1
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. The conjunctival extracellular matrix, related disorders and development of substrates for conjunctival restoration. Ocul Surf 2023; 28:322-335. [PMID: 34102309 DOI: 10.1016/j.jtos.2021.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The conjunctiva can be damaged by numerous diseases with scarring, loss of tissue and dysfunction. Depending on extent of damage, restoration of function may require a conjunctival graft. A wide variety of biological and synthetic substrates have been tested in the search for optimal conditions for ex vivo culture of conjunctival epithelial cells as a route toward tissue grafts. Each substrate has specific advantages but also disadvantages related to their unique physical and biological characteristics, and identification and development of an improved substrate remains a priority. To achieve the goal of mimicking and restoring a biological material, requires information from the material. Specifically, extracellular matrix (ECM) derived from conjunctival tissue. Knowledge of the composition and structure of native ECM and identifying contributions of individual components to its function would enable using or mimicking those components to develop improved biological substrates. ECM is comprised of two components: basement membrane secreted predominantly by epithelial cells containing laminins and type IV collagens, which directly support epithelial and goblet cell adhesion differentiation and growth and, interstitial matrix secreted by fibroblasts in lamina propria, which provides mechanical and structural support. This review presents current knowledge on anatomy, composition of conjunctival ECM and related conjunctival disorders. Requirements of potential substrates for conjunctival tissue engineering and transplantation are discussed. Biological and synthetic substrates and their components are described in an accompanying review.
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Harvard Medical School, 20 Staniford St. Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
2
|
Hosseini M, Dalley AJ, Shafiee A. Convergence of Biofabrication Technologies and Cell Therapies for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14122749. [PMID: 36559242 PMCID: PMC9785239 DOI: 10.3390/pharmaceutics14122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell therapy holds great promise for cutaneous wound treatment but presents practical and clinical challenges, mainly related to the lack of a supportive and inductive microenvironment for cells after transplantation. Main: This review delineates the challenges and opportunities in cell therapies for acute and chronic wounds and highlights the contribution of biofabricated matrices to skin reconstruction. The complexity of the wound healing process necessitates the development of matrices with properties comparable to the extracellular matrix in the skin for their structure and composition. Over recent years, emerging biofabrication technologies have shown a capacity for creating complex matrices. In cell therapy, multifunctional material-based matrices have benefits in enhancing cell retention and survival, reducing healing time, and preventing infection and cell transplant rejection. Additionally, they can improve the efficacy of cell therapy, owing to their potential to modulate cell behaviors and regulate spatiotemporal patterns of wound healing. CONCLUSION The ongoing development of biofabrication technologies promises to deliver material-based matrices that are rich in supportive, phenotype patterning cell niches and are robust enough to provide physical protection for the cells during implantation.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Andrew J. Dalley
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Correspondence: or
| |
Collapse
|
3
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
5
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. Biological tissues and components, and synthetic substrates for conjunctival cell transplantation. Ocul Surf 2021; 22:15-26. [PMID: 34119712 DOI: 10.1016/j.jtos.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
The conjunctiva is the largest component of the ocular surface. It can be damaged by various pathological processes leading to scarring, loss of tissue and dysfunction. Depending on the amount of damage, restoration of function may require a conjunctival graft. Numerous studies have investigated biological and synthetic substrates in the search for optimal conditions for the ex vivo culture of conjunctival epithelial cells that can be used as tissue grafts for transplantation. These substrates have advantages and disadvantages that are specific to the characteristics of each material; the development of an improved material remains a priority. This review is the second of a two-part review in The Ocular Surface. In the first review, the structure and function of the conjunctiva was evaluated with a focus on the extracellular matrix and the basement membrane, and biological and mechanical characteristics of the ideal substrate with recommendations for further studies. In this review the types of biological and synthetic substrates used for conjunctival transplantation are discussed including substrates based on the extracellular matrix. .
