1
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y Tse
- Department of Materials Science, Stanford University, Stanford, CA 94305
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Noel ES, Chen A, Peña YA, Honeycutt JA. Early life adversity drives sex-dependent changes in 5-mC DNA methylation of parvalbumin cells in the prefrontal cortex in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578313. [PMID: 38352518 PMCID: PMC10862911 DOI: 10.1101/2024.01.31.578313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Early life adversity (ELA) can result in increased risk for developing affective disorders, such as anxiety or depression, later in life, with women showing increased risk. Interactions between an individual's genes and their environment play key roles in producing, as well as mitigating, later life neuropathology. Our current understanding of the underlying epigenomic drivers of ELA associated anxiety and depression are limited, and this stems in part from the complexity of underlying biochemical processes associated with how early experiences shapes later life behavior. Epigenetic alterations, or experience-driven modifications to DNA, can be leveraged to understand the interplay between genes and the environment. The present study characterized DNA methylation patterning, assessed via evaluation of 5-methylcytosine (5-mC), following ELA in a Sprague Dawley rat model of ELA induced by early caregiver deprivation. This study utilized maternal separation to investigate sex- and age-specific outcomes of ELA on epigenetic patterning in parvalbumin (PV)-containing interneurons in the prefrontal cortex (PFC), a subpopulation of inhibitory neurons which are associated with ELA and affective dysfunction. While global analysis of 5-mC methylation and CpG site specific pyrosequencing of the PV promoter, Pvalb, showed no obvious effects of ELA, when analyses were restricted to assessing 5-mC intensity in colocalized PV cells, there were significant sex and age dependent effects. We found that ELA leads sex-specific changes in PV cell counts, and that cell counts can be predicted by 5-mC intensity, with males and females showing distinct patterns of methylation and PV outcomes. ELA also produced sex-specific effects in corticosterone reactivity, with juvenile females showing a blunted stress hormone response compared to controls. Overall, ELA led to a sex-specific developmental shift in PV profile, which is comparable to profiles that are seen at a later developmental timepoint, and this shift may be mediated in part by epigenomic alterations driven by altered DNA methylation.
Collapse
Affiliation(s)
- Emma S Noel
- Program in Biochemistry, Brunswick, ME 04011 USA
| | - Alissa Chen
- Program in Neuroscience, Brunswick, ME 04011 USA
| | | | - Jennifer A Honeycutt
- Program in Neuroscience, Brunswick, ME 04011 USA
- Department of Psychology Bowdoin College, Brunswick, ME 04011 USA
| |
Collapse
|
3
|
Mukiibi R, Peñaloza C, Gutierrez A, Yáñez JM, Houston RD, Robledo D. The impact of Piscirickettsia salmonis infection on genome-wide DNA methylation profile in Atlantic Salmon. Genomics 2022; 114:110503. [PMID: 36244592 DOI: 10.1016/j.ygeno.2022.110503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.
Collapse
Affiliation(s)
- Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
DNMT1-Mediated DNA Methylation Targets CDKN2B to Promote the Repair of Retinal Ganglion Cells in Streptozotocin-Induced Mongolian Gerbils during Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9212116. [PMID: 35295199 PMCID: PMC8920618 DOI: 10.1155/2022/9212116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Objective DNA methylation played a vital role in the progression of diabetic retinopathy. In this study, we aimed to explore the role of DNA cytosine-5-methyltransferase 1 (DNMT1) in the development of early diabetic retinopathy and its potential underlying mechanism. Methods Eight-week-old healthy Mongolian gerbils were used to establish type 1 diabetes using streptozotocin (STZ). Alteration of weight, fasting blood glucose, density of RGCs (Tuj1-labeled), and H&E-stained retinal cross sections were applied to evaluate the diabetic retinopathy mouse model. The global DNA methylation level of the retina at different time points after STZ injection was measured using the global methylation assay. Western blot was used to detect the protein expression of DNMT1, DNA methyltransferase 3A (DNMT3A), and 3B (DNMT3B). Quantitative reverse transcription-polymerase chain reactions (qRT-PCR) and western blot were used to determine the expression of CDKN2B. Cell proliferation and cell cycle were evaluated by the MTS assay and flow cytometry. Results STZ injection caused the increased global DNA methylation level, which reached a maximum at 6 weeks after injection. Moreover, STZ injection caused the damage of RGCs. At 6 weeks after STZ injection, the expression levels of DNMT1 and DNMT3B were significantly increased in the STZ group. DNMT1-induced DNA hypermethylation inhibited the expression of CDKN2B (a negative regulator of cell cycle). DNMT1-mediated DNA methylation facilitated RGC proliferation via regulating the expression of CDKN2B. Conclusion DNMT1-mediated DNA methylation played an important role in STZ-induced diabetic retinopathy via modulating CDKN2B expression.
Collapse
|
5
|
Epigenetic effects of insecticides on early differentiation of mouse embryonic stem cells. Toxicol In Vitro 2021; 75:105174. [PMID: 33865946 DOI: 10.1016/j.tiv.2021.105174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates that many insecticides produce significant epigenetic changes during embryogenesis, leading to developmental toxicities. However, the effects of insecticides on DNA methylation status during early development have not been well studied. We developed a novel nuclear phenotypic approach using mouse embryonic stem cells harboring enhanced green fluorescent protein fused with methyl CpG-binding protein to evaluate global DNA methylation changes via high-content imaging analysis. Exposure to imidacloprid, carbaryl, and o,p'-DDT increased the fluorescent intensity of granules in the nuclei, indicating global DNA methylating effects. However, DNA methylation profiling in cell-cycle-related genes, such as Cdkn2a, Dapk1, Cdh1, Mlh1, Timp3, and Rarb, decreased in imidacloprid treatments, suggesting the potential influence of DNA methylation patterns on cell differentiation. We developed a rapid method for evaluating global DNA methylation and used this approach to show that insecticides pose risks of developmental toxicity through DNA methylation.
