1
|
Vasiliu O. The pharmacogenetics of the new-generation antipsychotics - A scoping review focused on patients with severe psychiatric disorders. Front Psychiatry 2023; 14:1124796. [PMID: 36873203 PMCID: PMC9978195 DOI: 10.3389/fpsyt.2023.1124796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the possible correlations between gene variations and the clinical effects of the new-generation antipsychotics is considered essential in the framework of personalized medicine. It is expected that pharmacogenetic data will be useful for increasing the treatment efficacy, tolerability, therapeutic adherence, functional recovery, and quality of life in patients with severe psychiatric disorders (SPD). This scoping review investigated the available evidence about the pharmacokinetics, pharmacodynamics, and pharmacogenetics of five new-generation antipsychotics, i.e., cariprazine, brexpiprazole, aripiprazole, lumateperone, and pimavanserin. Based on the analysis of 25 primary and secondary sources and the review of these agents' summaries of product characteristics, aripiprazole benefits from the most relevant data about the impact of gene variability on its pharmacokinetics and pharmacodynamics, with significant consequences on this antipsychotic's efficacy and tolerability. The determination of the CYP2D6 metabolizer status is important when administering aripiprazole, either as monotherapy or associated with other pharmacological agents. Allelic variability in genes encoding dopamine D2, D3, and serotonin, 5HT2A, 5HT2C receptors, COMT, BDNF, and dopamine transporter DAT1 was also associated with different adverse events or variations in the clinical efficacy of aripiprazole. Brexpiprazole also benefits from specific recommendations regarding the CYP2D6 metabolizer status and the risks of associating this antipsychotic with strong/moderate CYP2D6 or CYP3A4 inhibitors. US Food and Drug Administration (FDA) and European Medicines Agency (EMA) recommendations about cariprazine refer to possible pharmacokinetic interactions with strong CYP3A4 inhibitors or inducers. Pharmacogenetic data about cariprazine is sparse, and relevant information regarding gene-drug interactions for lumateperone and pimavanserin is yet lacking. In conclusion, more studies are needed to detect the influence of gene variations on the pharmacokinetics and pharmacodynamics of new-generation antipsychotics. This type of research could increase the ability of clinicians to predict favorable responses to specific antipsychotics and to improve the tolerability of the treatment regimen in patients with SPD.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
2
|
Zhang X, You L, Zhang X, Wang F, Wang Y, Zhou J, Liu C, Qu F. Neurobehavioral alternations of the female offspring born to polycystic ovary syndrome model rats administered by Chinese herbal medicine. Chin Med 2021; 16:97. [PMID: 34600579 PMCID: PMC8487466 DOI: 10.1186/s13020-021-00512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Chinese herbal medicine (CHM) has significant effects that improve the reproductive functions of patients with polycystic ovary syndrome (PCOS). However, the intergenerational effects of CHM on offspring and the underlying mechanism of CHM remain unclear. This study aimed to explore the effects and the underlying mechanism of CHM, specifically the Bu-Shen-Tian-Jing formula (BSTJF), on model rats with polycystic ovary syndrome (PCOS) and the neurobehavioral alterations of female offspring born to PCOS rats administered BSTJF. Methods High-performance liquid chromatography-mass spectrometry (HPLC–MS) and network pharmacology analysis were performed to identify the active ingredients and potential targets of BSTJF. Moreover, PCOS model rats were used to validate the role of BSTJF in reproduction and progeny neural development and to confirm the network pharmacological targets. Results A total of 91 constituents were characterized from BSTJF. The 20 most significant KEGG pathways and the high-frequency genes of these pathways were predicted to be putative targets of these molecules. The rat experiment showed that the downregulation of FOS protein expression in the ovarian granulosa cells of the PCOS group was reversed by BSTJF. The target residence time of the 5-week-old female offspring of the BSTJF group was higher than that of the PCOS group in the water maze experiment. Compared to the PCOS group, the changes in dendritic spine density, ultrastructure of neurons and synapses, and Gabrb1 and Grin2b protein expression levels in the hippocampus of female offspring were partially reversed in the BSTJF group. Conclusions BSTJF can effectively improve ovarian follicle development in PCOS rats and has positive effects on pubertal neurobehavioral alterations in the female offspring of these rats by reversing dendritic spine density, the ultrastructure of neurons and synapses, and the Gabrb1 and Grin2b protein expression levels in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00512-4.
