1
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
2
|
Lee HJ, Jeon M, Kim YH, Kim SO, Lee KE. Comparative gene expression analysis of stemness between periodontal ligament and umbilical cord tissues in humans. J Dent Sci 2023; 18:211-219. [PMID: 36643271 PMCID: PMC9831792 DOI: 10.1016/j.jds.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Due to their regenerative potential, periodontal ligament (PDL) and umbilical cord (UBC) tissues are an attractive potential mesenchymal stem cells (MSCs) source. This study compared the expression patterns of genes related to stemness between fresh PDL and UBC tissues. Materials and methods PDL tissues were collected from 38 permanent premolars extracted for orthodontic purposes, and UBC tissues were obtained from three newborns. Each sample was immediately frozen to prevent RNA degradation. cDNA microarray analysis, quantitative real-time polymerase chain reaction (PCR), and immunohistochemical staining were performed. Gene expression patterns associated with dental stemness (DS) and induced pluripotent stemness (iPS) were compared between PDL and UBC tissues. Results In the cDNA microarray analyses, the expressions of most iPS genes were greater in the PDL than in the UBC. Meanwhile, the expressions of most DS genes were greater in the UBC than in the PDL. Quantitative real-time PCR analyses showed that the expression levels of matrix metallopeptidase 13 (MMP13), ADAM metallopeptidase domain 22 (ADAM22), vascular cell adhesion protein 1 (VCAM1), and kruppel-like factor 4 (KLF4) genes were greater in the PDL than in the UBC, while the expressions of melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) were greater in the UBC than in the PDL. Conclusion These results suggest that UBC and PDL tissues showed slightly different expression patterns of genes related to stemness, which warrants further investigation to use these tissues for future regeneration and implantation therapies.
Collapse
Affiliation(s)
- Hyung-Joo Lee
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Mijeong Jeon
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Oh Kim
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea,Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea,Corresponding author. Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ko Eun Lee
- Department of Pediatric Dentistry, Kyung Hee University Dental Hospital, Seoul, Republic of Korea,Corresponding author. Department of Pediatric Dentistry, Kyung Hee University Dental Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Li Y, Shi G, Han Y, Shang H, Li H, Liang W, Zhao W, Bai L, Qin C. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther 2021; 12:407. [PMID: 34266502 PMCID: PMC8281645 DOI: 10.1186/s13287-021-02490-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a complex disease caused in part by dyslipidemia and chronic inflammation. AS is associated with serious cardiovascular disease and remains the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) have evolved as an attractive therapeutic agent in various diseases including AS. Human umbilical cord MSCs (UCSCs) have been used in cell therapy trials due to their ability to differentiate and proliferate. The present study aimed to investigate the effect of UCSCs treatment on atherosclerotic plaque formation and the progression of lesions in a high-fat diet rabbit model. METHODS Rabbits were fed a high-fat diet and then randomly divided into three groups: control, model, and treatment groups. Rabbits in the treatment group were injected with UCSCs (6 × 106 in 500 μL phosphate buffered saline) after 1 month of high-fat diet, once every 2 weeks, for 3 months. The model group was given PBS only. We analyzed serum biomarkers, used ultrasound and histopathology to detect arterial plaques and laser Doppler imaging to measure peripheral blood vessel blood filling, and analyzed the intestinal flora and metabolism. RESULTS Histological analysis showed that the aortic plaque area was significantly reduced in the treatment group. We also found a significant decrease in macrophage accumulation and apoptosis, an increase in expression of scavenger receptors CD36 and SRA1, a decrease in uptake of modified low-density protein (ox-LDL), and a decrease in levels of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α following UCSCs treatment. We also found that anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β expression increased in the aorta atherosclerotic plaque of the treatment group. UCSCs treatment improved the early peripheral blood filling, reduced the serum lipid level, and inhibited inflammation progression by regulating the intestinal flora dysbiosis caused by the high-fat diet. More specifically, levels of the microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) were down-regulated in the treatment group. CONCLUSIONS UCSCs treatment alleviated atherosclerotic plaque burden by reducing inflammation, regulating the intestinal flora and TMAO levels, and repairing the damaged endothelium.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Guiying Shi
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Yunlin Han
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Haiquan Shang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Huiwu Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wei Liang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wenjie Zhao
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Lin Bai
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| |
Collapse
|
4
|
Fujii-Tezuka R, Ishige-Wada M, Nagoshi N, Okano H, Mugishima H, Takahashi S, Morioka I, Matsumoto T. Umbilical artery tissue contains p75 neurotrophin receptor-positive pericyte-like cells that possess neurosphere formation capacity and neurogenic differentiation potential. Regen Ther 2021; 16:1-11. [PMID: 33426237 PMCID: PMC7773767 DOI: 10.1016/j.reth.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/07/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is known as an efficient marker for the prospective isolation of mesenchymal stem cells (MSCs) and neural crest-derived stem cells (NCSCs). To date, there is quite limited information concerning p75NTR-expressing cells in umbilical cord (UC), although UC is known as a rich source of MSCs. We show for the first time the localization, phenotype, and functional properties of p75NTR+ cells in UC. METHODS Human UC tissue sections were subjected to immunohistochemistry for MSC markers including p75NTR. Enzymatically isolated umbilical artery (UA) cells containing p75NTR+ cells were assessed for immunophenotype, clonogenic capacity, and differentiation potential. To identify the presence of neural crest-derived cells in the UA, P0-Cre/Floxed-EGFP reporter mouse embryos were used, and immunohistochemical analysis of UC tissue was performed. RESULTS Immunohistochemical analysis revealed that p75NTR+ cells were specifically localized to the subendothelial area of the UA and umbilical vein. The p75NTR+ cells co-expressed PDGFRβ, CD90, CD146, and NG2, phenotypic markers of MSCs and pericytes. Isolated UA cells possessed the potential to form neurospheres that further differentiated into neuronal and glial cell lineages. Genetic lineage tracing analysis showed that EGFP+ neural crest-derived cells were detected in the subendothelial area of UA with p75NTR immunoreactivity. CONCLUSIONS These results show that UA tissue harbors p75NTR+ pericyte-like cells in the subendothelial area that have the capacity to form neurospheres and the potential for neurogenic differentiation. The lineage tracing data suggests the p75NTR+ cells are putatively derived from the neural crest.