Collapse
|
6
|
Middleton LYM, Dou J, Fisher J, Heiss JA, Nguyen VK, Just AC, Faul J, Ware EB, Mitchell C, Colacino JA, M Bakulski K. Saliva cell type DNA methylation reference panel for epidemiological studies in children. Epigenetics 2021; 17:161-177. [PMID: 33588693 DOI: 10.1080/15592294.2021.1890874] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Saliva is a widely used biological sample, especially in pediatric research, containing a heterogenous mixture of immune and epithelial cells. Associations of exposure or disease with saliva DNA methylation can be influenced by cell-type proportions. Here, we developed a saliva cell-type DNA methylation reference panel to estimate interindividual cell-type heterogeneity in whole saliva studies. Saliva was collected from 22 children (7-16 years) and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. We assessed cell-type differences in DNA methylation profiles and tested for enriched biological pathways. Immune and epithelial cells differed at 181,577 (22.8%) DNA methylation sites (t-test p < 6.28 × 10-8). Immune cell hypomethylated sites are mapped to genes enriched for immune pathways (p < 3.2 × 10-5). Epithelial cell hypomethylated sites were enriched for cornification (p = 5.2 × 10-4), a key process for hard palette formation. Saliva immune and epithelial cells have distinct DNA methylation profiles which can drive whole-saliva DNA methylation measures. A primary saliva DNA methylation reference panel, easily implemented with an R package, will allow estimates of cell proportions from whole saliva samples and improve epigenetic epidemiology studies by accounting for measurement heterogeneity by cell-type proportions.
Collapse
Affiliation(s)
- Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jonah Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan A Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.,Population Studies Center, Institute for Social Research, University of Michigan
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, School of Public Health, University of Michigan.,Center for Computational Medicine and Bioinformatics, University of Michigan.,Program in the Environment, College of Literature, Sciences, and the Arts, University of Michigan
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2020; 12:nu12113309. [PMID: 33137917 PMCID: PMC7692466 DOI: 10.3390/nu12113309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Breastfeeding is associated with short and long-term health benefits. Long-term effects might be mediated by epigenetic mechanisms, yet the literature on this topic is scarce. We performed the first epigenome-wide association study of infant feeding, comparing breastfed vs non-breastfed children. We measured DNA methylation in children from peripheral blood collected in childhood (age 7 years, N = 640) and adolescence (age 15–17 years, N = 709) within the Accessible Resource for Integrated Epigenomic Studies (ARIES) project, part of the larger Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Cord blood methylation (N = 702) was used as a negative control for potential pre-natal residual confounding. Results: Two differentially-methylated sites presented directionally-consistent associations with breastfeeding at ages 7 and 15–17 years, but not at birth. Twelve differentially-methylated regions in relation to breastfeeding were identified, and for three of them there was evidence of directional concordance between ages 7 and 15–17 years, but not between birth and age 7 years. Conclusions: Our findings indicate that DNA methylation in childhood and adolescence may be predicted by breastfeeding, but further studies with sufficiently large samples for replication are required to identify robust associations.
Collapse
|
8
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Gorabi AM, Penson PE, Banach M, Motallebnezhad M, Jamialahmadi T, Sahebkar A. Epigenetic control of atherosclerosis via DNA methylation: A new therapeutic target? Life Sci 2020; 253:117682. [PMID: 32387418 DOI: 10.1016/j.lfs.2020.117682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a disease in which lipid-laden plaques are developed inside the vessel walls of arteries. The immune system is activated, resulting in inflammation and oxidative stress. Endothelial cells (ECs) are activated, arterial smooth muscle cells (SMCs) proliferate, macrophages are activated, and foam cells are developed, leading to dysfunctional ECs. Epigenetic regulatory mechanisms, including DNA methylation, histone modifications, and microRNAs are involved in the modulation of genes that play distinct roles in several aspects of cell biology and physiology, hence linking environmental stimuli to gene regulation. Recent research has investigated the involvement of DNA methylation in the etiopathogenesis of atherosclerosis, and several studies have documented the role of this mechanism in various aspects of the disease. Regulation of DNA methylation plays a critical role in the integrity of ECs, SMC proliferation and formation of atherosclerotic lesions. In this review, we seek to clarify the role of DNA methylation in the development of atherosclerosis through different mechanisms.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
11
|
Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci 2020; 131:56-64. [PMID: 32075477 DOI: 10.1080/00207454.2020.1732974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease accompanied by demyelination of neurons in the central nervous system that mostly affects young adults, especially women. This disease has two phases including relapsing-remitting form (RR-MS) by episodes of relapse and periods of clinical remission and secondary-progressive form (SP-MS), which causes more disability. The inheritance pattern of MS is not exactly identified and there is an agreement that it has a complex pattern with an interplay among environmental, genetic and epigenetic alternations. Epigenetic mechanisms that are identified for MS pathogenesis are DNA methylation, histone modification and some microRNAs' alternations. Several cellular processes including apoptosis, differentiation and evolution can be modified along with epigenetic changes. Some alternations are associated with epigenetic mechanisms in MS patients and these changes can become key points for MS therapy. Therefore, the aim of this review was to discuss epigenetic mechanisms that are associated with MS pathogenesis and future therapeutic approaches.
Collapse
Affiliation(s)
| | - Daryoush Rostami
- School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Zamani ARN, Saberianpour S, Geranmayeh MH, Bani F, Haghighi L, Rahbarghazi R. Modulatory effect of photobiomodulation on stem cell epigenetic memory: a highlight on differentiation capacity. Lasers Med Sci 2019; 35:299-306. [PMID: 31494789 DOI: 10.1007/s10103-019-02873-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Differentiation potential of stem cells into various lineages makes these cells as promising sources to treat multiple diseases. In this regard, the use of different strategies and protocols to increase differentiation capacity is highly demanded. Low-level laser therapy, a relatively noninvasive technique, has the capacity to accelerate the healing of numerous injuries and a portion of restorative capacity could be correlated with the stem cell activation and differentiation. Several mechanisms have been diagnosed to participate in orientation of stem cells to functional mature cells. Among them, the status of DNA methylation orchestrates the maintenance of tissue-specific gene expression during the differentiation procedure. DNA methylation is a momentous event in embryogenesis and functional maturation. This review article highlighted the potency of laser irradiation (low-level intensities) in the differentiation of stem cells by modulation of methylation. The analysis of these modalities could help us to understand the underlying mechanisms participating in the therapeutic effects of photobiomodulation.