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road, Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
6
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
7
|
Shaik TA, Alfonso-Garcia A, Richter M, Korinth F, Krafft C, Marcu L, Popp J. FLIm and Raman Spectroscopy for Investigating Biochemical Changes of Bovine Pericardium upon Genipin Cross-Linking. Molecules 2020; 25:E3857. [PMID: 32854230 PMCID: PMC7503846 DOI: 10.3390/molecules25173857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Alba Alfonso-Garcia
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| | - Florian Korinth
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Laura Marcu
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| |
Collapse
|
8
|
Therapeutic effects of in vivo-differentiated stem cell and Matricaria chamomilla L. Oil in diabetic rabbit. J Diabetes Metab Disord 2020; 19:453-460. [PMID: 32550197 DOI: 10.1007/s40200-020-00530-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Background The main goal of diabetes therapy is to control blood glucose levels. Objectives In this study, the effect of Matricaria chamomilla L. oil as an herbal agent, on therapeutic properties of poly L-lactic acid-based (PLLA) scaffold loaded with differentiated stem cells, is examined in the diabetic rabbit. Methods Adipose mesenchymal stem cells (AMSCs) were isolated from male New Zealand White rabbits and after seeding on the PLLA scaffold differentiated in the pancreatic region. In vivo differentiation of AMSCs toward pancreatic progenitor cells was evaluated by quantitative analysis of gene expressions and immunohistochemistry. Then, one normal and five diabetic groups including blank diabetic, scaffold, oil + scaffold, and differentiated cell + scaffold or oil + scaffold were assessed after 21 days of treatment. After the assessment, the diabetic groups were evaluated by clinical parameters and pancreatic histological sections. Results It was found that AMSCs were differentiated to insulin-producing cells (IPCs) in the pancreatic environment which then used for implantation. Blood glucose in the oil + scaffold, cell + scaffold, and oil + cell + scaffold groups showed a significant decrease after 21 days. In the above mentioned three groups, insulin secretion was increased significantly. Chamomile oil also caused a significant decrease in High-density lipoprotein (HDL), Low-density lipoprotein (LDL), and total cholesterol levels. According to histological sections results, in cell + scaffold and oil + cell + scaffold groups, β cells were significantly increased compared to blank diabetic group. Conclusions Together these data demonstrated chamomile oil along with in vivo-differentiated stem cell is a promising new treatment for diabetes.
Collapse
|
9
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|
10
|
Bio-orthogonal click reaction-enabled highly specific in situ cellularization of tissue engineering scaffolds. Biomaterials 2019; 230:119615. [PMID: 31776020 DOI: 10.1016/j.biomaterials.2019.119615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022]
Abstract
Tissue engineering generally utilizes natural or synthetic scaffolds to repair or replace damaged tissues. However, due to the lack of guidance of biological signals, most of the implanted scaffolds have always suffered from poor in vivo cellularization. Herein, we demonstrate a bio-orthogonal reaction-based strategy to realize in situ specific and fast cellularization of tissue engineering scaffold. DBCO-modified PCL-PEG (PCL-PEG-DBCO) polymer was synthesized and then fabricated into PCL-PEG-DBCO film through electrospinning. Meanwhile, azide-labeled macrophages (N3 (+) macrophages) were obtained through metabolic glycoengineering. Through a series of in vitro dynamic and in vivo characterization, DBCO-modified films were noted to dramatically increase the selective capture efficiency and survival rate of N3 (+) cells. Additionally, there is negligible influence of covalent conjugation on cell viability and proliferation, indicating the feasibility of the bio-orthogonal click reaction-based tissue engineering strategy. Overall, this work shows the advantages of an in situ bio-orthogonal click reaction in realizing highly specific, efficient, and long-lasting scaffold cellularization. We anticipate that this general strategy would be widely applicable and useful in tissue engineering and regenerative medicine in the near future.
Collapse
|
11
|
Steier A, Muñiz A, Neale D, Lahann J. Emerging Trends in Information-Driven Engineering of Complex Biological Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806898. [PMID: 30957921 DOI: 10.1002/adma.201806898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the "omics" era of biology, the design of the next generation of tissue equivalents will have to integrate information from single-cell behavior to whole organ architecture. Herein, recent trends in combining multiscale processes to enable the design of the next generation of biomaterials are discussed. Any successful microprocessing pipeline must be able to integrate hierarchical sets of information to capture key aspects of functional tissue equivalents. Micro- and biofabrication techniques that facilitate hierarchical control as well as emerging polymer candidates used in these technologies are also reviewed.
Collapse
Affiliation(s)
- Anke Steier
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ayşe Muñiz
- Biointerfaces Institute and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Neale
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, and Biomedical Engineering and the, Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Tan QW, Zhang Y, Luo JC, Zhang D, Xiong BJ, Yang JQ, Xie HQ, Lv Q. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res A 2017; 105:1756-1764. [PMID: 28165664 DOI: 10.1002/jbm.a.36025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/05/2023]
Abstract
Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017.
