1
|
Kogure M, Kanahara N, Miyazawa A, Shiko Y, Otsuka I, Matsuyama K, Takase M, Kimura M, Kimura H, Ota K, Idemoto K, Tamura M, Oda Y, Yoshida T, Okazaki S, Yamasaki F, Nakata Y, Watanabe Y, Niitsu T, Hishimoto A, Iyo M. Association of SLC6A3 variants with treatment-resistant schizophrenia: a genetic association study of dopamine-related genes in schizophrenia. Front Psychiatry 2024; 14:1334335. [PMID: 38476817 PMCID: PMC10929739 DOI: 10.3389/fpsyt.2023.1334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Background Most genetic analyses that have attempted to identify a locus or loci that can distinguish patients with treatment-resistant schizophrenia (TRS) from those who respond to treatment (non-TRS) have failed. However, evidence from multiple studies suggests that patients with schizophrenia who respond well to antipsychotic medication have a higher dopamine (DA) state in brain synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/release pathways. Patients and methods To examine the contribution (if any) of genetics to TRS, we conducted a genetic association analysis of DA-related genes in schizophrenia patients (TRS, n = 435; non-TRS, n = 539) and healthy controls (HC: n = 489). Results The distributions of the genotypes of rs3756450 and the 40-bp variable number tandem repeat on SLC6A3 differed between the TRS and non-TRS groups. Regarding rs3756450, the TRS group showed a significantly higher ratio of the A allele, whereas the non-TRS group predominantly had the G allele. The analysis of the combination of COMT and SLC6A3 yielded a significantly higher ratio of the putative low-DA type (i.e., high COMT activity + high SLC6A3 activity) in the TRS group compared to the two other groups. Patients with the low-DA type accounted for the minority of the non-TRS group and exhibited milder psychopathology. Conclusion The overall results suggest that (i) SLC6A3 could be involved in responsiveness to antipsychotic medication and (ii) genetic variants modulating brain DA levels may be related to the classification of TRS and non-TRS.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Matsuyama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Douwa-kai Chiba Hospital, Funabashi, Japan
| | | | - Makoto Kimura
- Chiba Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, Kameda Medical Center, Kamogawa, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Gakuji-kai Kimura Hospital, Chiba, Japan
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Kiyomitsu Ota
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Choshi-kokoro Clinic, Choshi, Japan
| | - Keita Idemoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Masaki Tamura
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Department of Cognitive Behavioral Psychology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
2
|
Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, Volkow ND, Lin Z. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry 2022; 27:1031-1046. [PMID: 34650206 PMCID: PMC9008071 DOI: 10.1038/s41380-021-01341-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, 10016, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Sun
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, and Department of Neurology, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- National Institute on Drug Abuse, Bethesda, MD, 20817, USA
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, and Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
3
|
Liu K, Zhao J, Chen C, Xu J, Bell RL, Hall FS, Koob GF, Volkow ND, Qing H, Lin Z. Epistatic evidence for gender-dependant slow neurotransmission signalling in substance use disorders: PPP1R12B versus PPP1R1B. EBioMedicine 2020; 61:103066. [PMID: 33096475 PMCID: PMC7581882 DOI: 10.1016/j.ebiom.2020.103066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Slow neurotransmission including DARPP-32 signalling is implicated in substance use disorders (SUDs) by experimental systems but not yet in the human aetiology. PPP1R12B, encoding another protein in the DARPP-32 family, hasn't been studied in the brain. METHODS Brain-regional gene activity was assessed in three different animal models of SUDs for mRNA level alterations. Genetic associations were assessed by meta-analysis of pre-existing dbGaP GWAS datasets for main effects and epistasis with known genetic risks, followed by cell type-specific pathway delineation. Parkinson's disease (PD) was included as a dopamine-related disease control for SUDs. FINDINGS In animal models of SUDs, environmentally-altered PPP1R12B expression sex-dependently involves motivation-related brain regions. In humans with polysubstance abuse, meta-analysis of pre-existing datasets revealed that PPP1R12B and PPP1R1B, although expressed in dopamine vs. dopamine-recipient neurons, exerted similar interactions with known genetic risks such as ACTR1B and DRD2 in men but with ADH1B, HGFAC and DRD3 in women. These interactions reached genome-wide significances (Pmeta<10-20) for SUDs but not for PD (disease selectivity: P = 4.8 × 10-142, OR = 6.7 for PPP1R12B; P = 8.0 × 10-8, OR = 2.1 for PPP1R1B). CADM2 was the common risk in the molecular signalling regardless of gender and cell type. INTERPRETATION Gender-dependant slow neurotransmission may convey both genetic and environmental vulnerabilities selectively to SUDs. FUNDING Grants from National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA) of U.S.A. and National Natural Science Foundation of China (NSFC).
