalmic drug-delivery system based on the toxicity assessment in animals. Previous studies have found that common nanoparticles can be toxic to the cornea, conjunctiva, and retina under certain conditions. Because of the species differences between humans and animals, advanced in vitro cell culture techniques, such as human organoids, can mimic the human organism to a certain extent, bringing nanoparticle toxicity assessment to a new stage. This review summarizes the advanced application of nanoparticles in ocular drug delivery and the potential toxicity, as well as some of the current challenges and future opportunities in nanotoxicological evaluation.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuanxing Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| |
Collapse
|
8
|
Ecological Synthesis of CuO Nanoparticles Using Punica granatum L. Peel Extract for the Retention of Methyl Green. WATER 2022. [DOI: 10.3390/w14091509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aqueous extract from the bark of Punica granatum L. was invested to generate CuO nanoparticles from CuSO4 using a green, economical, ecological, and clean method. The synthesized nanoparticles were characterized and were successfully used as adsorbents for methyl green retention of an absorptive capacity amounting to 28.7 mg g−1. Methyl green equilibrium adsorption data were correlated to the Langmuir model following the pseudo-second order kinetics model. This study clearly corroborates that copper nanoparticles exhibit a high potential for use in wastewater treatment.
Collapse
|
9
|
Ghaemi B, Hashemi SJ, Kharrazi S, Moshiri A, Kargar Jahromi H, Amani A. Photodynamic therapy-mediated extirpation of cutaneous resistant dermatophytosis with Ag@ZnO nanoparticles: an efficient therapeutic approach for onychomycosis. Nanomedicine (Lond) 2022; 17:219-236. [PMID: 35118874 DOI: 10.2217/nnm-2021-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: The aim of this study was to determine whether photodynamic therapy of resistant onychomycosis with Ag@ZnO nanoparticles can promote the treatment procedure and extirpates the recurrence of fungal infection. Methods: Ag@ZnO nanoparticles (NPs) under UVB-radiation were applied to treat T. rubrum and T. mentagrophytes in vitro through photodynamic therapy. In vivo therapeutic efficacy, biocompatibility and biodistribution of Ag@ZnO NPs were studied. Results: 40 μg/ml of UVB-activated Ag@ZnO NPs showed 100% antifungal activity against dermatophytosis in vitro and in vivo followed by complete growth prevention by degeneration of spores and mycelium after 180 days, while posed biocompatibility. Conclusion: This study showed the superiority of photodynamic therapy with Ag@ZnO NPs followed by proper regeneration of the skin with Zinc ion of the shell.
Collapse
Affiliation(s)
- Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences,Tehran, 1417755469, Iran.,Food Microbiology Research Centre, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Arfa Moshiri
- Microbiology Research Centre, Pasteur Institute of Iran, Tehran, 1417755469, Iran.,Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Hossein Kargar Jahromi
- Research Centre for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Amani
- Natural Products & Medicinal Plants Research Centre, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Medical Biomaterial Research Centre, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| |
Collapse
|
10
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
11
|
Ribeiro AL, Bassai LW, Robert AW, Machado TN, Bezerra AG, Horinouchi CDDS, Aguiar AMD. Bismuth-based nanoparticles impair adipogenic differentiation of human adipose-derived mesenchymal stem cells. Toxicol In Vitro 2021; 77:105248. [PMID: 34560244 DOI: 10.1016/j.tiv.2021.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Bismuth-based nanoparticles (BiNPs) have attracted attention for their potential biomedical applications. However, there is a lack of information concerning their interaction with biological systems. In this study, it was investigated the effect of physically synthesized BiNPs to human adipose-derived stem cells (ADSCs). We first evaluated the influence of BiNPs on cell viability, cell morphology, mitochondrial function and cell proliferation. Further, the impact of BiNPs on adipogenic differentiation was also explored. Cytotoxicity assays have demonstrated that BiNPs did not reduce relative cell viability of ADSC except at the highest tested concentration (345 μg/ml). Analysis of cell morphology performed by transmission electron microscopy confirmed that BiNPs induced cell damage only at a high concentration (302.24 μg/ml), equivalent to IC50 concentration. Moreover, BiNPs exposure increased the expression of the cell proliferation marker Ki-67 and the incorporation of the thymidine analogue EdU into cell DNA, suggesting that these nanoparticles could be stimulating ADSC proliferation. BiNPs also increased the mitochondrial membrane potential. Furthermore, BiNPs reduced ADSC adipogenic differentiation as measured by lipid droplet accumulation and mRNA expression levels of the specific adipogenesis biomarkers PPARγ, C/EPBɑ and FABP4. Thus, BiNPs affect the nonspecific (viability, proliferation and mitochondrial activity) and specific (adipogenesis) cellular mechanisms of ADSCs.