Collapse
Key Words
- ASMA, α-smooth muscle actin
- BDNF, bone-derived neurotrophic factor
- CFU-F, colony-forming unit fibroblast
- DAPI, 4′,6-diamino-2-phenylindole
- DMEM, Dulbecco's modified Eagle medium
- EGF, epidermal growth factor
- EGFP, enhanced green fluorescent protein
- EdU, 5-ethynyl-2′-deoxyuridine
- FBS, fetal bovine serum
- FGF-2, fibroblast growth factor-2
- FSK, forskolin
- GFAP, glial fibrillary acidic protein
- MAP2, microtubule-associated protein 2
- MSCs, mesenchymal stem cells
- Mesenchymal stem cells
- NCSCs, neural crest-derived stem cells
- NF200, neurofilament 200
- NG2, neuron-glial antigen 2
- Neural crest stem cells
- Neurosphere
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- RA, all-trans-retinoic acid
- TBS, Tris-buffered saline
- UA, umbilical artery
- UC, umbilical cord
- UV, umbilical vein
- Umbilical cord
- WJ, Wharton's jelly
- p75 neurotrophin receptor
- p75NTR, p75 neurotrophin receptor
- vWF, von Willebrand factor
- α-MEM, alpha-modified minimum essential medium
- βME, β-mercaptoethanol
Collapse
Affiliation(s)
- Rina Fujii-Tezuka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Mika Ishige-Wada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideo Mugishima
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Kawagoe Preventive Medical Center Clinic, Kawagoe, Japan
| | - Shori Takahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Itabashi Chuo Medical Center, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Dubey SK, Alexander A, Sivaram M, Agrawal M, Singhvi G, Sharma S, Dayaramani R. Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials. Curr Stem Cell Res Ther 2020; 15:187-201. [PMID: 31957615 DOI: 10.2174/1574888x15666200103124821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.
Collapse
Affiliation(s)
- Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati (Assam), India
| | - Munnangi Sivaram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka- Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Swapnil Sharma
- Department of Pharmacy, Banastahli Vidyapith, Tonk, Rajasthan 304022, India
| | | |
Collapse
|
6
|
Ramallo M, Carreras-Sánchez I, López-Fernández A, Vélez R, Aguirre M, Feldman S, Vives J. Advances in translational orthopaedic research with species-specific multipotent mesenchymal stromal cells derived from the umbilical cord. Histol Histopathol 2020; 36:19-30. [PMID: 32914860 DOI: 10.14670/hh-18-249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compliance with current regulations for the development of innovative medicines require the testing of candidate therapies in relevant translational animal models prior to human use. This poses a great challenge when the drug is composed of cells, not only because of the living nature of the active ingredient but also due to its human origin, which can subsequently lead to a xenogeneic response in the animals. Although immunosuppression is a plausible solution, this is not suitable for large animals and may also influence the results of the study by altering mechanisms of action that are, in fact, poorly understood. For this reason, a number of procedures have been developed to isolate homologous species-specific cell types to address preclinical pharmacodynamics, pharmacokinetics and toxicology. In this work, we present and discuss advances in the methodologies for derivation of multipotent Mesenchymal Stromal Cells derived from the umbilical cord, in general, and Wharton's jelly, in particular, from medium to large animals of interest in orthopaedics research, as well as current and potential applications in studies addressing proof of concept and preclinical regulatory aspects.
Collapse
Affiliation(s)
- Melina Ramallo
- School of Medicine, LABOATEM, - Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, Biological Chemistry Cat., School of Medicine, National Rosario University, Rosario, Argentina
| | | | - Alba López-Fernández
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Vélez
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Màrius Aguirre
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Sara Feldman
- School of Medicine, LABOATEM, - Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, Biological Chemistry Cat., School of Medicine, National Rosario University, Argentina.,Researh Council of the Rosario National University, (CIUNR) and CONICET, Rosario, Argentina.
| | - Joaquim Vives
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Zhang Y, Hao C, Guo W, Peng X, Wang M, Yang Z, Li X, Zhang X, Chen M, Sui X, Peng J, Lu S, Liu S, Guo Q, Jiang Q. Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Res Ther 2020; 11:180. [PMID: 32430067 PMCID: PMC7238567 DOI: 10.1186/s13287-020-01670-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background The dedifferentiation of chondrocytes and the unstable chondrogenic differentiation status of pluripotent mesenchymal stem cells (MSCs) are immense issues in cell-based articular cartilage repair and regenerative strategies. Here, to improve the cartilage characteristics of seed cells, a double biomimetic acellular cartilage extracellular matrix (ACECM)-oriented scaffold was used to mimic the cartilage microenvironment for human umbilical cord Wharton’s jelly-derived MSCs (hWJMSCs) and primary cartilage cells (pACs) to regenerate hyaline cartilage. Methods A double biomimetic ACECM-oriented scaffold was created from the cartilage extracellular matrix of pig articular cartilage using pulverization decellularization freeze-drying procedures. hWJMSCs and pACs were co-cultured at ratios of 50:50 (co-culture group, ACCC), 0:100 (ACAC group) and 100:0 (ACWJ group) in the ACECM-oriented scaffold, and the co-culture system was implanted in a caprine model for 6 months or 9 months to repair full-thickness articular cartilage defects. The control groups, which had no cells, comprised the blank control (BC) group and the ACECM-oriented scaffold (AC) group. Gross morphology and magnetic resonance imaging (MRI) as well as histological and biomechanical evaluations were used to characterize the cartilage of the repair area. Results Relative to the control groups, both the gross morphology and histological staining results demonstrated that the neotissue of the ACCC group was more similar to native cartilage and better integrated with the surrounding tissue. Measurements of glycosaminoglycan content and Young’s modulus showed that the repair areas had more abundant cartilage-specific content and significantly higher mechanical strength in the ACCC group than in the control groups, especially at 9 months. On MRI, the T2-weighted signal of the repair area was homogeneous, and the oedema signal disappeared almost completely in the ACCC group at 9 months. HLA-ABC immunofluorescence staining demonstrated that hWJMSCs participated in the repair and regeneration of articular cartilage and escaped surveillance and clearance by the caprine immune system. Conclusion The structure and components of double biomimetic ACECM-oriented scaffolds provided a cartilage-like microenvironment for co-cultured seed cells and enhanced the biomechanics and compositions of neotissue. This co-culture system has the potential to overcome the dedifferentiation of passage chondrocytes and the unstable chondrogenic differentiation status of MSCs.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoyu Peng
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing, 210008, China
| | - Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhen Yang
- School of Medicine, Naikai University, Tianjin, 300071, China
| | - Xu Li
- School of Medicine, Naikai University, Tianjin, 300071, China
| | - Xueliang Zhang
- Shanxi Traditional Chinese, No. 46 Binzhou west Street, YingZe District, Taiyuan, 030001, China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Beijing Key Lab of Regenerative Medicine in Orthopaedics, 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing, 210008, China.
