1
|
Malatesta M. Histochemistry for Molecular Imaging in Nanomedicine. Int J Mol Sci 2024; 25:8041. [PMID: 39125610 PMCID: PMC11311594 DOI: 10.3390/ijms25158041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
2
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
3
|
Vallejo FA, Sigdel G, Veliz EA, Leblanc RM, Vanni S, Graham RM. Carbon Dots in Treatment of Pediatric Brain Tumors: Past, Present, and Future Directions. Int J Mol Sci 2023; 24:ijms24119562. [PMID: 37298513 DOI: 10.3390/ijms24119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Pediatric brain tumors remain a significant source of morbidity and mortality. Though developments have been made in treating these malignancies, the blood-brain barrier, intra- and inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and compositions, have been investigated as a potential therapy to circumvent some of these inherent challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranostic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs, as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients. Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors. Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development, promising pre-clinical potential, and proposed future translational utility.
Collapse
Affiliation(s)
- Frederic A Vallejo
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Ganesh Sigdel
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Eduardo A Veliz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Steven Vanni
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA
- Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL 33328, USA
| | - Regina M Graham
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| |
Collapse
|
4
|
Lahooti B, Akwii RG, Patel D, ShahbaziNia S, Lamprou M, Madadi M, Abbruscato TJ, Astrinidis A, Bickel U, Al-Ahmad A, German NA, Mattheolabakis G, Mikelis CM. Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles. J Pharmacol Exp Ther 2023; 385:35-49. [PMID: 36746610 PMCID: PMC10029826 DOI: 10.1124/jpet.122.001384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Siavash ShahbaziNia
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Margarita Lamprou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Mahboubeh Madadi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Aristotelis Astrinidis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| |
Collapse
|
5
|
Bloise N, Okkeh M, Restivo E, Della Pina C, Visai L. Targeting the "Sweet Side" of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:289. [PMID: 33499388 PMCID: PMC7911724 DOI: 10.3390/nano11020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations in implementing this approach. We envision that the combination of nanotechnological strategies and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy, including immunotherapy.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università Degli Studi di Milano e CNR-ISTM, Via C. Golgi, 19, 20133 Milan, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli, 3/B-27100 Pavia, Italy; (M.O.); (E.R.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, 28-27100 Pavia, Italy
| |
Collapse
|
6
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Alphandéry E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology 2019; 13:573-596. [PMID: 30938215 DOI: 10.1080/17435390.2019.1572809] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IONP (iron oxide nanoparticles) commercialized for treatments of iron anemia or cancer diseases can be administered at doses exceeding 1 g per patient, indicating their bio-compatibility when they are prepared in the right conditions. Various parameters influence IONP biodistribution such as nanoparticle size, hydrophobicity/hydrophilicity, surface charge, core composition, coating properties, route of administration, quantity administered, and opsonization. IONP biodistribution trends include their capture by the reticuloendothelial system (RES), accumulation in liver and spleen, leading to nanoparticle degradation by macrophages and liver Kupffer cells, possibly followed by excretion in feces. To result in efficient tumor treatment, IONP need to reach the tumor in a sufficiently large quantity, using: (i) passive targeting, i.e. the extravasation of IONP through the blood vessel irrigating the tumor, (ii) molecular targeting achieved by a ligand bound to IONP specifically recognizing a cell receptor, and (iii) magnetic targeting in which a magnetic field gradient guides IONP towards the tumor. As a whole, targeting efficacy is relatively similar for different targeting, yielding a percentage of injected IONP in the tumor of 5.10-4% to 3%, 0.1% to 7%, and 5.10-3% to 2.6% for passive, molecular, and magnetic targeting, respectively. For the treatment of iron anemia disease, IONP are captured by the RES, and dissolved into free iron, which is then made available for the organism. For the treatment of cancer, IONP either deliver chemotherapeutic drugs to tumors, produce localized heat under the application of an alternating magnetic field or a laser, or activate in a controlled manner a sono-sensitizer following ultrasound treatment.