Collapse
Affiliation(s)
- Annanda Lyra Ribeiro
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Letícia Werzel Bassai
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Laboratório de Cultivo de Eucariotos, Instituto de Biologia Molecular do Paraná, Curitiba, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Thiago Neves Machado
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | - Arandi Ginane Bezerra
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios com Métodos Alternativos em Citotoxicidade, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
12
|
Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M. Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Front Cell Dev Biol 2021; 9:696668. [PMID: 34631696 PMCID: PMC8495170 DOI: 10.3389/fcell.2021.696668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials are bestowed with certain inherent physicochemical properties unlike their parent materials, rendering them suitable for the multifaceted needs of state-of-the-art biomedical, and pharmaceutical applications. The log-phase development of nano-science along with improved "bench to beside" conversion carries an enhanced probability of human exposure with numerous nanoparticles. Thus, toxicity assessment of these novel nanoscale materials holds a key to ensuring the safety aspects or else the global biome will certainly face a debacle. The toxicity may span from health hazards due to direct exposure to indirect means through food chain contamination or environmental pollution, even causing genotoxicity. Multiple ways of nanotoxicity evaluation include several in vitro and in vivo methods, with in vitro methods occupying the bulk of the "experimental space." The underlying reason may be multiple, but ethical constraints in in vivo animal experiments are a significant one. Two-dimensional (2D) monoculture is undoubtedly the most exploited in vitro method providing advantages in terms of cost-effectiveness, high throughput, and reproducibility. However, it often fails to mimic a tissue or organ which possesses a defined three-dimensional structure (3D) along with intercellular communication machinery. Instead, microtissues such as spheroids or organoids having a precise 3D architecture and proximate in vivo tissue-like behavior can provide a more realistic evaluation than 2D monocultures. Recent developments in microfluidics and bioreactor-based organoid synthesis have eased the difficulties to prosper nano-toxicological analysis in organoid models surpassing the obstacle of ethical issues. The present review will enlighten applications of organoids in nanotoxicological evaluation, their advantages, and prospects toward securing commonplace nano-interventions.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | | | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Zoey FL, Palanivel M, Padmanabhan P, Gulyás B. Parkinson's Disease: A Nanotheranostic Approach Targeting Alpha-Synuclein Aggregation. Front Cell Dev Biol 2021; 9:707441. [PMID: 34490255 PMCID: PMC8418352 DOI: 10.3389/fcell.2021.707441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders that is implicated in aging populations. As numerous developed nations are experiencing progressively aging populations today, there is a heightened propensity for the occurrence of PD cases. Alpha-synuclein (α-syn) aggregation has been considered to be the pivotal mechanism leading to PD pathogenesis. Thus, early diagnostic and therapeutic strategies targeting the misfolded α-syn protein can potentially improve the prognosis of PD. With rapid advancements in nanotechnology in the last decade, effective solutions to various neurodegenerative and oncological diseases have been suggested. This review will explore the current innovations in nanotechnology that target the α-syn aggregation pathway, and reinstate the promise they hold as effective early diagnostic and therapeutic solutions to PD.