| |
Collapse
|
8
|
Current Trends and Future Perspective of Mesenchymal Stem Cells and Exosomes in Corneal Diseases. Int J Mol Sci 2019; 20:ijms20122853. [PMID: 31212734 PMCID: PMC6627168 DOI: 10.3390/ijms20122853] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
The corneal functions (transparency, refractivity and mechanical strength) deteriorate in many corneal diseases but can be restored after corneal transplantation (penetrating and lamellar keratoplasties). However, the global shortage of transplantable donor corneas remains significant and patients are subject to life-long risk of immune response and graft rejection. Various studies have shown the differentiation of multipotent mesenchymal stem cells (MSCs) into various corneal cell types. With the unique properties of immunomodulation, anti-angiogenesis and anti-inflammation, they offer the advantages in corneal reconstruction. These effects are widely mediated by MSC differentiation and paracrine signaling via exosomes. Besides the cell-free nature of exosomes in circumventing the problems of cell-fate control and tumorigenesis, the vesicle content can be genetically modified for optimal therapeutic affinity. The pharmacology and toxicology, xeno-free processing with sustained delivery, scale-up production in compliant to Good Manufacturing Practice regulations, and cost-effectiveness are the current foci of research. Routes of administration via injection, topical and/or engineered bioscaffolds are also explored for its applicability in treating corneal diseases.
Collapse
|
9
|
Yin S, Ji C, Wu P, Jin C, Qian H. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair. Am J Transl Res 2019; 11:1230-1240. [PMID: 30972158 PMCID: PMC6456565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) can be recruited to damaged tissues directly for regeneration. Exosomes, acting as an important ingredient of MSCs-involved intercellular communication through paracrine actions, also play significant roles in tissue damage repair and have a prospect of potential clinical application. It is generally recognized that MSC-derived exosomes (MSC-exosomes) enhance tissue regeneration and repair through reducing inflammatory responses, promoting proliferation, inhibiting apoptosis and facilitating angiogenesis. This review summarizes the positive effects of human umbilical cord mesenchymal stem cells (hucMSCs) and hucMSC-derived exosomes (hucMSC-exosomes) on tissue damage and the specific mechanisms of repair action.
Collapse
Affiliation(s)
- Siqi Yin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Cheng Ji
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Can Jin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
10
|
Coculture of hWJMSCs and pACs in Oriented Scaffold Enhances Hyaline Cartilage Regeneration In Vitro. Stem Cells Int 2019; 2019:5130152. [PMID: 30881462 PMCID: PMC6383394 DOI: 10.1155/2019/5130152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Seed cells of articular cartilage tissue engineering face many obstacles in their application because of the dedifferentiation of chondrocytes or unstable chondrogenic differentiation status of pluripotent stem cells. To overcome mentioned dilemmas, a simulation of the articular cartilage microenvironment was constructed by primary articular cartilage cells (pACs) and acellular cartilage extracellular matrix- (ACECM-) oriented scaffold cocultured with human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJMSCs) in vitro. The coculture groups showed more affluent cartilage special matrix ingredients including collagen II and aggrecan based on the results of histological staining and western blotting and cut down as many pACs as possible. The RT-PCR and cell viability experiments also demonstrated that hWJMSCs were successfully induced to differentiate into chondrocytes when cultured in the simulated cartilage microenvironment, as confirmed by the significant upregulation of collagen II and aggrecan, while the cell proliferation activity of pACs was significantly improved by cell-cell interactions. Therefore, compared with monoculture and chondrogenic induction of inducers, coculture providing a simulated native articular microenvironment was a potential and temperate way to regulate the biological behaviors of pACs and hWJMSCs to regenerate the hyaline articular cartilage.
Collapse
|
11
|
Hendrijantini N, Hartono P. Phenotype Characteristics and Osteogenic Differentiation Potential of Human Mesenchymal Stem Cells Derived from Amnion Membrane (HAMSCs) and Umbilical Cord (HUC-MSCs). Acta Inform Med 2019; 27:72-77. [PMID: 31452562 PMCID: PMC6688306 DOI: 10.5455/aim.2019.27.72-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: Human amnion membrane mesenchymal stem cells (hAMSCs) and human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential, non invasive sources of stem cells used for bone tissue engineering. Phenotyping characterization is an extremely important consideration in the choice of the appropriate passage in order to maximize its osteogenic differentiation potential. Aim: To explore phenotype characteristics and compare osteogenic differentiation potential of hAMSCs and hUC-MSCs. Method: Isolation and culture were performed on hAMSCs and hUC-MSCs from a healthy woman in her 38th weeks of pregnancy. CD90, CD105 and CD73 phenotype characterization was done in passage 4-7. An osteogenic differentiation examination of hAMSCs and hUC-MSCs with Alizarin red staining and RUNX2 expression was performed in the passage that had appropriate expressions of phenotype characteristics. Results: The expression of CD90 hUC-MSCs was higher than that of hAMSCs in all passages. CD105 hUC-MSCs was higher in passage 4-6, while CD105 hAMSCs was equal to that of hUC-MSCs in passage 7. CD73 hUC-MSCs was higher than hAMSCs in passage 4 and 5, while in passage 6 and 7 hAMSCs was higher than hUC-MSCs. There was a decrease in the number of CD90, CD105 and CD73 on hAMSCs and hUC-MSCs in passage 5, then determined as appropriate passage. Alizarin red staining examination showed calcium deposition and revealed no significant difference, but RUNX2 expression of hUC-MSCs was significantly higher than that for hAMSCs. Conclusion: Both hAMSCs and hUC-MSCs had phenotype characteristics of mesenchymal stem cell and showed ostegenic differentiation potential.