Collapse
Affiliation(s)
| | - Shirin Saberianpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Haghighi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Adam AC, Lie KK, Whatmore P, Jakt LM, Moren M, Skjærven KH. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS One 2019; 14:e0220934. [PMID: 31398226 PMCID: PMC6688801 DOI: 10.1371/journal.pone.0220934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
Diet has been shown to influence epigenetic key players, such as DNA methylation, which can regulate the gene expression potential in both parents and offspring. Diets enriched in omega-6 and deficient in omega-3 PUFAs (low dietary omega-3/omega-6 PUFA ratio), have been associated with the promotion of pathogenesis of diseases in humans and other mammals. In this study, we investigated the impact of increased dietary intake of arachidonic acid (ARA), a physiologically important omega-6 PUFA, on 2 generations of zebrafish. Parental fish were fed either a low or a high ARA diet, while the progeny of both groups were fed the low ARA diet. We screened for DNA methylation on single base-pair resolution using reduced representation bisulfite sequencing (RRBS). The DNA methylation profiling revealed significant differences between the dietary groups in both parents and offspring. The majority of differentially methylated loci associated with high dietary ARA were found in introns and intergenic regions for both generations. Common loci between the identified differentially methylated loci in F0 and F1 livers were reported. We described overlapping gene annotations of identified methylation changes with differential expression, but based on a small number of overlaps. The present study describes the diet-associated methylation profiles across genomic regions, and it demonstrates that parental high dietary ARA modulates DNA methylation patterns in zebrafish liver.
Collapse
Affiliation(s)
| | | | | | - Lars Martin Jakt
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mari Moren
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
14
|
Abstract
Dementia is an overarching term which describes a group of symptoms that result in long-term decline in cognitive functioning that is significant enough to affect daily function. It is caused by a number of different diseases, the most common of which is Alzheimer's disease. Currently, there are no definitive biomarkers for preclinical or diagnostic use, or which differentiate between underlying disease types. The purpose of this review is to highlight several important areas of research on blood-based biomarkers of dementia, with a specific focus on epigenetic biomarkers. A systematic search of the literature identified 77 studies that compared blood DNA methylation between individuals with dementia and controls and 45 studies that measured microRNA. Very few studies were identified that focused on histone modifications. There were many promising findings from studies in the field of blood-based epigenetic biomarkers of dementia, however, a lack of consistency in study design, technologies, and platforms used for the biomarker measurement, as well as statistical analysis methods, have hampered progress. To date, there are very few findings that have been independently replicated across more than one study, indicating a preponderance of false-positive findings and the field has likely been plagued by positive publication bias. Here, we highlight and discuss several of the limitations of existing studies and provide recommendations for how these could be overcome in future research. A robust framework should be followed to enable development of the most valid and reproducible biomarkers with the strongest clinical utility. Defining a series of biomarkers that may be complimentary to each other could permit a stronger multifactorial biomarker to be developed that would allow for not only accurate dementia diagnosis but preclinical detection.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| |
Collapse
|
15
|
Luo G, Jing X, Yang S, Peng D, Dong J, Li L, Reinach PS, Yan D. DNA Methylation Regulates Corneal Epithelial Wound Healing by Targeting miR-200a and CDKN2B. Invest Ophthalmol Vis Sci 2019; 60:650-660. [PMID: 30785991 DOI: 10.1167/iovs.18-25443] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose DNA methylation is a key epigenetic modification involved in various biological processes and diseases. Corneal epithelial wound healing (CEWH) is essential for restoring corneal integrity and transparency after injury. However, the role of DNA methylation in CEWH remains elusive. Here, we investigate the function and underlying mechanism of DNA methylation in regulating CEWH. Methods Dot blots and global methylation assays determined DNA methylation levels during CEWH. Quantitative RT-PCR and Western blot analysis examined the expression of DNA methyltransferases (DNMTs), cyclin-dependent kinase inhibitor 2B (CDKN2B), and miR-200a during CEWH, respectively. MTS assays and flow cytometry were used to analyze human corneal epithelial cell (HCEC) proliferation and cell cycle, respectively. The in vitro scratch wound assay assessed HCEC migration and an in vivo murine corneal epithelial debridement model evaluated wound healing. Using bisulfite sequencing PCR, we determined the DNA methylation status of the candidate genes. Transfection of miR-200a mimic or inhibitor assessed the function of miR-200a in HCECs. Rescue experiments were performed to clarify the correlation between DNMT1 and miR-200a/CDKN2B during CEWH. Results DNMT1 and DNMT3B expression was significantly upregulated during CEWH, resulting in a significant global DNA hypermethylation. DNMT1 downregulation dramatically delayed CEWH in vivo, and suppressed HCEC proliferation and migration. MiR-200a inhibited HCEC migration. Furthermore, miR-200a and CDKN2B were identified as molecular targets of DNA methylation and as having a causal connection with DNMT1. Conclusions DNMT1-mediated DNA hypermethylation can enhance the process of CEWH by directly targeting miR-200a and CDKN2B. This insight pinpoints novel potential drug targets for promoting CEWH.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xia Jing
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shuai Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dewei Peng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jing Dong
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Li Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Harrington L, Pucci F. In medio stat virtus: unanticipated consequences of telomere dysequilibrium. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0444. [PMID: 29335368 PMCID: PMC5784064 DOI: 10.1098/rstb.2016.0444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 12/13/2022] Open
Abstract
The integrity of chromosome ends, or telomeres, depends on myriad processes that must balance the need to compact and protect the telomeric, G-rich DNA from detection as a double-stranded DNA break, and yet still permit access to enzymes that process, replicate and maintain a sufficient reserve of telomeric DNA. When unable to maintain this equilibrium, erosion of telomeres leads to perturbations at or near the telomeres themselves, including loss of binding by the telomere protective complex, shelterin, and alterations in transcription and post-translational modifications of histones. Although the catastrophic consequences of full telomere de-protection are well described, recent evidence points to other, less obvious perturbations that arise when telomere length equilibrium is altered. For example, critically short telomeres also perturb DNA methylation and histone post-translational modifications at distal sites throughout the genome. In murine stem cells for example, this dysregulated chromatin leads to inappropriate suppression of pluripotency regulator factors such as Nanog. This review summarizes these recent findings, with an emphasis on how these genome-wide, telomere-induced perturbations can have profound consequences on cell function and fate. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Lea Harrington
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Fabio Pucci
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
17
|
Abdallah HM, Del Vecchio D. Computational Analysis of Altering Cell Fate. Methods Mol Biol 2019; 1975:363-405. [PMID: 31062319 PMCID: PMC7227774 DOI: 10.1007/978-1-4939-9224-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
Abstract
The notion of reprogramming cell fate is a direct challenge to the traditional view in developmental biology that a cell's phenotypic identity is sealed after undergoing differentiation. Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of the twentieth century and culminating in the more recent breakthroughs in transdifferentiation and induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for basic research in disease modeling, drug discovery, and clinical therapeutics. In many of these cell fate reprogramming experiments, there is often little known about the genetic and molecular changes accompanying the reprogramming process. However, gene regulatory networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a starting point for understanding the dynamic changes that accompany a given cell fate reprogramming process. In this chapter, we present a framework for computationally analyzing cell fate changes by mathematically modeling these GRNs. We provide a user guide with several tutorials of a set of techniques from dynamical systems theory that can be used to probe the intrinsic properties of GRNs as well as study their responses to external perturbations.