Collapse
Affiliation(s)
- Fong LaiGuan Zoey
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform, Nanyang Technological University, Singapore, Singapore
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform, Nanyang Technological University, Singapore, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imaging Probe Development Platform, Nanyang Technological University, Singapore, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Kałas W. Should Nano-Particles be Weighed or Counted? Technical Considerations to In Vitro Testing Originated from Corpuscular Nature of Nano-Particles. Arch Immunol Ther Exp (Warsz) 2021; 69:23. [PMID: 34345944 PMCID: PMC8332567 DOI: 10.1007/s00005-021-00623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/26/2021] [Indexed: 12/05/2022]
Abstract
The abundance of nanoparticles introduced to household products created the great expectations towards the application of nanotechnology in biology and medicine. That calls for cost-effective preliminary assessment of its cytotoxicity and biological activity. There are many attempts for creating proper guidance and standards for performing studies regarding nanoparticles. But still some important aspects crucial for in vitro testing of nanomaterials need more attention. Particulate nature is an obvious and widely unappreciated property of nanoparticles. In the context of in vitro studies, this property is critical, and it should be, but rarely is, considered when designing, performing, describing or interpreting the experiments involving the solid nanoparticles. First, we should be aware of relatively small and limited number of nanoparticles in the experimental setup. Even crude estimation of its number will be useful for proper interpretation of results. Second, we should not presume even distribution of particles in the solution, moreover we should expect that sedimentation and aggregation play an important role in interactions of nanoparticles with cells. In that case, expressing the dose in mass/volume units may lead as astray. Finally, the relation of size, weight, and number of nanoparticles makes comparisons of activity of nanoparticles of different sizes very complex. Estimations of number of nanoparticles in the dose should be an integral part of experiment design, its validation and interpretation.
Collapse
Affiliation(s)
- Wojciech Kałas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| |
Collapse
|
15
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
16
|
Xavier M, Parente IA, Rodrigues PM, Cerqueira MA, Pastrana L, Gonçalves C. Safety and fate of nanomaterials in food: The role of in vitro tests. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
18
|
Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. J Pharm Innov 2020; 17:249-265. [PMID: 32983280 PMCID: PMC7502307 DOI: 10.1007/s12247-020-09495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
The advent of the twenty-first century marked a paradigm shift in the healthcare sector with coming of automated, sensitive, targeted medicines and technologies having diagnostic, prophylactic and therapeutic effects. Nanomedicines also attained wide acclamation in their initial years, but the transformation from being the proof of concept to successfully marketed products seems very daunting. Although the reason for this may be attributed to slow but incremental character of many present-day technologies, the review asserts that there are other significant facets that may purvey a thorough explanation of this scenario. The article elaborately discusses the hurdles hindering clinical translation of nanomedicines including scale-up challenges, in vitro in vivo cascade of toxicology assays, along with unrefined manufacturing guidelines, inadequate regulatory approvals, competitive conventional market, etc., leading to hesitant investments by pharmaceutical giants. The paper also explores the economic viability of nanobiotechnology sector through an empirical investigation of the revenue data of various pharmaceutical industries manufacturing nano-based drugs, which indicates minor commercial importance of these medicines. We also laid down a comprehensive set of recommendations to smoothen the translational pathway of nanomedicines from an idea to reality, efface the consumer distrust and push boundaries for development and launching of safe, efficient and commercially successful products. Graphical abstract.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
- Wellcome Trust/DBT IA Early Career Fellow, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
19
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Ferreira LAB, Garcia-Fossa F, Radaic A, Durán N, Fávaro WJ, de Jesus MB. Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer. Eur J Pharm Biopharm 2020; 151:162-170. [PMID: 32311428 DOI: 10.1016/j.ejpb.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023]
Abstract
Bladder cancer is the fifth most common disease in the United States, and the treatment and alternatives for patients have not changed in the last decades. Silver nanoparticles (AgNP) have been used in the treatment of various cancer, mainly because of the antineoplastic activity; however, their use and the molecular mechanisms towards bladder cancer still unexplored. Therefore, this work aims to evaluate the in vitro and in vivo antitumoral mechanisms of biogenic silver nanoparticles synthesized from Fusarium sp. First, AgNP showed cytotoxicity in a dose- and time-response relationship and detailed analysis demonstrated the induction of cell death via apoptosis, also inhibiting cell migration and proliferation in bladder carcinoma cell line 5637. Next, it was evaluated the antitumoral activity of AgNP against non-muscle invasive bladder cancer (NMIBC). Bladder cancer was chemically induced with N-methyl-N-nitrosourea (MNU) on C57BL/6JUnib female mice and treated by intravesical route with AgNP concentrations of 0.5, 0.2, and 0.05 mg/mL. Finally, treatment with AgNP (0.05 mg/mL) led to 57.13% of tumor regression, with 14.28% of the animals showing normal urothelium, and 42.85% showing flat hyperplasia, considered to be a benign lesion. Overall, these findings demonstrated that AgNP might be a cost-effective alternative and promising candidate for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Luiz Alberto Bandeira Ferreira