Collapse
Affiliation(s)
- Nike Hendrijantini
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Poedjo Hartono
- Department of Obstetrics and Gynaecology, Dr. Soetomo General Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Zhang Y, Liu S, Guo W, Wang M, Hao C, Gao S, Zhang X, Li X, Chen M, Jing X, Wang Z, Peng J, Lu S, Guo Q. Human umbilical cord Wharton's jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis Cartilage 2018; 26:954-965. [PMID: 29391278 DOI: 10.1016/j.joca.2018.01.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE As a novel and promising seed cell, human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) are widely applied in tissue engineering. However, whether hWJMSCs can better repair and regenerate the articular cartilage in big animals than microfracture (MF, a predominant clinical treatment strategy for damaged cartilage) is unclear. Evaluation of the validity, and safety of hWJMSCs in a caprine model with a full-thickness femoral condyle articular cartilage defect, compared with MF is required. METHODS After cultivation and identification, hWJMSCs were seeded in an acellular cartilage extracellular matrix (ACECM)-oriented scaffold to construct cell-scaffold complex. Six goats with full-thickness femoral condyle articular cartilage defects were randomized to MF (microfracture group, MFG) and cell-scaffold complexes (experimental group, EG). At 2 and 4 weeks, joint fluid was used to assess immuno-inflammatory responses. At 6 and 9 months, all goats were euthanized for assessment of morphology, and magnetic resonance imaging (MRI), histology staining, and evaluation of the elasticity modulus and glycosaminoglycan (GAG) contents of the repaired regions. RESULTS There were no significant differences between the two groups in immuno-inflammatory parameters. MRI demonstrated higher-quality cartilage and complete subchondral bone at defect sites in the EG at 9 months. Histological staining showed that extracellular cartilage, cartilage lacuna and collagen type II levels were higher in the EG compared to the MFG, while the EG exhibited a higher elasticity modulus. CONCLUSIONS The hWJMSCs-ACECM scaffold complex achieved better quality repair and regeneration of hyaline cartilage without cartilage-inducing factor, while retaining the structure and functional integrity of the subchondral bone, compared with MF.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China; Institute of Orthopaedics, Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Gulou District, Nanjing 210008, China
| | - S Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - W Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - M Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - C Hao
- Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - S Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing CN 154007, China
| | - X Zhang
- Shanxi Traditional Chinese, No. 46 Binzhou West Street, YingZe District, Taiyuan 030001, China
| | - X Li
- School of Medicine, Naikai University, Tianjin 300071, China
| | - M Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - X Jing
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154007, China
| | - Z Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - J Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - S Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Q Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
13
|
White JL, Walker NJ, Hu JC, Borjesson DL, Athanasiou KA. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. Tissue Eng Part A 2018; 24:1262-1272. [PMID: 29478385 DOI: 10.1089/ten.tea.2017.0424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.
Collapse
Affiliation(s)
- Jamie L White
- 1 Department of Pathology, Microbiology and Immunology, Integrative Pathobiology Graduate Group, University of California , Davis, Davis, California
| | - Naomi J Walker
- 2 Department of Pathology, Microbiology and Immunology, University of California , Davis, Davis, California
| | - Jerry C Hu
- 3 Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California , Irvine, Irvine, California
| | - Dori L Borjesson
- 2 Department of Pathology, Microbiology and Immunology, University of California , Davis, Davis, California.,4 School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California , Davis, Davis, California
| | - Kyriacos A Athanasiou
- 3 Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California , Irvine, Irvine, California
| |
Collapse
|
14
|
Al Jofi FE, Ma T, Guo D, Schneider MP, Shu Y, Xu HHK, Schneider A. Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells. Cytotherapy 2018; 20:650-659. [PMID: 29555409 DOI: 10.1016/j.jcyt.2018.02.369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Compelling evidence indicates that metformin, a low-cost and safe orally administered biguanide prescribed to millions of type 2 diabetics worldwide, induces the osteoblastic differentiation of mesenchymal stromal cells (MSCs) through the 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway. As a highly hydrophilic cationic compound, metformin uptake is facilitated by cell membrane organic cation transporters (OCTs) of the solute carrier 22A gene family. We hypothesized that to effectively enhance osteogenic differentiation, and ultimately bone regeneration, metformin must gain access into functional OCT-expressing MSCs. METHODS Data was obtained through immunoblotting, cellular uptake, mineralization and gene expression assays. RESULTS We demonstrate for the first time that functional OCTs are expressed in human-derived MSCs from umbilical cord Wharton's jelly, an inexhaustible source of nonembryonic MSCs with proven osteogenic potential. A clinically relevant concentration of metformin led to AMPK activation, enhanced mineralized nodule formation and increased expression of the osteogenic transcription factor Runt-related transcription factor 2 (RUNX2). Indeed, targeting OCT function through pharmacological and genetic approaches markedly blunted these responses. CONCLUSIONS Our findings indicate that functional OCT expression in UC-MSCs is a biological prerequisite that facilitates the intracellular uptake of metformin to induce an osteogenic effect. Future pre-clinical studies are warranted to investigate whether the expression of functional OCTs may serve as a potential biomarker to predict osteogenic responses to metformin.