Collapse
Affiliation(s)
- Edouard Alphandéry
- a Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC , Paris , France.,b Nanobacterie SARL , Paris , France.,c Institute of Anatomy, UZH University of Zurich, Institute of Anatomy , Zurich , Switzerland
| |
Collapse
|
8
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
9
|
Rodríguez-Nogales C, Noguera R, Couvreur P, Blanco-Prieto MJ. Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther 2019; 370:625-635. [DOI: 10.1124/jpet.118.255067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
|
10
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
11
|
Reifarth M, Schubert US, Hoeppener S. Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
12
|
Gholizadeh S, Dolman EM, Wieriks R, Sparidans RW, Hennink WE, Kok RJ. Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells. Pharm Res 2018. [PMID: 29516187 PMCID: PMC5842274 DOI: 10.1007/s11095-018-2373-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose Sepantronium bromide (YM155) is a hydrophilic quaternary compound that cannot be administered orally due to its low oral bioavailability; it is furthermore rapidly eliminated via the kidneys. The current study aims at improving the pharmacokinetic profile of YM155 by its formulation in immunoliposomes that can achieve its enhanced delivery into tumor tissue and facilitate uptake in neuroblastoma cancer cells. Methods PEGylated YM155 loaded liposomes composed of DPPC, cholesterol and DSPE-PEG2000 were prepared via passive film-hydration and extrusion method. Targeted (i.e. immuno-)liposomes were prepared by surface functionalization with SATA modified monoclonal anti-disialoganglioside (GD2) antibodies. Liposomes were characterized based on their size, charge, antibody coupling and YM155 encapsulation efficiency, and stability. Flow cytometry analysis and confocal microscopy were performed on IMR32 and KCNR neuroblastoma cell lines. The efficacy of developed formulations were assessed by in-vitro toxicity assays. A pilot pharmacokinetic analysis was performed to assess plasma circulation and tumor accumulation profiles of the developed liposomal formulations. Results YM155 loaded immunoliposomes had a size of 170 nm and zeta potential of −10 mV, with an antibody coupling efficiency of 60% andYM155 encapsulation efficiency of14%. Targeted and control liposomal formulations were found to have similar YM155 release rates in a release medium containing 50% serum. An in-vitro toxicity study on KCNR cells showed less toxicity for immunoliposomes as compared to free YM155. In-vivo pharmacokinetic evaluation of YM155 liposomes showed prolonged blood circulation and significantly increased half-lives of liposomal YM155 in tumor tissue, as compared to a bolus injection of free YM155. Conclusions YM155 loaded immunoliposomes were successfully formulated and characterized, and initial in-vivo results show their potential for improving the circulation time and tumor accumulation of YM155. Electronic supplementary material The online version of this article (10.1007/s11095-018-2373-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emmy M Dolman
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rebecca Wieriks
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Rolf W Sparidans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Hedayati M, Abubaker-Sharif B, Khattab M, Razavi A, Mohammed I, Nejad A, Wabler M, Zhou H, Mihalic J, Gruettner C, DeWeese T, Ivkov R. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int J Hyperthermia 2017; 34:373-381. [PMID: 28758530 PMCID: PMC5871594 DOI: 10.1080/02656736.2017.1354403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the development and optimisation of an assay for quantitating iron from iron oxide nanoparticles in biological matrices by using ferene-s, a chromogenic compound. The method is accurate, reliable and can be performed with basic equipment common to many laboratories making it convenient and inexpensive. The assay we have developed is suited for quantitation of iron in cell culture studies with iron oxide nanoparticles, which tend to manifest low levels of iron. The assay was validated with standard reference materials and with inductively coupled plasma-mass spectrometry (ICP-MS) to accurately measure iron concentrations ~1 × 10−6 g in about 1 × 106 cells (~1 × 10−12 g Fe per cell). The assay requires preparation and use of a working solution to which samples can be directly added without further processing. After overnight incubation, the absorbance can be measured with a standard UV/Vis spectrophotometer to provide iron concentration. Alternatively, for expedited processing, samples can be digested with concentrated nitric acid before addition to the working solution. Optimization studies demonstrated significant deviations accompany variable digestion times, highlighting the importance to ensure complete iron ion liberation from the nanoparticle or sample matrix to avoid underestimating iron concentration. When performed correctly, this method yields reliable iron ion concentration measurements to ~2 × 10−6 M (1 × 10−7 g/ml sample).