Collapse
Affiliation(s)
- Hussein M Abdallah
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Insights from epigenetic studies on human health and evolution. Curr Opin Genet Dev 2018; 53:36-42. [DOI: 10.1016/j.gde.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022]
|
19
|
Abstract
Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Laura A Baker
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Simon R Junankar
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Susan J Clark
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.,Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
20
|
Mendelsohn AR, Larrick JW. Telomerase May Paradoxically Accelerate Aging of the DNA Methylome. Rejuvenation Res 2018; 21:168-172. [DOI: 10.1089/rej.2018.2073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrew R. Mendelsohn
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| | - James W. Larrick
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
21
|
Wu F, Tao L, Gao S, Ren L, Wang Z, Wang S, Tian J, An L. miR-6539 is a novel mediator of somatic cell reprogramming that represses the translation of Dnmt3b. J Reprod Dev 2017; 63:415-423. [PMID: 28603220 PMCID: PMC5593093 DOI: 10.1262/jrd.2016-170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation has been shown to be involved in the pluripotency of induced pluripotent stem (iPS) cells. Relatedly, DNA methyltransferases (DNMTs) are believed to be a substantial barrier to genome-wide demethylation. There are two distinct stages of DNMT expression during iPS cell generation. In the earlier stage of reprogramming, the expression of DNMTs is repressed to overcome epigenetic barriers. During the late stage, the expression of DNMTs is upregulated to ensure iPS cells obtain the full pluripotency required for further development. This fact is strongly reminiscent of microRNAs (miRNAs), critical regulators of precise gene expression, may be central to coordinate the expression of DNMTs during reprogramming. Using a secondary inducible system, we found that miR-6539 had a unique expression dynamic during iPS cell generation that inversely correlated with DNMT3B protein levels. Enforced upregulation of miR-6539 during the early stage of reprogramming increased the efficiency of iPS cell generation, while enforced downregulation impaired efficiency. Further analysis showed that Dnmt3b mRNA is the likely target of miR-6539. Notably, miR-6539 repressed Dnmt3b translation via a target site located in the coding sequence. Our study has therefore identified miR-6539 as a novel mediator of somatic cell reprogramming and, to the best of our knowledge, is the first to demonstrate miRNA-mediated translation inhibition in somatic cell reprogramming via targeting the coding sequence. Our study contributes to understand the mechanisms that underlie the miRNA-mediated epigenetic remodeling that occurs during somatic cell reprogramming.
Collapse
Affiliation(s)
- Fujia Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shuai Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Likun Ren
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhuqing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shumin Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
22
|
Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res 2017; 66:1057-1073. [DOI: 10.1007/s00011-017-1082-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
|
23
|
Macartney-Coxson D, Benton MC, Blick R, Stubbs RS, Hagan RD, Langston MA. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin Epigenetics 2017; 9:48. [PMID: 28473875 PMCID: PMC5415776 DOI: 10.1186/s13148-017-0344-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/14/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms provide an interface between environmental factors and the genome and are known to play a role in complex diseases such as obesity. These mechanisms, including DNA methylation, influence the regulation of development, differentiation and the establishment of cellular identity. Here we employ two approaches to identify differential methylation between two white adipose tissue depots in obese individuals before and after gastric bypass and significant weight loss. We analyse genome-wide DNA methylation data using (a) traditional paired t tests to identify significantly differentially methylated loci (Bonferroni-adjusted P ≤ 1 × 10-7) and (b) novel combinatorial algorithms to identify loci that differentiate between tissue types. RESULTS Significant differential methylation was observed for 3239 and 7722 CpG sites, including 784 and 1129 extended regions, between adipose tissue types before and after significant weight loss, respectively. The vast majority of these extended differentially methylated regions (702) were consistent across both time points and enriched for genes with a role in transcriptional regulation and/or development (e.g. homeobox genes). Other differentially methylated loci were only observed at one time point and thus potentially highlight genes important to adipose tissue dysfunction observed in obesity. Strong correlations (r > 0.75, P ≤ 0.001) were observed between changes in DNA methylation (subcutaneous adipose vs omentum) and changes in clinical trait, in particular for CpG sites within PITX2 and fasting glucose and four CpG sites within ISL2 and HDL. A single CpG site (cg00838040, ATP2C2) gave strong tissue separation, with validation in independent subcutaneous (n = 681) and omental (n = 33) adipose samples. CONCLUSIONS This is the first study to report a genome-wide DNA methylome comparison of subcutaneous abdominal and omental adipose before and after weight loss. The combinatorial approach we utilised is a powerful tool for the identification of methylation loci that strongly differentiate between these tissues. This study provides a solid basis for future research focused on the development of adipose tissue and its potential dysfunction in obesity, as well as the role DNA methylation plays in these processes.
Collapse
Affiliation(s)
- Donia Macartney-Coxson
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand
| | - Miles C Benton
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand.,Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059 Australia
| | - Ray Blick
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand
| | | | - Ronald D Hagan
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN 37996-2250 USA
| | - Michael A Langston
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN 37996-2250 USA
| |
Collapse
|
24
|
Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT, Khan SM, Batek JM, Joshi T, Schmutz J, Grimwood J, Schmitz RJ, Xu D, Jackson SA, Ecker JR, Stacey G. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. THE NEW PHYTOLOGIST 2017; 214:808-819. [PMID: 28106918 DOI: 10.1111/nph.14421] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat).