Collapse
Affiliation(s)
- Faisal E Al Jofi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Department of Preventive Dental Science, Division of Periodontics, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Monica P Schneider
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA; Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Hockin H K Xu
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA; Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Zong C, Zhang H, Yang X, Gao L, Hou J, Ye F, Jiang J, Yang Y, Li R, Han Z, Wei L. The distinct roles of mesenchymal stem cells in the initial and progressive stage of hepatocarcinoma. Cell Death Dis 2018; 9:345. [PMID: 29497038 PMCID: PMC5832809 DOI: 10.1038/s41419-018-0366-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
Increasing evidences suggest that mesenchymal stem cells (MSCs) could migrate to the tumor site and play a vital role in tumorigenesis and progression. However, it is still a lively debate whether MSCs exert a pro- or anticancer action. Cancer development and progression is a multistep process. Therefore, we investigated the effect of MSCs on hepatocarcinoma and whether the role of MSCs depends on the stage of cancer development. In our study, chronically exposing rats to N-diethylnitrosamine (DEN) was employed as hepatocarcinoma model. And to evaluate the effect of MSCs on hepatocarcinoma, the animals were divided into three groups: rats were injected with MSCs in the initial (DEN + MSC (Is) group) or progressive stage (DEN + MSC (Ps) group) of hepatocarcinoma, respectively. Rats injected with PBS were used as control (DEN group). Interestingly, we found that MSCs had a tumor-suppressive effect in the Is of hepatocarcinoma, yet a tumor-promotive effect in the Ps. In the Is, MSCs showed a protective role against drug damage, possibly through reducing DNA damage and ROS accumulation. Meanwhile, MSCs in the Is also exhibited anti-inflammatory and anti-liver fibrosis effect. Further, in the Ps, MSCs facilitated tumor formation not only by enhancing cancer cell proliferation but also through promoting stem cell-like properties and epithelial–mesenchymal transition of liver cancer cells. Taken together, MSCs have a paradoxical role in the different stages of hepatocarcinogenesis, which sheds new light on the role of MSCs in hepatocarcinoma and cautions the therapeutic application of MSCs for liver cancer.
Collapse
Affiliation(s)
- Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Hangjie Zhang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.,Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Jing Hou
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| |
Collapse
|
16
|
Zhang Y, Guo W, Wang M, Hao C, Lu L, Gao S, Zhang X, Li X, Chen M, Li P, Jiang P, Lu S, Liu S, Guo Q. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol 2017; 233:1940-1951. [PMID: 28548713 DOI: 10.1002/jcp.26020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liang Lu
- Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xueliang Zhang
- Shanxi Traditional Chinese, Taiyuan, People's Republic of China
| | - Xu Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Penghao Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Peng Jiang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
17
|
IGFBP2 enhances adipogenic differentiation potentials of mesenchymal stem cells from Wharton's jelly of the umbilical cord via JNK and Akt signaling pathways. PLoS One 2017; 12:e0184182. [PMID: 28859160 PMCID: PMC5578624 DOI: 10.1371/journal.pone.0184182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/18/2017] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cell (MSC)-mediated tissue engineering represents a promising strategy to address adipose tissue defects. MSCs derived from Wharton’s jelly of the umbilical cord (WJCMSCs) may serve as an ideal source for adipose tissue engineering due to their abundance, safety profile, and accessibility. How to activate the directed differentiation potentials of WJCMSCs is the core point for their clinical applications. A thorough investigation of mechanisms involved in WJCMSC adipogenic differentiation is necessary to support their application in adipose tissue engineering and address shortcomings. Previous study showed, compared with periodontal ligament stem cells (PDLSCs), WJCMSCs had a weakened adipogenic differentiation potentials and lower expression of insulin-like growth factor binding protein 2 (IGFBP2). IGFBP2 may be involved in the adipogenesis of MSCs. Generally, IGFBP2 is involved in regulating biological activity of insulin-like growth factors, however, its functions in human MSCs are unclear. Here, we found IGFBP2 expression was upregulated upon adipogenic induction, and that IGFBP2 enhanced adipogenic differentiation of WJCMSCs and BMSCs. Moreover, IGFBP2 increased phosphorylation of c-Jun N-terminal kinase (p-JNK) and p-Akt, and activated JNK or Akt signaling significantly promoted adipogenic differentiation of MSCs. Furthermore, inhibitor-mediated blockage of either JNK or Akt signaling dramatically reduced IGFBP2-mediated adipogenic differentiation. And the JNK inhibitor, SP600125 markedly blocked IGFBP2-mediated Akt activation. Moreover, IGFBP2 was negatively regulated by BCOR, which inhibited adipogenic differentiation of WJCMSCs. Overall, our results reveal a new function of IGFBP2, providing a novel insight into the mechanism of adipogenic differentiation and identifying a potential target mediator for improving adipose tissue engineering based on WJCMSCs.
Collapse
|
18
|
Xing X, Zhang Z, Zhong L, Ju G, Zou X, Zhu Y, Sun J. Differentiation of human umbilical cord mesenchymal stem cells into steroidogenic cells in vitro. Exp Ther Med 2016; 12:3527-3534. [PMID: 28105086 PMCID: PMC5228511 DOI: 10.3892/etm.2016.3815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
Although previous studies have shown that stem cells can be differentiated into Leydig cells by gene transfection, a simple, safe and effective induction method has not yet been reported. Therefore, the present study investigated novel methods for the induction of human umbilical cord mesenchymal stem cell (HUMSC) differentiation into Leydig-like, steroidogenic cells. HUMSCs were acquired using the tissue block culture attachment method, and the expression of MSC surface markers was evaluated by flow cytometry. Leydig cells were obtained by enzymatic digestion and identified by lineage-specific markers via immunofluorescence. Third-passage HUMSCs were cultured with differentiation-inducing medium (DIM) or Leydig cell-conditioned medium (LC-CM), and HUMSCs before induction were used as the control group. Following the induction of HUMSCs, Leydig cell lineage-specific markers (CYP11A1, CYP17A1 and 3β-HSD) were positively identified using immunofluorescence analysis. Additionally, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to evaluate the expression levels of these genes and enzymes. In contrast, the control group cells did not show the characteristics of Leydig cells. Collectively, these results indicate that, under in vitro conditions, LC-CM can achieve a comparable effect to that of DIM on inducing HUMSCs differentiation into steroidogenic cells.