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Fernanda Garcia-Fossa
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Allan Radaic
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Nelson Durán
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Bispo de Jesus
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Dose-dependent cell necrosis induced by silica nanoparticles. Toxicol In Vitro 2020; 63:104723. [DOI: 10.1016/j.tiv.2019.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022]
|
22
|
Chakraborty D, Ethiraj KR, Mukherjee A. Understanding the relevance of protein corona in nanoparticle-based therapeutics and diagnostics. RSC Adv 2020; 10:27161-27172. [PMID: 35515780 PMCID: PMC9055466 DOI: 10.1039/d0ra05241h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023] Open
Abstract
Over the past few decades, nanoparticle-based therapeutic and diagnostic systems have gained immense recognition. A relative improvement in the status of the global cancer burden has been successful due to the advent of nanoparticle-based formulations. However, exposure of nanoparticles (NPs) to a real-time biological media alters its native identity due to the formation of the biomolecular corona. Such biological interactions hinder the efficiency of the NPs system. The parameters that govern such intricate interaction are generally overlooked while designing nano drugs and delivery systems (nano-DDS). Fabricating nano-DDS with prolonged circulation time, enhanced drug-loading, and release capacity along with efficient clearance, remain the primary concerns associated with cancer therapeutics. This present review firstly aims to summarize the critical aspects that influence protein coronation on therapeutic nanoparticles designed for anti-cancer therapy. The role of protein corona in modifying the overall pharmacodynamics of the nanoparticle-based DDS has been discussed. Further, the studies and patents that extend the concept of protein corona into diagnostics have been elaborated. An understanding of the pros and cons associated with protein coronation would not only help us gain better insights into the fabrication of effective anti-cancer drug-delivery systems but also improve the shortcomings related to the clinical translation of these nanotherapeutics. Protein corona and its applications.![]()
Collapse
Affiliation(s)
| | - K. R. Ethiraj
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
23
|
Ferreira LAB, Dos Reis SB, do Nascimento da Silva E, Cadore S, Bernardes JDS, Durán N, de Jesus MB. Thiol-antioxidants interfere with assessing silver nanoparticle cytotoxicity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102130. [PMID: 31760163 DOI: 10.1016/j.nano.2019.102130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Many studies have shown that silver nanoparticles (AgNP) induce oxidative stress, and it is commonly assumed that this is the main mechanism of AgNP cytotoxicity. Most of these studies rely on antioxidants to establish this cause-and-effect relationship; nevertheless, details on how these antioxidants interact with the AgNP are often overlooked. This work aimed to investigate the molecular mechanisms underlying the use of antioxidants with AgNP nanoparticles. Thus, we studied the molecular interaction between the thiol-antioxidants (N-acetyl-L-Cysteine, L-Cysteine, and glutathione) or non-thiol-antioxidants (Trolox) with chemically and biologically synthesized AgNP. Both antioxidants could mitigate ROS production in Huh-7 hepatocarcinoma cells, but only thiol-antioxidants could prevent the cytotoxic effect, directly binding to the AgNP leading to aggregation. Our findings show that data interpretation might not be straightforward when using thiol-antioxidants to study the interactions between metallic nanoparticles and cells. This artifact exemplifies potential pitfalls that could hinder the progress of nanotechnology and the understanding of the nanotoxicity mechanism.
Collapse
Affiliation(s)
- Luiz A B Ferreira
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Samara Bonesso Dos Reis
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Emanueli do Nascimento da Silva
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Department of Chemistry, Institute of Exact and Biologic Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Solange Cadore
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Nelson Durán
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo B de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
24
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
25
|
Ferreira LAB, Fóssa FG, Durán N, de Jesus MB, Fávaro WJ. Cytotoxicity and Antitumor Activity of Biogenic Silver Nanoparticles Against Non-Muscle Invasive Bladder Cancer. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1323/1/012020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:363-377. [PMID: 30948072 DOI: 10.1016/j.msec.2019.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.