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Taiji Kawakatsu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 30508602, Japan
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Ning Zhang
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Cuong T Nguyen
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Saad M Khan
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Josef M Batek
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Robert J Schmitz
- Department of Genetics, The University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Dong Xu
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602-6810, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
25
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
26
|
Direct Reprogramming of Mouse Fibroblasts toward Leydig-like Cells by Defined Factors. Stem Cell Reports 2016; 8:39-53. [PMID: 28017657 PMCID: PMC5233410 DOI: 10.1016/j.stemcr.2016.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 01/03/2023] Open
Abstract
Leydig cells (LCs) play crucial roles in producing testosterone, and their dysfunction leads to male hypogonadism. LC transplantation is a promising alternative therapy for male hypogonadism. However, the source of LCs limits this strategy for clinical applications. Here, we report our success in reprogramming mice fibroblasts into LCs by expressing three transcriptional factors, Dmrt1, Gata4, and Nr5a1. The induced Leydig-like cells (iLCs) expressed steroidogenic genes, had a global gene expression profile similar to that of adult LCs, and acquired androgen synthesis capabilities. When iLCs were transplanted into rats or mice testes that were selectively depleted of endogenous LCs, the transplanted cells could survive and function in the interstitium of testis, resulting in the restoration of normal levels of serum testosterone. These findings demonstrate that the fibroblasts were able to be directly converted into iLCs by few defined factors, which may facilitate future applications in regenerative medicine. Direct reprogramming of fibroblasts into Leydig cell fate by defined factors Induced Leydig-like cells (iLCs) exhibit adult Leydig cell characterizations Conversion process toward iLCs did not pass through a mitotic cell state Transplantation of iLCs could survive and function in the interstitium of testis
Collapse
|
27
|
Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol 2016; 27:198-209. [PMID: 27425039 DOI: 10.1080/14397595.2016.1206174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, characterized by typically an axial arthritis. AS is the prototype of a group of disorders called spondyloarthropathies, which is believed to have common clinical manifestations and genetic predisposition. To date, the exact etiology of AS remains unclear. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused through environmental factors have been extensively surveyed with respect to the pathogenesis of AS, resulted in important advances. This review article focuses on the recent advances in the field of AS research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with AS. HLA genes most significantly linked with AS susceptibility include HLA-B27 and its subtypes. Numerous non-HLA genes such as those in ubiquitination, aminopeptidases and MHC class I presentation molecules like ERAP-1 were also reported. Moreover, epigenetic modifications occurred in AS has been summarized. Taken together, the findings presented in this review attempt to explain the circumstance by which both genetic variations and epigenetic modifications are involved in triggering and development of AS. Nonetheless, several unanswered dark sides continue to clog our exhaustive understanding of AS. Future researches in the field of epigenetics should be carried out to extend our vision of AS etiopathogenesis.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Saeed Aslani
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | | | - Jafar Karami
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Ahmad Reza Jamshidi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
28
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
29
|
Kodama N, Iwao T, Kabeya T, Horikawa T, Niwa T, Kondo Y, Nakamura K, Matsunaga T. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes. Drug Metab Pharmacokinet 2016; 31:193-200. [DOI: 10.1016/j.dmpk.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/21/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
|
30
|
Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 2015; 18:21-32. [DOI: 10.1016/j.fsigen.2014.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
|
31
|
Relton CL, Hartwig FP, Davey Smith G. From stem cells to the law courts: DNA methylation, the forensic epigenome and the possibility of a biosocial archive. Int J Epidemiol 2015; 44:1083-93. [PMID: 26424516 PMCID: PMC5279868 DOI: 10.1093/ije/dyv198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The growth in epigenetics continues to attract considerable cross-disciplinary interest, apparently representing an opportunity to move beyond genomics towards the goal of understanding phenotypic variability from molecular through organismal to the societal level. The epigenome may also harbour useful information about life-time exposures (measured or unmeasured) irrespective of their influence on health or disease, creating the potential for a person-specific biosocial archive . Furthermore such data may prove of use in providing identifying information, providing the possibility of a future forensic epigenome . The mechanisms involved in ensuring that environmentally induced epigenetic changes perpetuate across the life course remain unclear. Here we propose a potential role of adult stem cells in maintaining epigenetic states provides a useful basis for formulating such epidemiologically-relevant concepts.
Collapse
Affiliation(s)
- Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Giannoukakis N, Trucco M. Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check. Pediatr Diabetes 2015; 16:151-63. [PMID: 25652322 DOI: 10.1111/pedi.12259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/27/2022] Open
Abstract
Stem cell technology has recently gained a substantial amount of interest as one method to create a potentially limitless supply of transplantable insulin-producing cells to treat, and possibly cure diabetes mellitus. In this review, we summarize the state-of-the art of stem cell technology and list the potential sources of stem cells that have been shown to be useful as insulin-expressing surrogates. We also discuss the milestones that have been reached and those that remain to be addressed to generate bona fide beta cell-similar, insulin-producing surrogates. The caveats, limitations, and realistic expectations are also considered for current and future technology. In spite of the tremendous technical advances realized in the past decade, especially in the field of reprogramming adult somatic cells to become stem cells, the state-of-the art still relies on lengthy and cumbersome in vitro culture methods that yield cell populations that are not particularly glucose-responsive when transplanted into diabetic hosts. Despite the current impediments toward clinical translation, including the potential for immune rejection, the availability of technology to generate patient-specific reprogrammable stem cells has, and will be critical for, important insights into the genetics, epigenetics, biology, and physiology of insulin-producing cells in normal and pathologic states. This knowledge could accelerate the time to reach the desired breakthrough for safe and efficacious beta cell surrogates.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | | |
Collapse
|
33
|
Abstract
The lung develops from a very simple outpouching of the foregut into a highly complex, finely structured organ with multiple specialized cell types that are required for its normal physiological function. During both the development of the lung and its remodeling in the context of disease or response to injury, gene expression must be activated and silenced in a coordinated manner to achieve the tremendous phenotypic heterogeneity of cell types required for homeostasis and pathogenesis. Epigenetic mechanisms, consisting of DNA base modifications such as methylation, alteration of histones resulting in chromatin modification, and the action of noncoding RNA, control the regulation of information "beyond the genome" required for both lung modeling and remodeling. Epigenetic regulation is subject to modification by environmental stimuli, such as oxidative stress, infection, and aging, and is thus critically important in chronic remodeling disorders such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), and pulmonary hypertension (PH). Technological advances have made it possible to evaluate genome-wide epigenetic changes (epigenomics) in diseases of lung remodeling, clarifying existing pathophysiological paradigms and uncovering novel mechanisms of disease. Many of these represent new therapeutic targets. Advances in epigenomic technology will accelerate our understanding of lung development and remodeling, and lead to novel treatments for chronic lung diseases.