Collapse
Affiliation(s)
- Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Guanqun Ju
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
19
|
Nielsen N, Laustsen C, Bertelsen LB. 13C dynamic nuclear polarization for measuring metabolic flux in endothelial progenitor cells. Exp Cell Res 2016; 349:95-100. [PMID: 27720669 DOI: 10.1016/j.yexcr.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022]
Abstract
Endothelial progenitor cells (EPCs) represent a heterogeneous cell population that is believed to be involved in vasculogenesis. With the purpose of enhancing endothelial repair, EPCs could have a potential for future cell therapies. Due to the low amount of EPCs in the peripheral circulating blood, in vitro expansion is needed before administration to recipients and the effects of in vitro culturing is still an under-evaluated field with little knowledge of how the cells change over time in culture. The aim of this study was to use hyperpolarised carbon-13 magnetic resonance spectroscopy to profile important metabolic pathways in a population of progenitor cells and to show that cell culturing in 3D scaffolds seem to block the metabolic processes that leads to cell senescence. The metabolic breakdown of hyperpolarized [1-13C]pyruvate was followed after injection of the substrate to a bioreactor system with EPCs either adhered to 3D printed scaffolds or kept in cell suspension. The pyruvate-to-lactate conversion was elevated in suspension of EPCs compared to the EPCs adhered to scaffolds. Furthermore in the setup with EPCs in suspension, an increase in lactate production was seen over time indicating that the older the cultures of EPCs was before using the cells for cell suspension experiments, the more lactate they produce, compared to a constant lactate level in the cells adhered to scaffolds. It could therefore be stated that cells grown first in 2D culture and subsequent prepared for cell suspension show a metabolism with higher lactate production consistent with cells senescence processes compared to cells grown first at 2D culture and subsequent in the 3D printed scaffolds, where metabolism shows no sign of metabolic shifting during the monitored period.
Collapse
Affiliation(s)
- Nathalie Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
20
|
Cai WW, Wang LJ, Li SJ, Zhang XP, Li TT, Wang YH, Yang X, Xie J, Li JD, Liu SJ, Xu W, He S, Cheng Z, Fan QL, Zhang RP. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium 3+ nanoparticles. J Biomed Mater Res A 2016; 105:131-137. [PMID: 27588709 DOI: 10.1002/jbm.a.35891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we designed and synthesized melanin-based gadolinium3+ (Gd3+ )-chelate nanoparticles (MNP-Gd3+ ) of ∼7 nm for stem cell tracking in vivo. MNP-Gd3+ possesses many beneficial properties, such as its high stability and sensitivity, shorter T1 relaxation time, higher cell labeling efficiency, and lower cytotoxicity compared with commercial imaging agents. We found that the T1 relaxivity (r1 ) of MNP-Gd3+ was significantly higher than that of Gd-DTPA; the nanoparticles were taken up by bone mesenchymal stem cells (BMSCs) via endocytosis and were broadly distributed in the cytoplasm. Based on an in vitro MTT assay, no cytotoxicity of labeled stem cells was observed for MNP-Gd3+ concentrations of less than 800 µg/mL. Furthermore, we tracked MNP-Gd3+ -labeled BMSCs in vivo using 3.0T MRI equipment. After intramuscular injection, MNP-Gd3+ -labeled BMSCs were detected, even after four weeks, by 3T MRI. We concluded that MNP-Gd3+ nanoparticles at appropriate concentrations can be used to effectively monitor and track BMSCs in vivo. MNP-Gd3+ nanoparticles have potential as a new positive MRI contrast agent in clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 131-137, 2017.
Collapse
Affiliation(s)
- Wen-Wen Cai
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ling-Jie Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Si-Jin Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi-Ping Zhang
- Department of Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310022, China
| | - Ting-Ting- Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ying-Hua Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi Yang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jun Xie
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jian-Ding Li
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Shi-Jie Liu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Wen Xu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Sheng He
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford Stanford University, Stanford, California, 94305-5484
| | - Qu-Li Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing City, Jiangsu Province, 210023, China
| | - Rui-Ping Zhang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
21
|
Aleksander-Konert E, Paduszyński P, Zajdel A, Dzierżewicz Z, Wilczok A. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett 2016; 21:11. [PMID: 28536614 PMCID: PMC5415830 DOI: 10.1186/s11658-016-0016-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background In this study, we evaluated the usefulness of two commercially available hyaluronic acid-based hydrogels, HyStem and HyStem-C, for the cultivation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) and their differentiation towards chondrocytes. Methods The WJ-MSCs were isolated from umbilical cord Wharton’s jelly using the explant method and their immunophenotype was evaluated via flow cytometry analysis. According to the criteria established by the International Society for Cellular Therapy, they were true MSCs. We assessed the ability of the WJ-MSCs and chondrocytes to grow in three-dimensional hydrogels and their metabolic activity. Chondrogenesis of WJ-MSCs in the hydrogels was determined using alcian blue and safranin O staining and real-time PCR evaluation of gene expression in the extracellular matrixes: collagen type I, II, III and aggrecan. Results Chondrocytes and WJ-MSCs cultured in the HyStem and HyStem-C hydrogels adopted spherical shapes, which are characteristic for encapsulated cells. The average viability of the WJ-MSCs and chondrocytes in the HyStem hydrogels was approximately 67 % when compared with the viability in 2D culture. Alcian blue and safranin O staining revealed intensive production of proteoglycans by the cells in the HyStem hydrogels. Increased expression of collagen type II and aggrecan in the WJ-MSCs cultured in the HyStem hydrogel in the presence of chondrogenic medium showed that under these conditions, the cells have a high capacity to differentiate towards chondrocytes. The relatively high viability of WJ-MSCs and chondrocytes in both HyStem hydrogels suggests the possibility of their use for chondrogenesis. Conlusions The results indicate that WJ-MSCs have some degree of chondrogenic potential in HyStem and HyStem-C hydrogels, showing promise for the engineering of damaged articular cartilage.