Collapse
|
28
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Ojha PK, Kar S, Roy K, Leszczynski J. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 2018; 13:14-34. [PMID: 30354872 DOI: 10.1080/17435390.2018.1529836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To address the nanomaterial exposure threat, it is imperative to understand how nanomaterials are recognized, internalized, and distributed within diverse cell systems. Targeting of nanomaterials to a specific cell type is generally attained through the modification of the nanoparticle (NP) surface leading to required cellular uptake. The enhanced cellular uptake to normal cells can direct to the higher interaction of NPs with subcellular organelles resulting the provocation of various signaling pathways. The successes of NPs rely on the prospect for the synthesis of functionalized NPs with necessary properties and their enhanced potential for cellular uptake for specific targeting. In the present study, we have modeled the cellular uptake of 109 surface modifiers of metal oxide nanoparticles (MNPs) for three different cell lines: HUVEC (Human endothelial cells), U937 (human macrophage cells), and PaCa2 (cancer cell lines). Along with the quantitative structure-activity relationship (QSAR) models, for the very first time we have developed and performed quantitative inter cell line uptake specificity (QICLUS) modeling to identify the physicochemical properties, as well as majorly structural fragments responsible for cellular uptake differences between two specific cell lines. The present work provides a comprehensive understanding of the cellular uptake of MNPs and the underlying structural parameters controlling the nano-cellular interactions. This phenomenon has also been analyzed from the QSAR and QICLUS models that concluded the functional groups of surface modifiers like amine, anhydride, halogen atoms, nitro group, acids have the dominating roles for the uptake of MNPs into the cell lines. Thus, the developed models may be used for designing of novel surface modifiers of MNPs of desired characteristics for proper cell-NPs interactions, as well as in the context of virtual screening aspect. Moreover, the MNP-cell interactions can give some idea about the toxicity for target-specific drug delivery treatment as higher cellular uptake is required for specific cells to treat the disease and lower uptake to the neighboring cells for lower toxicity.
Collapse
Affiliation(s)
- Probir Kumar Ojha
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Supratik Kar
- b Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences , Jackson State University , Jackson , MS , USA
| | - Kunal Roy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Jerzy Leszczynski
- b Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences , Jackson State University , Jackson , MS , USA
| |
Collapse
|
30
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
31
|
Ovais M, Chen C. Safety considerations for nanoparticles in tumor treatment. Nanomedicine (Lond) 2018; 13:2373-2376. [PMID: 30284498 DOI: 10.2217/nnm-2018-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Muhammad Ovais
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology (NCNST), Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology (NCNST), Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
32
|
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front Chem 2018; 6:360. [PMID: 30177965 PMCID: PMC6109690 DOI: 10.3389/fchem.2018.00360] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 01/23/2023] Open
Abstract
Several scientific areas have benefited significantly from the introduction of nanotechnology and the respective evolution. This is especially noteworthy in the development of new drug substances and products. This review focuses on the introduction of nanomedicines in the pharmaceutical market, and all the controversy associated to basic concepts related to these nanosystems, and the numerous methodologies applied for enhanced knowledge. Due to the properties conferred by the nanoscale, the challenges for nanotechnology implementation, specifically in the pharmaceutical development of new drug products and respective regulatory issues are critically discussed, mainly focused on the European Union context. Finally, issues pertaining to the current applications and future developments are presented.
Collapse
Affiliation(s)
- Sara Soares
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Pais
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Reus TL, Machado TN, Bezerra AG, Marcon BH, Paschoal ACC, Kuligovski C, de Aguiar AM, Dallagiovanna B. Dose-dependent cytotoxicity of bismuth nanoparticles produced by LASiS in a reference mammalian cell line BALB/c 3T3. Toxicol In Vitro 2018; 53:99-106. [PMID: 30030050 DOI: 10.1016/j.tiv.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Nanoparticles (NPs) have emerged as new potential tools for many applications in previous years. Among all types of NPs, bismuth NPs (BiNPs) have a very low cost and potential for many applications, ranging from medicine to industry. Although the toxic effects of bismuth have been studied, little is known about its toxicity at the nanoscale level. Therefore, in this study, we aimed to investigate the cytotoxic effects of BiNPs produced by laser ablation synthesis in solution (LASiS) in a reference mammalian cell line to evaluate their cytotoxicity (BALB/c 3 T3 cells). We also stabilized BiNPs in two different solutions: culture medium supplemented with fetal bovine serum (FBS) and bovine serum albumin (BSA). The cytotoxicity of BiNPs in culture medium (IC50:28.51 ± 9.96 μg/ml) and in BSA (IC50:25.54 ± 8.37 μg/ml) was assessed, and they were not significantly different. Second, the LD50 was predicted, and BiNPs were estimated as GHS class 4. We also found that cell death occurs due to apoptosis. By evaluating the interaction between BiNPs and cells at ultrastructural level, we suggest that cell death occurs once BiNPs are internalized. Additionally, we suggest that BiNPs cause cell damage because myelin figures were found inside cells that had internalized BiNPs. To date, this is the first study to assess the cytotoxicity of BiNPs produced by LASiS and to predict the possible LD50 and GHS class of BiNPs.