Collapse
Affiliation(s)
- James S Hagood
- Department of Pediatrics, Division of Respiratory Medicine, University of California-San Diego and Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
34
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
35
|
Huang K, Wu Z, Liu Z, Hu G, Yu J, Chang KH, Kim KP, Le T, Faull KF, Rao N, Gennery A, Xue Z, Wang CY, Pellegrini M, Fan G. Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells. Hum Mol Genet 2014; 23:6448-57. [PMID: 25027325 PMCID: PMC4240200 DOI: 10.1093/hmg/ddu365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Immunodeficiency, centromeric instability and facial anomalies type I (ICF1) syndrome is a rare genetic disease caused by mutations in DNA methyltransferase (DNMT) 3B, a de novo DNA methyltransferase. However, the molecular basis of how DNMT3B deficiency leads to ICF1 pathogenesis is unclear. Induced pluripotent stem cell (iPSC) technology facilitates the study of early human developmental diseases via facile in vitro paradigms. Here, we generate iPSCs from ICF Type 1 syndrome patient fibroblasts followed by directed differentiation of ICF1-iPSCs to mesenchymal stem cells (MSCs). By performing genome-scale bisulfite sequencing, we find that DNMT3B-deficient iPSCs exhibit global loss of non-CG methylation and select CG hypomethylation at gene promoters and enhancers. Further unbiased scanning of ICF1-iPSC methylomes also identifies large megabase regions of CG hypomethylation typically localized in centromeric and subtelomeric regions. RNA sequencing of ICF1 and control iPSCs reveals abnormal gene expression in ICF1-iPSCs relevant to ICF syndrome phenotypes, some directly associated with promoter or enhancer hypomethylation. Upon differentiation of ICF1 iPSCs to MSCs, we find virtually all CG hypomethylated regions remained hypomethylated when compared with either wild-type iPSC-derived MSCs or primary bone-marrow MSCs. Collectively, our results show specific methylome and transcriptome defects in both ICF1-iPSCs and differentiated somatic cell lineages, providing a valuable stem cell system for further in vitro study of the molecular pathogenesis of ICF1 syndrome. GEO accession number: GSE46030.
Collapse
Affiliation(s)
- Kevin Huang
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine
| | - Zhourui Wu
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine, Translational Stem Cell Center, Tongji Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Zhenshan Liu
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine, Translational Stem Cell Center, Tongji Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Ganlu Hu
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine, Translational Stem Cell Center, Tongji Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Juehua Yu
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine
| | - Kai H Chang
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine
| | - Kee-Pyo Kim
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine
| | - Thuc Le
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, The Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, CA 90024, USA and
| | | | - Andrew Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Zhigang Xue
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine, Translational Stem Cell Center, Tongji Hospital and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Guoping Fan
- Department of Human Genetics, Broad Stem Cell Research Center, David Geffen School of Medicine,
| |
Collapse
|
36
|
Takada H, Saito Y, Mituyama T, Wei Z, Yoshihara E, Jacinto S, Downes M, Evans RM, Kida YS. Methylome, transcriptome, and PPAR(γ) cistrome analyses reveal two epigenetic transitions in fat cells. Epigenetics 2014; 9:1195-206. [PMID: 25093444 PMCID: PMC4169011 DOI: 10.4161/epi.29856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although DNA modification is adaptive to extrinsic demands, little is known about epigenetic alterations associated with adipose differentiation and reprogramming. We systematically characterized the global trends of our methylome and transcriptome data with reported PPARγ cistrome data. Our analysis revealed that DNA methylation was altered between induced pluripotent stem cells (iPSCs) and adipose derived stem cells (ADSCs). Surprisingly, DNA methylation was not obviously changed in differentiation from ADSCs to mature fat cells (FatCs). This indicates that epigenetic predetermination of the adipogenic fate is almost established prior to substantial expression of the lineage. Furthermore, the majority of the PPARγ cistrome corresponded to the pre-set methylation profile between ADSCs and FatCs. In contrast to the pre-set model, we found that a subset of PPARγ-binding sites for late-expressing genes such as Adiponectin and Adiponectin receptor2 were differentially methylated independently of the early program. Thus, these analyses identify two types of epigenetic mechanisms that distinguish the pre-set cell fate and later stages of adipose differentiation.
Collapse
Affiliation(s)
- Hitomi Takada
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Japan
| | - Yutaka Saito
- Computational Biology Research Center; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo, Japan; Japan Science and Technology Agency; Kawaguchi, Japan
| | - Toutai Mituyama
- Computational Biology Research Center; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo, Japan; Japan Science and Technology Agency; Kawaguchi, Japan
| | - Zong Wei
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Eiji Yoshihara
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Sandra Jacinto
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Michael Downes
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Ronald M Evans
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA USA; Howard Hughes Medical Institute; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Yasuyuki S Kida
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Japan
| |
Collapse
|
37
|
Kruman II, Fowler AK. Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J Neurochem 2014; 129:770-80. [PMID: 24521073 DOI: 10.1111/jnc.12677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/30/2022]
Abstract
Excessive alcohol consumption is a prominent problem and one of the major causes of mortality and morbidity around the world. Long-term, heavy alcohol consumption is associated with a number of deleterious health consequences, such as cancer, heart and liver disease, a variety of neurological, cognitive, and behavioral deficits. Alcohol consumption is also associated with developmental defects. The causes of alcohol-induced toxicity are presently unclear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with folic acid/homocysteine or one-carbon metabolism (OCM). OCM is a major donor of methyl groups for methylation, particularly DNA methylation critical for epigenetic regulation of gene expression, and its disturbance may compromise DNA methylation, thereby affecting gene expression. OCM disturbance mediated by nutrient deficits is a well-known risk factor for various disorders and developmental defects (e.g., neural tube defects). In this review, we summarize the role of OCM disturbance and associated epigenetic aberrations in chronic alcohol-induced toxicity. In this review, we summarize the role of one-carbon metabolism (OCM) aberrations in chronic alcohol-induced toxicity. OCM is a major donor of methyl groups for methylation reactions, particularly DNA methylation critical for epigenetic regulation of gene expression. Alcohol interference with OCM and consequent reduced availability of methyl groups, improper DNA methylation, and aberrant gene expression can play a causative role in alcohol toxicity.