Collapse
Affiliation(s)
- Ewelina Aleksander-Konert
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Piotr Paduszyński
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Alicja Zajdel
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Zofia Dzierżewicz
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland.,Department of Health Care, Silesian Medical College, ul. Mickiewicza 29, 40-085 Katowice, Poland
| | - Adam Wilczok
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
22
|
Wang Y, Jia Z, Diao S, Lin X, Lian X, Wang L, Dong R, Liu D, Fan Z. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton's jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif 2016; 49:618-27. [PMID: 27484838 DOI: 10.1111/cpr.12284] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cell (MSC)-mediated tissue regeneration represents a promising strategy for repair of tissue defects, but its molecular mechanisms remain unclear, restricting the use of MSCs. Our previous study indicated that insulin-like growth factor-binding protein 5 (IGFBP5) exerted a valuable effect on osteogenic differentiation of MSCs, but its molecular mechanisms underlying directed differentiation remained unclear. In this study, we have investigated the molecular role of IGFBP5 in regulating this osteogenic differentiation potential. MATERIALS AND METHODS Periodontal ligament stem cells (PDLSCs) were isolated from periodontal ligament tissue. Wharton's jelly of umbilical cord stem cells (WJCMSCs) was obtained commercially. Lentiviral IGFBP5 shRNA was used to silence IGFBP5. Retroviruses expressing wild-type IGFBP5 were used to overexpress IGFBP5 in the WJCMSCs. Recombinant human IGFBP5 protein (rhIGFBP5) was used to treat PDLSCs for 24 h. Western blot analysis was used to detect the MAPK signalling pathway, and alkaline phosphatase (ALP) activity, Alizarin Red staining and quantitative calcium analysis were used to study osteogenic differentiation potentials. RESULTS Overexpression of IGFBP5 or rhIGFBP5 increased expression levels of phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated mitogen-activated protein kinase 1 and 2 (p-MEK1/2) and phosphorylated extracellular regulated protein kinases (p-Erk1/2) in both WJCMSCs and PDLSCs. Consistently, silenced IGFBP5 was found to effectively inhibit expression of p-JNK, p-Erk1/2 and p-MEK1/2 in PDLSCs and WJCMSCs. Furthermore, inhibition of JNK by its inhibitor, SP600125, or MEK/Erk signalling by its inhibitor, PD98059, dramatically blocked IGFBP5-enhanced ALP activity and in vitro mineralization in both PDLSCs and WJCMSCs. CONCLUSIONS Our results demonstrated that IGFBP5 promoted osteogenic differentiation potentials of PDLSCs and WJCMSCs via the JNK and MEK/Erk signalling pathways.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhi Jia
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiaomeng Lian
- Department of Stomatology, Beijing Shijitan hospital, Capital Medical University, Beijing, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School of Stomatology, Tianjin, China. .,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
23
|
Dang RJ, Yang YM, Zhang L, Cui DC, Hong B, Li P, Lin Q, Wang Y, Wang QY, Xiao F, Mao N, Wang C, Jiang XX, Wen N. A20 plays a critical role in the immunoregulatory function of mesenchymal stem cells. J Cell Mol Med 2016; 20:1550-60. [PMID: 27028905 PMCID: PMC4956951 DOI: 10.1111/jcmm.12849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.
Collapse
Affiliation(s)
- Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan-Mei Yang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Lei Zhang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China.,Department of Biology and Chemical Engineering, Tongren University, Tongren City, Guizhou, China
| | - Dian-Chao Cui
- Department of Anesthesiology, Beijing Aiyuhua Hospital for Children and Women, Beijing, China
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qi-Yu Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, China
| | - Ning Mao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China
| |
Collapse
|
24
|
Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Jaberipour M, Hosseini A, Bahmanpour S. Comparison of the Expression of Hepatic Genes by Human Wharton's Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:28-36. [PMID: 26722142 PMCID: PMC4691267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Human Wharton's jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. METHODS HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. RESULTS The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. CONCLUSION Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Zahra Vojdani, PhD; Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran Tel: +98 71 32304372 Fax: +98 71 32304372
| | - Tahereh Talaei-Khozani
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Tissue Engineering Lab, Department of Tissue Engineering, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Jaberipour
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Laboratory for Stem Cell Research, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Abstract
Tissue engineering focuses on three primary components: stem cells, biomaterials, and growth factors. Together, the combination of these components is used to regrow and repair damaged tissues that normally do not regenerate easily on their own. Much attention has been focused on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), due to their broad differentiation potential. However, ESCs and iPSCs require very detailed protocols to differentiate into target tissues, which are not always successful. Furthermore, procurement of ESCs is considered ethically controversial in some regions and procurement of iPSCs requires laborious transformation of adult tissues and characterization. However, mesenchymal stem cells are an adult stem cell population that are not ethically controversial and are readily available for procurement. Furthermore, mesenchymal stem cells exhibit the ability to differentiate into a variety of cell types arising from the mesoderm. In particular, human Wharton's jelly cells (hWJCs) are mesenchymal-type stem cells found in umbilical cords that possess remarkable differentiation potential. hWJCs are a highly desirable stem cell population due to their abundance in supply, high proliferation rates, and ability to differentiate into multiple cell types arising from all three germ layers. hWJCs are used to generate several neurological phenotypes arising from the ectoderm and are considered for engineering mechanosensory hair cells found in the auditory complex. Here, we report the methods for isolating hWJCs from human umbilical cords and non-virally transfected for use in cochlear tissue engineering studies.
Collapse
|
26
|
|
27
|
Sridharan B, Lin SM, Hwu AT, Laflin AD, Detamore MS. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels. PLoS One 2015; 10:e0141479. [PMID: 26719986 PMCID: PMC4697858 DOI: 10.1371/journal.pone.0141479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance.