Collapse
Affiliation(s)
- Kefu Liu
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China; Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America
| | - Juan Zhao
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China; Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America
| | - Chunnuan Chen
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America; Department of Neurology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, P. R. China
| | - Jie Xu
- Department of Computer Information Systems, Bentley University, Waltham, MA, 02452, United States of America
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States of America
| | - Frank S Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, United States of America
| | - George F Koob
- National Institute on Drug Abuse and National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20892 United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse and National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, 20892 United States of America
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, China.
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA 02478, United States of America.
| |
Collapse
|
4
|
Zhao J, Chen C, Bell RL, Qing H, Lin Z. Identification of HIVEP2 as a dopaminergic transcription factor related to substance use disorders in rats and humans. Transl Psychiatry 2019; 9:247. [PMID: 31586043 PMCID: PMC6778090 DOI: 10.1038/s41398-019-0573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Playing an important role in the etiology of substance use disorder (SUD), dopamine (DA) neurons are subject to various regulations but transcriptional regulations are largely understudied. For the first time, we report here that the Human Immunodeficiency Virus Type I Enhancer Binding Protein 2 (HIVEP2) is a dopaminergic transcriptional regulator. HIVEP2 is expressed in both the cytoplasm and nuclei of DA neurons. Therein, HIVEP2 can target the intronic sequence GTGGCTTTCT of SLC6A3 and thereby activate the gene. In naive rats from the bi-directional selectively bred substance-preferring P vs -nonpreferring NP rat model of substance abuse vulnerability, increased gene activity in males was associated with the vulnerability, whereas decreased gene activity in the females was associated with the same vulnerability. In clinical subjects, extensive and significant HIVEP2-SLC6A3 interactions were observed for SUD. Collectively, HIVEP2-mediated transcriptional mechanisms are implicated in dopaminergic pathophysiology of SUD.
Collapse
Affiliation(s)
- Juan Zhao
- 0000 0000 8841 6246grid.43555.32School of Life Science, Beijing Institute of Technology, 100081 Beijing, China ,0000 0000 8795 072Xgrid.240206.2Laboratory of Psychiatric Genomics, McLean Hospital, Belmont, MA 02478 USA
| | - Chunnuan Chen
- 0000 0000 8795 072Xgrid.240206.2Laboratory of Psychiatric Genomics, McLean Hospital, Belmont, MA 02478 USA ,Department of Neurology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, P. R. China
| | - Richard L. Bell
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202 USA
| | - Hong Qing
- 0000 0000 8841 6246grid.43555.32School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Genomics, McLean Hospital, Belmont, MA, 02478, USA.
| |
Collapse
|
5
|
Li J, Long X, Hu J, Bi J, Zhou T, Guo X, Han C, Huang J, Wang T, Xiong N, Lin Z. Multiple pathways for natural product treatment of Parkinson's disease: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152954. [PMID: 31130327 DOI: 10.1016/j.phymed.2019.152954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It is established that natural medicines for Parkinson's disease (PD) provide an antioxidant activity in preventing dopaminergic neurons from degeneration. However, the underlying and related molecular details remain poorly understood. METHODS AND AIM We review published in vitro and rodent studies of natural products in PD models with the aim to identify common molecular pathways contributing to the treatment efficacy. Commonly regulated genes were identified through the systemic literature search and further analyzed from a network perspective. FINDINGS Approximately thirty different types of natural products have been investigated for their ability to regulate protein density and gene activity in various experimental systems. Most were found to attenuate neurotoxin-induced regulations. Three common PD pathways are involved. The most studied pathway was neuronal development/anti-apoptosis consisting of Bax/Bcl-2, caspases 3/9, and MAPK signaling. Another well studied was anti-inflammation comprising iNOS, nNOS, Nrf2/ARE, cytokines, TNFα, COX2 and MAPK signaling. The third pathway referred to dopamine transmission modulation with upregulated VMAT2, DAT, NURR1 and GDNF levels. To date, HIPK2, a conserved serine/threonine kinase and transcriptional target of Nrf2 in an anti-apoptosis signaling pathway, is the first protein identified as the direct binding target of a natural product (ZMHC). IMPLICATIONS Natural products may utilize multiple and intercellular pathways at various steps to prevent DA neurons from degeneration. Molecular delineation of the mechanisms of actions is revealing new, perhaps combinational therapeutic approaches to stop the progression of DA degeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xi Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jichuan Hu
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Juan Bi
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Ting Zhou
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China.