Collapse
Affiliation(s)
- Xian Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Lifang You
- First People's Hospital of Yuhang District, Hangzhou, 311103, Zhejiang, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chang Liu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China.
| |
Collapse
|
3
|
You X, Zhang Y, Long Q, Liu Z, Ma X, Lu Z, Yang W, Feng Z, Zhang W, Teng Z, Zeng Y. Investigating aberrantly expressed microRNAs in peripheral blood mononuclear cells from patients with treatment‑resistant schizophrenia using miRNA sequencing and integrated bioinformatics. Mol Med Rep 2020; 22:4340-4350. [PMID: 33000265 PMCID: PMC7533444 DOI: 10.3892/mmr.2020.11513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is a common phenotype of schizophrenia that places a considerable burden on patients as well as on society. TRS is known for its tendency to relapse and uncontrollable nature, with a poor response to antipsychotics other than clozapine. Therefore, it is urgent to identify objective biological markers, so as to guide its treatment and associated clinical work. In the present study, the peripheral blood mononuclear cells (PBMCs) of patients with TRS and a healthy control group, which were gender-, age- and ethnicity-matched, were subjected to microRNA (miRNA/miR) sequencing to screen out the top three miRNAs with the highest fold change values. These were then validated in the TRS (n=34) and healthy control (n=31) groups by reverse transcription-quantitative PCR. For two of the top three miRNAs, the PCR results were in accordance with the sequencing result (P<0.01), while the third miRNA exhibited the opposite trend (P<0.01). To elucidate the functions of these two miRNAs, Homo sapiens (hsa)-miR-218-5p and hsa-miR-1262 and their regulatory network, target gene prediction was first performed using online TargetScan and Diana-micro T software. Bioinformatics analysis was then performed using functional enrichment analysis to determine the Gene Ontology terms in the category biological process and the Kyoto Encyclopedia of Genes and Genomes pathways. It was revealed that these target genes were markedly associated with the nervous system and brain function, and it was obvious that the differentially expressed miRNAs most likely participated in the pathogenesis of TRS. A receiver operating characteristic curve was generated to confirm the distinct diagnostic value of these two miRNAs. It was concluded that aberrantly expressed miRNAs in PMBCs may be implicated in the pathogenesis of TRS and may serve as specific peripheral blood-based biomarkers for the early diagnosis of TRS.
Collapse
Affiliation(s)
- Xu You
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yunqiao Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Qing Long
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zijun Liu
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Xiao Ma
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zixiang Lu
- Psychiatric Ward, Honghe Second People's Hospital, Honghe, Yunnan 654399, P.R. China
| | - Wei Yang
- Psychiatric Ward, Yuxi Second People's Hospital, Yuxi, Yunnan 653100, P.R. China
| | - Ziqiao Feng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Wengyu Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zhaowei Teng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yong Zeng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| |
Collapse
|
4
|
Yoshida K, Müller DJ. Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. MOLECULAR NEUROPSYCHIATRY 2020; 5:1-26. [PMID: 32399466 PMCID: PMC7206586 DOI: 10.1159/000492332] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Numerous genetic variants have been shown to be associated with antipsychotic response and adverse effects of schizophrenia treatment. However, the clinical application of these findings is limited. The aim of this narrative review is to summarize the most recent publications and recommendations related to the genetics of antipsychotic treatment and shed light on the clinical utility of pharmacogenetics/pharmacogenomics (PGx). We reviewed the literature on PGx studies with antipsychotic drugs (i.e., antipsychotic response and adverse effects) and commonly used commercial PGx tools for clinical practice. Publications and reviews were included with emphasis on articles published between January 2015 and April 2018. We found 44 studies focusing on antipsychotic response and 45 studies on adverse effects (e.g., antipsychotic-induced weight gain, movement disorders, hormonal abnormality, and clozapine-induced agranulocytosis/granulocytopenia), albeit with mixed results. Overall, several gene variants related to antipsychotic response and adverse effects in the treatment of patients with schizophrenia have been reported, and several commercial pharmacogenomic tests have become available. However, further well-designed investigations and replication studies in large and well-characterized samples are needed to facilitate the application of PGx findings to clinical practice.
Collapse
Affiliation(s)
- Kazunari Yoshida
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the investigation of genetic factors for antipsychotic response and side effects. RECENT FINDINGS Antipsychotics prescribed to treat psychotic symptoms are variable in efficacy and propensity for causing side effects. The major side effects include tardive dyskinesia, antipsychotic-induced weight gain (AIWG), and clozapine-induced agranulocytosis (CIA). Several promising associations of polymorphisms in genes including HSPG2, CNR1, and DPP6 with tardive dyskinesia have been reported. In particular, a functional genetic polymorphism in SLC18A2, which is a target of recently approved tardive dyskinesia medication valbenazine, was associated with tardive dyskinesia. Similarly, several consistent findings primarily from genes modulating energy homeostasis have also been reported (e.g. MC4R, HTR2C). CIA has been consistently associated with polymorphisms in the HLA genes (HLA-DQB1 and HLA-B). The association findings between glutamate system genes and antipsychotic response require additional replications. SUMMARY The findings to date are promising and provide us a better understanding of the development of side effects and response to antipsychotics. However, more comprehensive investigations in large, well characterized samples will bring us closer to clinically actionable findings.
Collapse
|