Collapse
Affiliation(s)
- Qiu-Wen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Di Zhang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin-Jun Xiong
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji-Qiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
14
|
Abstract
Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins.
Collapse
|
15
|
Fong ELS, Harrington DA, Farach-Carson MC, Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials 2016; 108:197-213. [PMID: 27639438 DOI: 10.1016/j.biomaterials.2016.08.052] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This work carves out the roadmap for 3D tumor engineering and highlights some of the challenges that need to be addressed as we move forward into the next chapter.
Collapse
Affiliation(s)
- Eliza L S Fong
- Department of Physiology, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| | | | | | - Hanry Yu
- Department of Physiology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore; Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Fazili A, Gholami S, Minaie Zangi B, Seyedjafari E, Gholami M. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil. CELL JOURNAL 2016; 18:310-21. [PMID: 27602312 PMCID: PMC5011318 DOI: 10.22074/cellj.2016.4558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. MATERIALS AND METHODS In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. RESULTS Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm(-1) for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. CONCLUSION The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms.
Collapse
Affiliation(s)
- Afsaneh Fazili
- Department of Anatomy, School of Veterinary Medicine, University of Shiraz , Shiraz, Iran
| | - Soghra Gholami
- Department of Anatomy, School of Veterinary Medicine, University of Shiraz , Shiraz, Iran
| | - Bagher Minaie Zangi
- Department of Histology, Medical Sciences Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Sciences, Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Srinivasan PP, Patel VN, Liu S, Harrington DA, Hoffman MP, Jia X, Witt RL, Farach‐Carson MC, Pradhan‐Bhatt S. Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture. Stem Cells Transl Med 2016; 6:110-120. [PMID: 28170182 PMCID: PMC5442728 DOI: 10.5966/sctm.2016-0083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy for head and neck cancer often has undesirable effects on salivary glands that lead to xerostomia or severe dry mouth, which can increase oral infections. Our goal is to engineer functional, three‐dimensional (3D) salivary gland neotissue for autologous implantation to provide permanent relief. An immediate need exists to obtain autologous adult progenitor cells as the use of embryonic and induced pluripotent stem cells potentially pose serious risks such as teratogenicity and immunogenic rejection. Here, we report an expandable population of primary salivary human stem/progenitor cells (hS/PCs) that can be reproducibly and scalably isolated and propagated from tissue biopsies. These cells have increased expression of progenitor markers (K5, K14, MYC, ETV4, ETV5) compared with differentiation markers of the parotid gland (acinar: MIST1/BHLHA15 and AMY1A; ductal: K19 and TFCP2L1). Isolated hS/PCs grown in suspension formed primary and secondary spheres and could be maintained in long‐term 3D hydrogel culture. When grown in a customized 3D modular hyaluronate‐based hydrogel system modified with bioactive basement membrane‐derived peptides, levels of progenitor markers, indices of proliferation, and viability of hS/PCs were enhanced. When appropriate microenvironmental cues were provided in a controlled manner in 3D, such as stimulation with β‐adrenergic and cholinergic agonists, hS/PCs differentiated into an acinar‐like lineage, needed for saliva production. We conclude that the stem/progenitor potential of adult hS/PCs isolated without antigenic sorting or clonal expansion in suspension, combined with their ability to differentiate into specialized salivary cell lineages in a human‐compatible culture system, makes them ideal for use in 3D bioengineered salivary gland applications. Stem Cells Translational Medicine2017;6:110–120
Collapse
Affiliation(s)
- Padma Pradeepa Srinivasan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Shuang Liu
- Department of Materials Sciences and Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Materials Sciences and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
- Department of Otolaryngology–Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mary C. Farach‐Carson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Swati Pradhan‐Bhatt
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2016; 35:97-105. [PMID: 27406006 PMCID: PMC6310135 DOI: 10.1002/stem.2455] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Abstract
The human salivary gland (SG) has an elegant architecture of epithelial acini, connecting ductal branching structures, vascular and neuronal networks that together function to produce and secrete saliva. This review focuses on the translation of cell- and tissue-based research toward therapies for patients suffering from SG hypofunction and related dry mouth syndrome (xerostomia), as a consequence of radiation therapy or systemic disease. We will broadly review the recent literature and discuss the clinical prospects of stem/progenitor cell and tissue-based therapies for SG repair and/or regeneration. Thus far, several strategies have been proposed for the purpose of restoring SG function: (1) transplanting autologous SG-derived epithelial stem/progenitor cells; (2) exploiting nonepithelial cells and/or their bioactive lysates; and (3) tissue engineering approaches using 3D (three-dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in vivo SGs. We predict that further scientific improvement in each of these areas will translate to effective therapies toward the repair of damaged glands and the development of miniature SG organoids for the fundamental restoration of saliva secretion.