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, United States.
| |
Collapse
|
6
|
Abstract
The human dopamine transporter gene SLC6A3 is involved in substance use disorders (SUDs) among many other common neuropsychiatric illnesses but allelic association results including those with its classic genetic markers 3'VNTR or Int8VNTR remain mixed and unexplainable. To better understand the genetics for reproducible association signals, we report the presence of recombination hotspots based on sequencing of the entire 5' promoter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European Americans (EAs). Recombination rate was the highest near the transcription start site (TSS) in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60 and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of European ancestry, from the 1000 Genome Project, confirmed the promoter recombination hotspots and also revealed several additional ones in non-coding regions only. These findings provide an explanation for the mixed results as well as guidance for selection of effective markers to be used in next generation association validation (NGAV), facilitating the delineation of pathogenic variation in this critical neuropsychiatric gene.
Collapse
|
7
|
Lu DY, Zhu PP, Wu HY, Xu B, Lu TR. RETRACTED: Human Suicide, Modern Diagnosis Assistance and Magic Bullet Discovery. Cent Nerv Syst Agents Med Chem 2019; 19:15-23. [PMID: 30644350 DOI: 10.2174/1871524919666190115130655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The article entitled “Human Suicide, Modern Diagnosis Assistance and Magic Bullet Discovery”, by Da-Yong Lu, Peng- Peng Zhu, Hong-Ying Wu, Nagendra Sastry Yarla, Bin Xu, Jian Ding, Ajit Varki and Ting-Ren Lu, has been retracted on the request of the co-authors, Dr. Ajit Varki, Dr. Nagendra Sastry Yarla and Dr. Jian Ding available at: Cent Nerv Syst Agents Med Chem 2019; 19(1): 15-23. http://www.eurekaselect.com/169003/article. The Corresponding Author Dr. Da-Yong Lu has included the names of the co-authors, Dr. Ajit Varki, Dr. Nagendra Sastry Yarla and Dr. Jian Ding without their consent and the manuscript has been published in the journal, Central Nervous System Agents in Medicinal Chemistry (CNSAMC). Kindly see Bentham Science Policy on Article retraction at the link given below: (https://benthamscience.com/journals/central-nervous-system-agents-in-medicinal-chemistry/author-guidelines/) Submission of a manuscript to the respective journals implies that all authors have read and agreed to the content of the Copyright Letter or the Terms and Conditions. As such, this article represents a severe abuse of the scientific publishing system. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | | | - Hong-Ying Wu
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Bin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai Shi, P.R. China
| | - Ting-Ren Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
8
|
Zhao Y, Yu J, Zhao J, Chen X, Xiong N, Wang T, Qing H, Lin Z. Intragenic Transcriptional cis-Antagonism Across SLC6A3. Mol Neurobiol 2018; 56:4051-4060. [PMID: 30259411 DOI: 10.1007/s12035-018-1357-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022]
Abstract
A promoter can be regulated by various cis-acting elements so that delineation of the regulatory modes among them may help understand developmental, environmental and genetic mechanisms in gene activity. Here we report that the human dopamine transporter gene SLC6A3 carries a 5' distal 5-kb super enhancer (5KSE) which upregulated the promoter by 5-fold. Interestingly, 5KSE is able to prevent 3' downstream variable number tandem repeats (3'VNTRs) from silencing the promoter. This new enhancer consists of a 5'VNTR and three repetitive sub-elements that are conserved in primates. Two of 5KSE's sub-elements, E-9.7 and E-8.7, upregulate the promoter, but only the later could continue doing so in the presence of 3'VNTRs. Finally, E-8.7 is activated by novel dopaminergic transcription factors including SRP54 and Nfe2l1. Together, these results reveal a multimodal regulatory mechanism in SLC6A3.
