1
|
Garmany A, Terzic A. Artificial intelligence powers regenerative medicine into predictive realm. Regen Med 2024; 19:611-616. [PMID: 39660914 DOI: 10.1080/17460751.2024.2437281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
The expanding regenerative medicine toolkit is reaching a record number of lives. There is a pressing need to enhance the precision, efficiency, and effectiveness of regenerative approaches and achieve reliable outcomes. While regenerative medicine has relied on an empiric paradigm, availability of big data along with advances in informatics and artificial intelligence offer the opportunity to inform the next generation of regenerative sciences along the discovery, translation, and application pathway. Artificial intelligence can streamline discovery and development of optimized biotherapeutics by aiding in the interpretation of readouts associated with optimal repair outcomes. In advanced biomanufacturing, artificial intelligence holds potential in ensuring quality control and assuring scalability through automated monitoring of process-critical variables mandatory for product consistency. In practice application, artificial intelligence can guide clinical trial design, patient selection, delivery strategies, and outcome assessment. As artificial intelligence transforms the regenerative horizon, caution is necessary to reduce bias, ensure generalizability, and mitigate ethical concerns with the goal of equitable access for patients and populations.
Collapse
Affiliation(s)
- Armin Garmany
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
W Sandoval AG, Traktuev DO, March KL. Development of a student-driven undergraduate program in regenerative medicine. Regen Med 2022; 17:755-765. [PMID: 35924471 DOI: 10.2217/rme-2022-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As it begins to enter the clinic, regenerative medicine has the potential to revolutionize healthcare. Although there exists a growing need for individuals well-versed in the practice of regenerative medicine, few undergraduate institutions offer opportunities to learn about the topic. This article highlights the conception of two novel undergraduate courses in regenerative medicine developed through collaboration between students and faculty at our University to fill this void in the undergraduate curriculum. Lectures from scientists, healthcare professionals, regulatory experts and biotechnology leaders introduced students to regenerative medicine research and the translational process, and a certificate program incorporating relevant coursework and research experience is in development. This pipeline will guide promising undergraduate students to the field of regenerative medicine.
Collapse
Affiliation(s)
- Aaron Gabriel W Sandoval
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.,Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Dmitry O Traktuev
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Keith L March
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Yamada S, Bartunek J, Behfar A, Terzic A. Mass Customized Outlook for Regenerative Heart Failure Care. Int J Mol Sci 2021; 22:11394. [PMID: 34768825 PMCID: PMC8583673 DOI: 10.3390/ijms222111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300 Aalst, Belgium
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Affiliation(s)
- Andrew Webster
- Science & Technology Studies Unit, University of York, York, YO10 5DD, UK
| | - Andre Terzic
- Mayo Clinic, Center for Regenerative Medicine, 200 First Street SW, Rochester, 55905-0002 MN , USA
| |
Collapse
|
5
|
Yamada S, Behfar A, Terzic A. Regenerative medicine clinical readiness. Regen Med 2021; 16:309-322. [PMID: 33622049 PMCID: PMC8050983 DOI: 10.2217/rme-2020-0178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine, poised to transform 21st century healthcare, has aspired to enrich care options by bringing cures to patients in need. Science-driven responsible and regulated translation of innovative technology has enabled the launch of previously unimaginable care pathways adopted prudently for select serious diseases and disabilities. The collective resolve to advance the design, manufacture and validity of affordable regenerative solutions aims to democratize such health benefits for all. The objective of this Review is to outline the framework and prerequisites that underpin clinical readiness of regenerative care. Integrated research and development, specialized workforce education and accessible evidence-based practice implementation are at the core of realizing an equitable regenerative medicine vision.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, 55905 MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|