Collapse
Affiliation(s)
- Isabelle Lombaert
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, North Campus Research Complex, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad M Movahednia
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 119083, Singapore
| | - Christabella Adine
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| | - Joao N Ferreira
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
19
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
20
|
Singh D, Singh D, Han SS. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers (Basel) 2016; 8:polym8010019. [PMID: 30979115 PMCID: PMC6432526 DOI: 10.3390/polym8010019] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs) and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM) proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D) constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT-06510, CT, USA.
| | - Dolly Singh
- Biomaterials Lab, Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-ko, Gyeongsan, Gyeongsanbukdo 712-749, Korea.
| | - Sung Soo Han
- Biomaterials Lab, Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-ko, Gyeongsan, Gyeongsanbukdo 712-749, Korea.
| |
Collapse
|
21
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|
22
|
Schiller J, Huster D. New methods to study the composition and structure of the extracellular matrix in natural and bioengineered tissues. BIOMATTER 2014; 2:115-31. [PMID: 23507863 PMCID: PMC3549865 DOI: 10.4161/biom.20866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The extracellular matrix (ECM) comprises a gel of numerous biopolymers that occurs in a multitude of biological tissues. The ECM provides the basic support and mechanical strength of skeletal tissue and is responsible for shape retention. At the same time, the ECM is responsible for the viscoelastic properties and the elasticity of soft tissues. As expected, there are several important diseases that affect and degenerate the ECM with severe consequences for its properties. Bioengineering is a promising approach to support the regenerative capacity of the body. Unfortunately, the biomechanical properties of bioengineered ECM often only poorly meet the standards of their native counterparts. Many bioengineered tissues are characterized by an increased glycosaminoglycan (GAG) but decreased collagen content. This leads to an enhanced water content that strongly alters the viscoelastic and thus the biomechanical properties. Therefore, compositional analysis is important to estimate the tissue quality. We will show that nuclear magnetic resonance (NMR) spectroscopy and soft-ionization mass spectrometry (MS) represent useful techniques for ECM research both in natural and bioengineered tissues. Both methods are strongly complimentary: while MS techniques such as matrix-assisted laser desorption and ionization (MALDI) are excellent and very sensitive analytical tools to determine the collagen and the GAG contents of tissues, NMR spectroscopy provides insight into the molecular architecture of the ECM, its dynamics and other important parameters such as the water content of the tissue as well as the diffusion of molecules within the ECM.
Collapse
Affiliation(s)
- Jürgen Schiller
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig, Germany.
| | | |
Collapse
|
23
|
Jordan RPC, Williams DW, Moran GP, Coleman DC, Sullivan DJ. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins. Med Mycol 2014; 52:254-63. [PMID: 24625677 DOI: 10.1093/mmy/myt032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P < 0.001). However, when the yeast cells were grown at 37°C, no significant difference between the adhesion of C. dubliniensis genotype 1 and C. albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P < 0.001). Using surface plasmon resonance analysis, C. dubliniensis isolates were found to adhere in significantly greater numbers than C. albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.