Collapse
Affiliation(s)
- Ying Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinlong Yu
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA
| | - Juan Zhao
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaowu Chen
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Shenzhen University General Hospital, Shenzhen, Guangzhou, 518060, China
| | - Nian Xiong
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.,Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qing
- College of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Basic Neuroscience Division, McLean Hospital, Belmont, MA, 02478, USA.
| |
Collapse
|
9
|
Essmann CL, Ryan KR, Elmi M, Bryon-Dodd K, Porter A, Vaughan A, McMullan R, Nurrish S. Activation of RHO-1 in cholinergic motor neurons competes with dopamine signalling to control locomotion. PLoS One 2018; 13:e0204057. [PMID: 30240421 PMCID: PMC6150489 DOI: 10.1371/journal.pone.0204057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The small GTPase RhoA plays a crucial role in the regulation of neuronal signalling to generate behaviour. In the developing nervous system RhoA is known to regulate the actin cytoskeleton, however the effectors of RhoA-signalling in adult neurons remain largely unidentified. We have previously shown that activation of the RhoA ortholog (RHO-1) in C. elegans cholinergic motor neurons triggers hyperactivity of these neurons and loopy locomotion with exaggerated body bends. This is achieved in part through increased diacylglycerol (DAG) levels and the recruitment of the synaptic vesicle protein UNC-13 to synaptic release sites, however other pathways remain to be identified. Dopamine, which is negatively regulated by the dopamine re-uptake transporter (DAT), has a central role in modulating locomotion in both humans and C. elegans. In this study we identify a new pathway in which RHO-1 regulates locomotory behaviour by repressing dopamine signalling, via DAT-1, linking these two pathways together. We observed an upregulation of dat-1 expression when RHO-1 is activated and show that loss of DAT-1 inhibits the loopy locomotion phenotype caused by RHO-1 activation. Reducing dopamine signalling in dat-1 mutants through mutations in genes involved in dopamine synthesis or in the dopamine receptor DOP-1 restores the ability of RHO-1 to trigger loopy locomotion in dat-1 mutants. Taken together, we show that negative regulation of dopamine signalling via DAT-1 is necessary for the neuronal RHO-1 pathway to regulate locomotion.
Collapse
Affiliation(s)
- Clara L. Essmann
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Katie R. Ryan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Muna Elmi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kimberley Bryon-Dodd
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Porter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Rachel McMullan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
10
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
11
|
Xiong N, Li N, Martin E, Yu J, Li J, Liu J, Lee DYW, Isacson O, Vance J, Qing H, Wang T, Lin Z. hVMAT2: A Target of Individualized Medication for Parkinson's Disease. Neurotherapeutics 2016; 13:623-34. [PMID: 27137201 PMCID: PMC4965405 DOI: 10.1007/s13311-016-0435-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vesicular monoamine transporter 2 (VMAT2) is responsible for sequestering cytosolically toxic dopamine into intracellular secretory vesicles. Animal genetic studies have suggested that reduced VMAT2 activity contributes to the genetic etiology of Parkinson's disease (PD), but this role has not been established in humans. Based on human genetic association and meta-analysis, we first confirm the human VMAT2 (hVMAT2 or SLC18A2) promoter as a risk factor for PD in both family and unrelated US white people: marker rs363324 at -11.5 kb in the hVMAT2 promoter is reproducibly associated with PD in a cohort of nuclear families (p = 0.04506 in early-onset PD) and 3 unrelated US white people (meta-analysis p = 0.01879). In SH-SY5Y cells, low activity-associated hVMAT2 promoter confers high methylpiperidinopyrazole iodide cytotoxicity, which is likely attributed to functional polymorphisms bound by nuclear proteins. Interestingly, treatments with the dopamine neuron-protecting agent puerarin upregulates the promoter activity in a haplotype- and cell line-dependent manner. These pharmacogenetic findings suggest that hVMAT2 could be a risk factor and imply it as a target of genetic medications for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Nuomin Li
- School of Life Sciences, Beijing Institute of Technology, 100081, Beijing, China
- Laboratory of Psychiatric Neurogenomics, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Eden Martin
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jinlong Yu
- Laboratory of Psychiatric Neurogenomics, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Jie Li
- Laboratory of Psychiatric Neurogenomics, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
- Tianjin Mental Health Center, Tianjin Anding Hospital, 300222, Tianjin, China
| | - Jing Liu
- Bio-Organic and Nutritional Products Laboratory, McLean Hospital, Belmont, MA, 02478, USA
| | - David Yue-Wei Lee
- Bio-Organic and Nutritional Products Laboratory, McLean Hospital, Belmont, MA, 02478, USA
| | - Ole Isacson
- Neuroregeneration Laboratories, McLean Hospital, Belmont, MA, 02478, USA
| | - Jeffery Vance
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Hong Qing
- School of Life Sciences, Beijing Institute of Technology, 100081, Beijing, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA.