Collapse
Affiliation(s)
- Mohammad Hedayati
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Bedri Abubaker-Sharif
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Mohamed Khattab
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Allen Razavi
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Isa Mohammed
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Arsalan Nejad
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michele Wabler
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Haoming Zhou
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jana Mihalic
- b Department of Environmental Health Sciences , Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | | | - Theodore DeWeese
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,d Department of Oncology, Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Robert Ivkov
- a Department of Radiation Oncology and Molecular Radiation Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,d Department of Oncology, Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD , USA.,f Department of Materials Science and Engineering , Whiting School of Engineering, Johns Hopkins University , Baltimore , MD , USA.,g Department of Mechanical Engineering , Whiting School of Engineering, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
14
|
Carter T, Mulholland P, Chester K. Antibody-targeted nanoparticles for cancer treatment. Immunotherapy 2017; 8:941-58. [PMID: 27381686 DOI: 10.2217/imt.16.11] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanoparticles (NPs) are diverse and versatile with physical properties that can be employed for use in cancer medicine. Targeting NPs using antibodies and antibody fragments could overcome some of the limitations seen with current targeted therapies. This review will discuss the role of antibody-targeted NPs in the treatment of cancer: as delivery vehicles, targeted theranostic agents and in the evolving field of cancer hyperthermia.
Collapse
Affiliation(s)
- Thomas Carter
- UCL Cancer Institute, University College London, London, UK
| | - Paul Mulholland
- UCL Cancer Institute, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Kerry Chester
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
15
|
Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control Release 2017; 255:108-119. [PMID: 28412222 DOI: 10.1016/j.jconrel.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
Abstract
Neuroblastoma is a pediatric solid tumor with high expression of the tumor associated antigen disialoganglioside GD2. Despite initial response to induction therapy, nearly 50% of high-risk neuroblastomas recur because of chemoresistance. Here we encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated with the anti-GD2 mouse mAb 3F8 at a mean density of seven antibody molecules per NP. The accumulation of drug-loaded NPs targeted with 3F8 versus with control antibody was monitored by microdialysis in patient-derived GD2-expressing neuroblastoma xenografts. We showed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the targeted nano-drug delivery system when compared to non-targeted system or free drug. This selective penetration of the tumor extracellular fluid translated into a strong anti-tumor effect prolonging survival of mice bearing GD2-high neuroblastomas in vivo.
Collapse
|
16
|
Zubareva AA, Boyko AA, Kholodenko IV, Rozov FN, Larina MV, Aliev TK, Doronin II, Vishnyakova PA, Molotkovskaya IM, Kholodenko RV. Chitosan nanoparticles targeted to the tumor-associated ganglioside GD2. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016050150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jiao P, Otto M, Geng Q, Li C, Li F, Butch ER, Snyder SE, Zhou H, Yan B. Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. J Mater Chem B 2015; 4:513-520. [PMID: 27087966 DOI: 10.1039/c5tb02243f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although nanomaterials have been widely investigated for drug delivery, imaging and immunotherapy, their potential roles in triggering innate cellular immune responses while simultaneously serving as imaging enhancer remain unexplored. In this work, gold nanoparticles (GNPs) conjugated to the tumor-targeting anti-GD2 antibody hu14.18K322A, namely HGNPs, were designed and synthesized to specifically enhance computerized tomography (CT) imaging contrast and to stimulate the attack of neuroblastoma and melanoma cells by natural killer (NK) cells. The HGNPs specifically targeted GD2-positive neuroblastoma (NB1691) and melanoma (M21) cells, with an enhancement of CT contrast images of the HGNP-labeled cell pellets by 5.27- and 7.66-fold, respectively, compared to images of unlabeled cell pellets. The HGNPs also triggered NK-mediated antibody-dependent cellular cytotoxicity (ADCC) in NB1691 and M21 cells with a two-fold higher efficacy compared to that elicited by hu14.18K322A alone, with no adverse effect to GD2-negative PC-3 cells. These results suggest that HGNPs are promising theranostic agents for neuroblastoma and melanoma cancers.
Collapse
Affiliation(s)
- Peifu Jiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Department of Chemistry, Qilu Normal University, Jinan, Shandong 250013, China
| | - Mario Otto
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiaohong Geng
- Department of Chemistry, Qilu Normal University, Jinan, Shandong 250013, China
| | - Chencan Li
- TR Pharma & Tech Co., Ltd., Jinan, Shandong 250101, China
| | - Faming Li
- Department of Chemistry, Qilu Normal University, Jinan, Shandong 250013, China
| | - Elizabeth R Butch
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Scott E Snyder
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|