Collapse
Affiliation(s)
- Rachael P C Jordan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
24
|
Vasyliev RG. CULTIVATION OF NEURAL CREST-DERIVED MULTIPOTENT STEM CELLS IN COLLAGEN AND FIBRIN HYDROGELS: EFFECTS ON CELL VIABILITY AND PROLIFERATION. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Clarke KC, Douglas AM, Brown AC, Barker TH, Lyon LA. Colloid-matrix assemblies in regenerative medicine. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG. Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:173-88. [PMID: 23902258 DOI: 10.1089/ten.teb.2013.0221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the nanostructure of bone and understanding the interactions between the nanoscale inorganic and organic components of the extracellular bone matrix are crucial for the design of biomaterials with structural properties and a functionality similar to the natural bone tissue. Generally, these interactions involve anionic and/or cationic functional groups as present in the organic matrix, which exhibit a strong affinity for either calcium or phosphate ions from the mineral phase of bone. This study reviews the interactions between the mineral and organic extracellular matrix components in bone tissue as a source of inspiration for the design of novel nanocomposites. After providing a brief description of the various structural levels of bone and its main constituents, a concise overview is presented on the process of bone mineralization as well as the interactions between calcium phosphate (CaP) nanocrystals and the organic matrix of bone tissue. Bioinspired synthetic approaches for obtaining nanocomposites are subsequently addressed, with specific focus on chemical groups that have affinity for CaPs or are involved in stimulating and controlling mineral formation, that is, anionic functional groups, including carboxyl, phosphate, sulfate, hydroxyl, and catechol groups.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
27
|
Cell-seeded extracellular matrices for bladder reconstruction: an ex vivo comparative study of their biomechanical properties. Int J Artif Organs 2013; 36:251-8. [PMID: 23446760 DOI: 10.5301/ijao.5000194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE Autogenous ileal tissue remains the gold-standard biomaterial for bladder replacement purposes; however, cell-seeded extracellular matrix (ECM) scaffolds have shown promise. Although the biological advantages of cell-seeded ECMs in urological settings are well documented, there is a paucity of data available on their biomechanical properties. In this study, the biomechanical properties of cell-seeded ECMs are compared with autogenous ileal tissue. METHODS Human urothelial cells (UCs) and smooth muscle cells (SMCs) were obtained by bladder biopsy and cultured onto porcine urinary bladder matrix (UBM) scaffolds under dynamic and static growth conditions for 14 days. The biomechanical properties of cell-seeded UBM (n = 12), and porcine ileum (n = 12) were determined with uni-axial tensile testing protocols and compared with stress-strain curves. In addition, their biomechanical properties were compared with porcine bladder tissue (n = 12) and unseeded UBM (n = 12). RESULTS There were significant differences in the biomechanical properties of each biomaterial assessed. Strain to failure occurred at 92 ± 24% for dynamically cultured cell-seeded UBM compared to 42.2 ± 5.20% for ileal tissue (p<0.01). Values for linear stiffness at 30% strain were significantly lower in dynamically cultured cell-seeded UBM compared to ileal tissue (0.36 ± 0.14 MPa versus 0.67 ± 0.32 MPa respectively, p<0.01). Bladder tissue remained the most distensible biomaterial throughout, with linear stiffness measuring 0.066 ± 0.034 MPa at 30% strain. CONCLUSIONS Dynamically cultured cell-seeded ECMs are biomechanically superior to ileal tissue for bladder replacement purposes. Additional comparative in vivo studies will be necessary before their role as a reliable alternative is clearly established.
Collapse
|
28
|
Marçal H, Ahmed T, Badylak SF, Tottey S, Foster LJR. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder. Regen Med 2012; 7:159-66. [PMID: 22397606 DOI: 10.2217/rme.12.6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS To generate a comprehensive profile of the protein composition of xenogeneic biomaterial, derived from porcine urinary bladder matrix (UBM). MATERIALS & METHODS Tunica layers and muscularis mucosa were removed from bladders using mechanical delamination. UBM was prepared using a solution of peracetic acid in ethanol, lyophilized then milled into powder. UBM biomaterial was subjected to tryptic digests and components separated using high-performance liquid chromatography with an ion trap mass spectrometer and identified through databases. RESULTS A repertoire of 129 proteins with neurotrophic, antiangiogenic and tumor-suppressive activities and those associated with tissue remodeling and wound repair were identified. CONCLUSION This study provides the first insight into the complex nature of the UBM and how its application may be tailored for specific applications in regenerative medicine. We propose that the UBM be further investigated for reconstructive and regenerative remodeling of cardiac and dermal tissues, as well as peripheral nerves.
Collapse
Affiliation(s)
- Helder Marçal
- Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
29
|
Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A. Microfabricated biomaterials for engineering 3D tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1782-804. [PMID: 22410857 PMCID: PMC3432416 DOI: 10.1002/adma.201104631] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 05/04/2023]
Abstract
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.
Collapse
Affiliation(s)
- Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration. Biomaterials 2012; 33:428-43. [DOI: 10.1016/j.biomaterials.2011.09.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/28/2011] [Indexed: 02/07/2023]
|
31
|
Kim H, Cooke MJ, Shoichet MS. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol 2011; 30:55-63. [PMID: 21831464 DOI: 10.1016/j.tibtech.2011.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.
Collapse
Affiliation(s)
- Howard Kim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
32
|
Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering. Top Curr Chem (Cham) 2011; 310:135-67. [DOI: 10.1007/128_2011_206] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|