Collapse
Affiliation(s)
- Inna I Kruman
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | |
Collapse
|
38
|
Kar S, Parbin S, Deb M, Shilpi A, Sengupta D, Rath SK, Rakshit M, Patra A, Patra SK. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell Mol Life Sci 2014; 71:1017-32. [PMID: 24114325 PMCID: PMC11113617 DOI: 10.1007/s00018-013-1482-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022]
Abstract
Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive make-over of the genome via reprogramming in the early embryo results in stem cell plasticity followed by commitment to the principal cell lineages. This article attempts to highlight the sequential phases and hierarchical mode of DNA demethylation events during enactment of the molecular strategy for developmental transition. A comprehensive knowledge regarding the pattern of DNA demethylation during embryogenesis and organogenesis and study of the related lacunae will offer exciting avenues for future biomedical research and stem cell-based regenerative therapy.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip Kumar Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Madhumita Rakshit
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Aditi Patra
- Additional Block Animal Health Centre, Veterinary Office, Oodlabari, Malbazar, Jalpaiguri, West Bengal India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
39
|
Zhao W, Ning B, Qian C. Regulatory factors of induced pluripotency: current status. Stem Cell Investig 2014; 1:15. [PMID: 27358861 DOI: 10.3978/j.issn.2306-9759.2014.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 11/14/2022]
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) through enforced expression of four transcription factors [Oct4, Sox2, Klf4, and c-Myc (OSKM)]; however, the reprogramming efficiency is extremely low. This finding raises fundamental questions about the regulators that influence the change in epigenetic stability and endowment of dedifferentiation potential during reprogramming. Identification of such regulators is critical to removing the roadblocks impeding the efficient generation of safe iPSCs and their successful translation into clinical therapies. In this review, we summarize the current progress that has been made in understanding cellular reprogramming, with an emphasis on the molecular mechanisms of epigenetic regulators in induced pluripotency.
Collapse
Affiliation(s)
- Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chen Qian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
40
|
Gršković B, Zrnec D, Vicković S, Popović M, Mršić G. DNA methylation: the future of crime scene investigation? Mol Biol Rep 2013; 40:4349-60. [DOI: 10.1007/s11033-013-2525-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 04/27/2013] [Indexed: 12/31/2022]
|
41
|
Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 2013; 14:216. [PMID: 23547968 PMCID: PMC3621073 DOI: 10.1186/1471-2164-14-216] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/22/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. RESULTS In camta1, root development was abolished showing high-susceptibility to induced osmotic stress resulting in small wrinkled rosette leaves and stunted primary root. In camta1 under drought condition, we identified growth retardation, poor WUE, low photosystem II efficiency, decline in RWC and higher sensitivity to drought with reduced survivability. The microarray analysis of drought treated camta1 revealed that CAMTA1 regulates "drought recovery" as most indicative pathway along with other stress response, osmotic balance, apoptosis, DNA methylation and photosynthesis. Interestingly, majority of positively regulated genes were related to plasma membrane and chloroplast. Further, our analysis indicates that CAMTA1 regulates several stress responsive genes including RD26, ERD7, RAB18, LTPs, COR78, CBF1, HSPs etc. and promoter of these genes were enriched with CAMTA recognition cis-element. CAMTA1 probably regulate drought recovery by regulating expression of AP2-EREBP transcription factors and Abscisic acid response. CONCLUSION CAMTA1 rapidly changes broad spectrum of responsive genes of membrane integrity and photosynthetic machinery by generating ABA response for challenging drought stress. Our results demonstrate the important role of CAMTA1 in regulating drought response in Arabidopsis, thus could be genetically engineered for improving drought tolerance in crop.
Collapse
Affiliation(s)
- Neha Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Alok Ranjan
- Present address: Centre for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Poonam Pant
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Rajiv K Tripathi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Farha Ateek
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | | | - Uday V Patre
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Samir V Sawant
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| |
Collapse
|
42
|
Systemic sclerosis: genetics and epigenetics. J Autoimmun 2013; 41:161-7. [PMID: 23415078 DOI: 10.1016/j.jaut.2013.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune abnormalities, vascular obliteration, excessive extracellular matrix deposition, and fibrosis of the skin and/or internal organs. To date, the exact etiology of this complicated disease remains unknown. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused by environmental factors have been intensively studied in relation to the pathogenesis of this disease, and important advances have been made. This review focuses on the recent progress in the field of SSc research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with SSc. HLA genes most closely linked with SSc susceptibility include HLA-A, -B, -C, -DR, -DP and -DQ. A large number of non-HLA genes were also reported. It has also been noted that different genetic variants can be linked to specific clinical patterns. Finally, DNA demethylation of regulatory genes (eNOS, CD40L and CD70), therapeutic effects associated with Trichostatin A (TSA) treatment, and abnormal expression of a large spectrum of microRNAs (miR-21, -31, -146, -503, -145, -29b, etc.) are all observed in SSc. Overall, the findings presented in this review illustrate how both genetic and epigenetic aberrations play important roles in the development of SSc; however, several unanswered questions continue to impede our understanding of this complex disease. Future research should focus on the identification of new biomarkers for early diagnosis and prognosis, which will help improve the clinical outcome of patients with SSc.
Collapse
|
43
|
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One 2012; 7:e53003. [PMID: 23300844 PMCID: PMC3531428 DOI: 10.1371/journal.pone.0053003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/26/2012] [Indexed: 12/28/2022] Open
Abstract
Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.GEO NUMBER FOR THE MICROARRAY DATA: GSE42647.
Collapse
|
44
|
Thaler R, Spitzer S, Karlic H, Berger C, Klaushofer K, Varga F. Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells. Biochem Pharmacol 2012; 85:173-85. [PMID: 23103563 PMCID: PMC3557391 DOI: 10.1016/j.bcp.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/13/2022]
Abstract
There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene family, down-regulates the expression of the pro-apoptotic gene FAS via epigenetic DNA-methylation by DNMT1. We compared ibandronate treatment in neoplastic human U-2 osteosarcoma and in mouse CCL-51 breast cancer cells as well as in the immortalized non-neoplastic MC3T3-E1 osteoblastic cells. Ibandronate attenuated cell proliferation in all cell lines tested. In the neoplastic cells we found up-regulation of caspases suggesting apoptosis. Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. In contrast, ibandronate did not affect FAS and DNMT1 expression in MC3T3-E1 non-neoplastic cells. Data suggest that bisphosphonates via modulation of the activity of small-GTPases induce apoptosis in neoplastic cells by DNA-CpG-demethylation and stimulation of FAS-expression. In conclusion the shown epigenetic mechanism underlying the anti-neoplastic activity of farnesyl-transferase-inhibition, also explains the clinical success of other drugs, which target this pathway.