Collapse
Affiliation(s)
- Thamile Luciane Reus
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil
| | - Thiago Neves Machado
- Laboratório FOTONANOBIO, Universidade Tecnológica Federal do Paraná, Avenida 7 de Setembro 3165, 80230-901 Curitiba, PR, Brazil
| | - Arandi Ginane Bezerra
- Laboratório FOTONANOBIO, Universidade Tecnológica Federal do Paraná, Avenida 7 de Setembro 3165, 80230-901 Curitiba, PR, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil
| | - Ariane Caroline Campos Paschoal
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil
| | - Crisciele Kuligovski
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil
| | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil.
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010 Curitiba, PR, Brazil.
| |
Collapse
|
34
|
Farvadi F, Ghahremani MH, Hashemi F, Reza Hormozi-Nezhad M, Raoufi M, Zanganeh S, Atyabi F, Dinarvand R, Mahmoudi M. Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces. J Colloid Interface Sci 2018; 531:245-252. [PMID: 30032011 DOI: 10.1016/j.jcis.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
HYPOTHESIS It is now being increasingly accepted that cells in their native tissue show different morphologies than those grown on a culture plate. Culturing cells on the conventional two-dimensional (2D) culture plates does not closely resemble the in vivo three-dimensional (3D) structure of cells which in turn seems to affect cellular function. This is one of the reasons, among many others, that nanoparticles uptake and toxicology data from 2D culture plates and in vivo environments are not correlated with one another. In this study, we offer a novel platform technology for producing more in vivo-like models of in vitro cell culture. EXPERIMENTS The normal fibroblast cells (HU02) were cultured on "pseudo-3D" substrates, made from cell imprinting approach. The respond of the cells to a model nanoparticle (gold nanorod) were compared in 2D and "pseudo-3D" cultures modes, by cytotoxicological assays. FINDINGS It is illustrated here that the cells' respond to the exact same type of nanoparticles is majorly dependant in their shape. The use of "pseudo-3D" substrates which could partially mimic the shape of cells in vivo is strongly proposed as a means of better predicting the efficacy of the 2D cell culture plates.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghahremani
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hashemi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Raoufi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Zanganeh
- Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, United States
| | - Fatemeh Atyabi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Mahmoudi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Morozesk M, Franqui LS, Mansano AS, Martinez DST, Fernandes MN. Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: The influence of two co-exposure protocols on in vitro toxicity tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:136-147. [PMID: 29751160 DOI: 10.1016/j.aquatox.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil
| | - Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of Sao Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil.
| | - Marisa N Fernandes
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
36
|
Abstract
Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Xiaoqian Zhang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences , Xiamen University , Xiamen 361102 , P. R. China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
37
|
Serpooshan V, Sheibani S, Pushparaj P, Wojcik M, Jang AY, Santoso MR, Jang JH, Huang H, Safavi-Sohi R, Haghjoo N, Nejadnik H, Aghaverdi H, Vali H, Kinsella JM, Presley J, Xu K, Yang PCM, Mahmoudi M. Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS NANO 2018. [PMID: 29536733 DOI: 10.1021/acsnano.7b06212] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular uptake of nanoparticles (NPs) depends on the nature of the nanobio system including the solid nanocomponents ( e. g., physicochemical properties of NPs), nanobio interfaces ( e. g., protein corona composition), and the cellular characteristics ( e. g., cell type). In this study, we document the role of sex in cellular uptake of NPs as an "overlooked" factor in nanobio interface investigations. We demonstrate that cell sex leads to differences in NP uptake between male and female human amniotic stem cells (hAMSCs), with greater uptake by female cells. hAMSCs are one of the earliest sources of somatic stem cells. The experiments were replicated with primary fibroblasts isolated from the salivary gland of adult male and female donors of similar ages, and again the extent of NP uptake was altered by cell sex. However, in contrast to hAMSCs, uptake was greater in male cells. We also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs) by the Yamanaka factors. Thus, future studies should consider the effect of sex on the nanobio interactions to optimize clinical translation of NPs and iPSC biology and to help researchers to better design and produce safe and efficient therapeutic sex-specific NPs.