| |
Collapse
|
12
|
Kennedy JL, Xiong N, Yu J, Zai CC, Pouget JG, Li J, Liu K, Qing H, Wang T, Martin E, Levy DL, Lin Z. Increased Nigral SLC6A3 Activity in Schizophrenia Patients: Findings From the Toronto-McLean Cohorts. Schizophr Bull 2016; 42:772-81. [PMID: 26707863 PMCID: PMC4838105 DOI: 10.1093/schbul/sbv191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SLC6A3, which encodes the primary regulator of extracellular dopamine (DA) concentration, the DA transporter, has been implicated in schizophrenia (SCZ). However, the details of its genetic effect on risk remain largely unknown. The purpose of this candidate gene study was to identify a specificSLC6A3activity associated with SCZ by using functional genetic approaches. We first examined gene activity in DA neurons isolated from case-control postmortem nigral tissue and found that the averageSLC6A3mRNA level in controls was only 0.37-fold of that in cases (P= .0034). To understand this expression difference, we examined the association of 10 genetic markers, mostly located in the promoter region, with SCZ in 1717 subjects collected from Toronto and McLean cohorts, including 881 controls and 836 cases and identified the 5' promoter SNP rs1478435 as having a significant association signal (uncorrectedPvalue: .00462; adjustedPvalue: .0319) in unrelated Caucasians. Allele T was over-represented in controls (OR = .75); T-carrier controls had decreased mRNA levels in nigral DA neurons, contributing to the reduced activity in the controls. In vitro functional analysis confirmed that T carriers displayed attenuated enhancement of promoter activity. These findings collectively suggest that increased nigralSLC6A3activity may be a risk factor for SCZ, and may help to explain high rates of comorbidity with substance abuse.
Collapse
Affiliation(s)
- James L. Kennedy
- Neurogenetics Section, Neuroscience Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nian Xiong
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA;,Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Yu
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Clement C. Zai
- Neurogenetics Section, Neuroscience Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jennie G. Pouget
- Neurogenetics Section, Neuroscience Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jie Li
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA;,Institute of Psychiatry, Tianjin Mental Health Center, Tianjin, China
| | - Kefu Liu
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA;,School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eden Martin
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Deborah L. Levy
- Department of Psychiatry, Harvard Medical School, Boston, MA;,Psychology Research Laboratory, McLean Hospital, Belmont, MA,Joint last author
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA;
| |
Collapse
|
13
|
Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells. Neurochem Res 2015; 40:1372-8. [PMID: 25963949 DOI: 10.1007/s11064-015-1601-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5-2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states.
Collapse
|
14
|
Jasiewicz A, Rubiś B, Samochowiec J, Małecka I, Suchanecka A, Jabłoński M, Grzywacz A. DAT1 methylation changes in alcohol-dependent individuals vs. controls. J Psychiatr Res 2015; 64:130-3. [PMID: 25862379 DOI: 10.1016/j.jpsychires.2015.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The dopaminergic system plays a crucial role in the development of alcohol dependence. Regulation of the extracellular dopamine concentration is driven by dopamine transporter. Both, the expression and function of dopamine transporter, are influenced by chronic alcohol intake. Dopamine transporter (DAT) gene is also supposed to be differentially methylated in alcohol-dependent patients than in controls. MATERIAL AND METHODS DNA was extracted from peripheral blood leukocytes. We analyzed the methylation status in 23 CpG islands of DAT gene promoter in alcohol dependent subjects (n = 171) and control (n = 160) group. RESULTS No statistical differences in the general frequency of DAT CpG islands was revealed between patients (altogether 175 methylated islands) and control subjects (170 methylated islands (p = 0.86). However it was revealed that one of analyzed positions is significantly more often methylated in control subjects than in alcohol dependent individuals (p = 0.0296). CONCLUSION Further subsequent studies are necessary to determine whether the methylation change of one (out of 23) CpG site results in DAT expression changes.
Collapse
Affiliation(s)
- Andrzej Jasiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Iwona Małecka
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Aleksandra Suchanecka
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Anna Grzywacz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland.
| |
Collapse
|