Collapse
Affiliation(s)
- R. Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - S. Spitzer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - H. Karlic
- Ludwig Boltzmann Cluster Oncology and Institute for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - C. Berger
- Department of Orthopedics, SMZ-OST, Danube Hospital, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - F. Varga
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
- Corresponding author at: Ludwig Boltzmann Institute of Osteology, 1st Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, A-1140 Vienna, Austria. Tel.: +43 1 91021 86933; fax: +43 1 91021 86929.
| |
Collapse
|
45
|
Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 2012; 22:1395-406. [PMID: 22800725 PMCID: PMC3409253 DOI: 10.1101/gr.136598.111] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation profiling of ∼20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome.
Collapse
Affiliation(s)
- Lavinia Gordon
- Bioinformatics Unit, Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Rapid advances in next-generation sequencing technology are revolutionizing approaches to genomic and epigenomic studies of skin. Deep sequencing of cutaneous malignancies reveals heavily mutagenized genomes with large numbers of low-prevalence mutations and multiple resistance mechanisms to targeted therapies. Next-generation sequencing approaches have already paid rich dividends in identifying the genetic causes of dermatologic disease, both in heritable mutations and the somatic aberrations that underlie cutaneous mosaicism. Although epigenetic alterations clearly influence tumorigenesis, pluripotent stem cell biology, and epidermal cell lineage decisions, labor and cost-intensive approaches long delayed a genome-scale perspective. New insights into epigenomic mechanisms in skin disease should arise from the accelerating assessment of histone modification, DNA methylation, and related gene expression signatures.
Collapse
Affiliation(s)
- Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
47
|
Rüegg J, Cai W, Karimi M, Kiss NB, Swedenborg E, Larsson C, Ekström TJ, Pongratz I. Epigenetic regulation of glucose transporter 4 by estrogen receptor β. Mol Endocrinol 2011; 25:2017-28. [PMID: 22016564 DOI: 10.1210/me.2011-1054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glucose transporter 4 (Glut4) is an important regulator of cellular glucose uptake in adipose tissue and skeletal muscle. The estrogen receptors α and β (ERα and ERβ) have been shown to regulate Glut4. However, the regulatory mechanisms are unclear, and there are conflicting results about the effects of the two ER isoforms on Glut4 activity. In this study we investigated how the lack of either ER isoform affects Glut4 expression in differentiated mouse embryonic fibroblasts. Our results demonstrate that Glut4 transcription is markedly reduced in cells lacking ERβ, both basally and upon induction by liver X receptor. These changes in Glut4 expression could not be explained by the lack of ERβ as ligand-activated transcription factor. They were rather brought about by hypermethylation of one single CpG in the Glut4 promoter in the ERβ-deficient cells. This CpG is part of an Sp1-binding site, and Sp1 binding was reduced by its methylation. Treatment with Sp1 inhibitor diminished Glut4 expression in wild-type, but not in ERβ-deficient cells, suggesting that reduced recruitment of Sp1 to the Glut4 promoter is responsible for the differences in Glut4 expression. Reintroduction of ERβ into ERβ-deficient cells partly restored Glut4 transcription and stabilized low DNA methylation after treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine. Our findings demonstrate the involvement of DNA methylation in Glut4 regulation and imply a novel function for ERβ in mediating epigenetic events and thereby regulating gene expression.
Collapse
Affiliation(s)
- Joëlle Rüegg
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 141 57 Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hewitt KJ, Shamis Y, Hayman RB, Margvelashvili M, Dong S, Carlson MW, Garlick JA. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. PLoS One 2011; 6:e17128. [PMID: 21386890 PMCID: PMC3046119 DOI: 10.1371/journal.pone.0017128] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem (hiPS) cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES) cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK) and their hES-derived counterparts (EDK) showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM)-production (COL1A1) by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ), revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yulia Shamis
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ryan B. Hayman
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Mariam Margvelashvili
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, Massachusetts, United States of America
- Department of Dental Materials, School of Dentistry, University of Siena, Siena, Italy
| | - Shumin Dong
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, Massachusetts, United States of America
| | - Mark W. Carlson
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, Massachusetts, United States of America
| | - Jonathan A. Garlick
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 2011; 108:3642-7. [PMID: 21321204 DOI: 10.1073/pnas.1014033108] [Citation(s) in RCA: 510] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genome-wide erasure of DNA cytosine-5 methylation has been reported to occur along the paternal pronucleus in fertilized oocytes in an apparently replication-independent manner, but the mechanism of this reprogramming process has remained enigmatic. Recently, considerable amounts of 5-hydroxymethylcytosine (5hmC), most likely derived from enzymatic oxidation of 5-methylcytosine (5mC) by TET proteins, have been detected in certain mammalian tissues. 5hmC has been proposed as a potential intermediate in active DNA demethylation. Here, we show that in advanced pronuclear-stage zygotes the paternal pronucleus contains substantial amounts of 5hmC but lacks 5mC. The converse is true for the maternal pronucleus, which retains 5mC but shows little or no 5hmC signal. Importantly, 5hmC persists into mitotic one-cell, two-cell, and later cleavage-stage embryos, suggesting that 5mC oxidation is not followed immediately by genome-wide removal of 5hmC through excision repair pathways or other mechanisms. This conclusion is supported by bisulfite sequencing data, which shows only limited conversion of modified cytosines to cytosines at several gene loci. It is likely that 5mC oxidation is carried out by the Tet3 oxidase. Tet3, but not Tet1 or Tet2, was expressed at high levels in oocytes and zygotes, with rapidly declining levels at the two-cell stage. Our results show that 5mC oxidation is part of the early life cycle of mammals.
Collapse
|
50
|
Lensch MW, Rao M. Induced pluripotent stem cells: opportunities and challenges. Regen Med 2010; 5:483-4. [DOI: 10.2217/rme.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M William Lensch
- Howard Hughes Medical Institute at Children’s Hospital Boston, MA, USA and Harvard Medical School, Boston, MA, USA and Harvard Stem Cell Institute, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Mahendra Rao
- Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, CA 92008 USA
| |
Collapse
|