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Biomedical Engineering , Georgia Institute of Technology & Emory University School of Medicine , Atlanta , Georgia 30322 , United States
- Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Sara Sheibani
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Pooja Pushparaj
- Department of Bioengineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Michal Wojcik
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Albert Y Jang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Joyce H Jang
- Meakins Christie Laboratories , McGill University Health Centre and McGill University , Montreal , Quebec H4A 3J1 , Canada
| | - Haina Huang
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Reihaneh Safavi-Sohi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute , Shahid Beheshti University , Tehran 1983963113 , Iran
| | - Niloofar Haghjoo
- Institute of Biochemistry and Biophysics , University of Tehran , Tehran 14174 , Iran
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS) , Stanford School of Medicine , Stanford , California 94305 , United States
| | - Haniyeh Aghaverdi
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | | | - John Presley
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Ke Xu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Division of Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
| | - Morteza Mahmoudi
- Division of Cardiovascular Medicine , Stanford University , Stanford , California 94305 , United States
- Department of Anesthesiology , Brigham & Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
38
|
Mahmoudi M. Debugging Nano-Bio Interfaces: Systematic Strategies to Accelerate Clinical Translation of Nanotechnologies. Trends Biotechnol 2018; 36:755-769. [PMID: 29559165 DOI: 10.1016/j.tibtech.2018.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts in the field of nanomedicine that have been made by researchers, funding agencies, entrepreneurs, and the media, fewer nanoparticle (NP) technologies than expected have made it to clinical trials. The wide gap between the efforts and effective clinical translation is, at least in part, due to multiple overlooked factors in both in vitro and in vivo environments, a poor understanding of the nano-bio interface, and misinterpretation of the data collected in vitro, all of which reduce the accuracy of predictions regarding the NPs' fate and safety in humans. To minimize this bench-to-clinic gap, which may accelerate successful clinical translation of NPs, this opinion paper aims to introduce strategies for systematic debugging of nano-bio interfaces in the current literature.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
40
|
Zhang TX, Zhu GY, Lu BY, Zhang CL, Peng Q. Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond) 2017; 12:2757-2769. [PMID: 29017387 DOI: 10.2217/nnm-2017-0238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM A comprehensive understanding of nanoparticle (NP)-protein interaction (protein corona formation) is required. So far, many factors influencing this interaction have been investigated, like size and ζ potential. However, NPs exposure concentration has always been ignored. Herein, we aim to disclose the correlation of NPs exposure concentration with protein adsorption. MATERIALS & METHODS Four polymeric NPs systems possessing similar sizes (230 ± 20 nm) but varied ζ potentials (-30 ∼ +40 mv) were prepared. Physicochemical properties and protein adsorption upon NP-protein interaction were characterized. RESULTS Protein adsorption capacity and adsorbed protein types were NPs concentration-dependent. CONCLUSION Considering the critical impacts of protein adsorption on NPs delivery, our work could be an urgent warning about the possible risks of dosage adjustment of nanoformulations.
Collapse
Affiliation(s)
- Tian-Xu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guan-Yin Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Yao Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Al-Yousuf K, Webster CA, Wheeler GN, Bombelli FB, Sherwood V. Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety. ACTA ACUST UNITED AC 2017; 73:20.13.1-20.13.33. [PMID: 28777439 DOI: 10.1002/cptx.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure, to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of novel biomedical NPs. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Karamallah Al-Yousuf
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Carl A Webster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Victoria Sherwood
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
42
|
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017; 46:4218-4244. [PMID: 28585944 PMCID: PMC5593313 DOI: 10.1039/c6cs00636a] [Citation(s) in RCA: 1498] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Collapse
Affiliation(s)
- Shahed Behzadi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. Trends Biotechnol 2017; 35:937-953. [PMID: 28666544 DOI: 10.1016/j.tibtech.2017.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a type of dementia that causes major issues for patients' memory, thinking, and behavior. Despite efforts to advance AD diagnostic and therapeutic tools, AD remains incurable due to its complex and multifactorial nature and lack of effective diagnostics/therapeutics. Nanoparticles (NPs) have demonstrated the potential to overcome the challenges and limitations associated with traditional diagnostics/therapeutics. Nanotechnology is now offering new tools and insights to advance our understanding of AD and eventually may offer new hope to AD patients. Here, we review the key roles of nanotechnologies in the recent literature, in both diagnostic and therapeutic aspects of AD, and discuss how these achievements may improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Michelle R Santoso
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Farhad Rezaee
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - George Perry
- Neurosciences Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
44
|
Zhang Y, Xu Y, Xi X, Shrestha S, Jiang P, Zhang W, Gao C. Amino acid-modified chitosan nanoparticles for Cu 2+ chelation to suppress CuO nanoparticle cytotoxicity. J Mater Chem B 2017; 5:3521-3530. [PMID: 32264288 DOI: 10.1039/c7tb00344g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive development and application of engineered nanoparticles (NPs) in various fields worldwide have been subjected to increasing concern due to their potential hazards to human health and the environment. Therefore, a simple, economical, and effective method for suppressing the toxicity of metal-based nanomaterials is needed. In this study, glutaraldehyde-crosslinked chitosan nanoparticles (CS NPs) were prepared and further modified with lysine (Ly-CS), glutamic acid (Glu-CS), or sodium borohydride reduction (R-CS), and used to suppress cytotoxicity induced by copper oxide NPs (CuO NPs) through chelation with intracellularly released copper ions. All three kinds of CS NPs had similar sizes of ∼100 nm in a dry state and ∼200 nm in cell culture medium, as determined by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. The chelating efficiency of different CS NPs followed the order Ly-CS > Glu-CS > R-CS. The CS NPs showed minimal or no toxicity to three different cell lines (HepG2, A549, and RAW264.7 cells) at 100 μg mL-1 with similar cell internalization and exocytosis processes. Comparatively, RAW264.7 cells exhibited higher endocytosis and exocytosis rates, as revealed by flow cytometry and confocal laser scanning microscopy. CS NPs were found as agglomerates inside A549 cells and RAW264.7 cells, with the amount of agglomerates inside RAW264.7 cells decreasing significantly with prolonged incubation. All three CS NPs, especially Ly-CS and Glu-CS NPs, efficiently suppressed the cytotoxicity induced by CuO NPs, and reduced the intracellular level of reactive oxygen species.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro
model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 2017; 37:1359-1369. [PMID: 28383141 DOI: 10.1002/jat.3470] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| |
Collapse
|
46
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|
47
|
Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017; 5:378-387. [PMID: 28133653 PMCID: PMC5592724 DOI: 10.1039/c6bm00921b] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mateen Tabatabaei
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles. Bioconjug Chem 2017; 28:212-221. [PMID: 27709892 PMCID: PMC5247775 DOI: 10.1021/acs.bioconjchem.6b00514] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/06/2016] [Indexed: 01/09/2023]
Abstract
An impressive development has been achieved toward the production of well-defined "smart" inorganic nanoparticles, in which the physicochemical properties can be controlled and predicted to a high degree of accuracy. Nanoparticle design is indeed highly advanced, multimodal and multitargeting being the norm, yet we do not fully understand the obstacles that nanoparticles face when used in vivo. Increased cooperation between chemists and biochemists, immunologists and physicists, has allowed us to think outside the box, and we are slowly starting to understand the interactions that nanoparticles undergo under more realistic situations. Importantly, such an understanding involves awareness about the limitations when assessing the influence of such inorganic nanoparticles on biological entities and vice versa, as well as the development of new validation strategies.
Collapse
Affiliation(s)
- Malou Henriksen-Lacey
- CIC biomaGUNE, Paseo
de Miramón 182, 20014 Donostia − San Sebastián, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), 2014 Donostia − San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo
de Miramón 182, 20014 Donostia − San Sebastián, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN), 2014 Donostia − San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
49
|
Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, Penny MW, Brown RA, Jenkins GJS, Brown AP, White PA, Doak SH. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part Fibre Toxicol 2016; 13:50. [PMID: 27613375 PMCID: PMC5016964 DOI: 10.1186/s12989-016-0161-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. Method BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. Results For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model’s 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. Conclusions The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0161-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John W Wills
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam D Thomas
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Katherine E Chapman
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - David Fish
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Thierry G Maffeis
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Mark W Penny
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Richard A Brown
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Andy P Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A White
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, K1N 9B4, ON, Canada
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
50
|
|