Collapse
Affiliation(s)
- BanuPriya Sridharan
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Staphany M. Lin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Alexander T. Hwu
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Amy D. Laflin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael S. Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Lasers Med Sci 2015; 31:255-61. [DOI: 10.1007/s10103-015-1846-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
|
29
|
Liu D, Wang Y, Jia Z, Wang L, Wang J, Yang D, Song J, Wang S, Fan Z. Demethylation of IGFBP5 by Histone Demethylase KDM6B Promotes Mesenchymal Stem Cell-Mediated Periodontal Tissue Regeneration by Enhancing Osteogenic Differentiation and Anti-Inflammation Potentials. Stem Cells 2015; 33:2523-2536. [DOI: 10.1002/stem.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered a promising method for periodontitis treatment. The molecular mechanism underlying directed differentiation and anti-inflammatory actions remains unclear, thus limiting potential MSC application. We previously found that insulin-like growth factor binding protein 5 (IGFBP5) is highly expressed in dental tissue-derived MSCs compared with in non-dental tissue-derived MSCs. IGFBP5 is mainly involved in regulating biological activity of insulin-like growth factors, and its functions in human MSCs and tissue regeneration are unclear. In this study, we performed gain- and loss-of-function assays to test whether IGFBP5 could regulate the osteogenic differentiation and anti-inflammatory potential in MSCs. We found that IGFBP5 expression was upregulated upon osteogenic induction, and that IGFBP5 enhanced osteogenic differentiation in MSCs. We further showed that IGFBP5 prompted the anti-inflammation effect of MSCs via negative regulation of NFκB signaling. Depletion of the histone demethylase lysine (K)-specific demethylase 6B (KDM6B) downregulated IGFBP5 expression by increasing histone K27 methylation in the IGFBP5 promoter. Moreover, IGFBP5 expression in periodontal tissues was downregulated in individuals with periodontitis compared with in healthy people, and IGFBP5 enhanced MSC-mediated periodontal tissue regeneration and alleviated local inflammation in a swine model of periodontitis. In conclusion, our present results reveal a new function for IGFBP5, provide insight into the mechanism underlying the directed differentiation and anti-inflammation capacities of MSCs, and identify a potential target mediator for improving tissue regeneration. Stem Cells 2015;33:2523–2536
Collapse
Affiliation(s)
- Dayong Liu
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Endodontics Tianjin Medical University School of Stomatology, Tianjin, China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yuejun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Endodontics Tianjin Medical University School of Stomatology, Tianjin, China
| | - Zhi Jia
- Department of Endodontics Tianjin Medical University School of Stomatology, Tianjin, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Dongmei Yang
- Department of Pediatrics Capital Medical University School of Stomatology, Beijing, China
| | - Jianqiu Song
- Department of Endodontics Tianjin Medical University School of Stomatology, Tianjin, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
30
|
Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, Mantalaris A, Tsiridis E. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther 2015; 14:1611-39. [PMID: 25303322 DOI: 10.1517/14712598.2014.945414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. AREAS COVERED In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. EXPERT OPINION Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.
Collapse
Affiliation(s)
- Zakareya Gamie
- Aristotle University Medical School, 'PapaGeorgiou' Hospital, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Klontzas ME, Kenanidis EI, Heliotis M, Tsiridis E, Mantalaris A. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opin Biol Ther 2015; 15:1541-52. [PMID: 26176327 DOI: 10.1517/14712598.2015.1068755] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The production of functional alternatives to bone autografts and the development new treatment strategies for cartilage defects are great challenges that could be addressed by the field of tissue engineering. Umbilical cord mesenchymal stem cells (MSCs) can be used to produce cost-effective, atraumatic and possibly autologous bone and cartilage grafts. AREAS COVERED MSCs can be isolated from umbilical cord Wharton's jelly, perivascular tissue and blood using various techniques. Those cells have been characterized and phenotypic similarities with bone marrow-derived MSCs (BM-MSCs) and embryonic stem cells have been found. Findings on their differentiation into the osteogenic and chondrogenic lineage differ between studies and are not as consistent as for BM-MSCs. EXPERT OPINION MSCs from umbilical cords have to be more extensively studied and the mechanisms underlying their differentiation have to be clarified. To date, they seem to be an attractive alternative to BM-MSCs. However, further research with suitable scaffolds and growth factors as well as with novel scaffold fabrication and culture technology should be conducted before they are introduced to clinical practice and replace BM-MSCs.
Collapse
Affiliation(s)
- Michail E Klontzas
- a 1 Imperial College London, Department of Chemical Engineering and Chemical Technology , South Kensington Campus, London, UK
| | - Eustathios I Kenanidis
- b 2 Aristotle University Medical School, Academic Orthopaedic Unit , University Campus 54 124, Thessaloniki, Greece.,c 3 Aristotle University Medical School, "PapaGeorgiou" General Hospital, Academic Orthopaedic Unit , Thessaloniki, Greece
| | | | - Eleftherios Tsiridis
- b 2 Aristotle University Medical School, Academic Orthopaedic Unit , University Campus 54 124, Thessaloniki, Greece.,e 5 Imperial College London, Department of Surgery and Cancer, Division of Surgery , B-block, Hammersmith, Du-Cane Road, London, UK
| | - Athanasios Mantalaris
- f 6 Imperial College London, Department of Chemical Engineering , South Kensington Campus, London, UK
| |
Collapse
|
32
|
CHEN HUI, TANG QIULING, WU XIAOYING, XIE LICHUN, LIN LIMIN, HO GUYU, MA LIAN. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep 2015; 12:819-28. [PMID: 25815600 PMCID: PMC4438948 DOI: 10.3892/mmr.2015.3528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 07/21/2014] [Indexed: 02/05/2023] Open
Abstract
Our previous study demonstrated that human umbilical cord mesenchymal stem cells (HUMSCs) were capable of differentiation into germ cells in vitro. To assess this potential in vivo, HUMSCs were microinjected into the lumen of seminiferous tubules of immunocompetent mice, which were treated with busulfan to destroy endogenous spermatogenesis. Bromodeoxyuridine labeling studies demonstrated that HUMSCs survived in the tubule for at least 120 days, exhibited a round cell shape typical of proliferating or differentiating germ cells, migrated to the basement of the tubule, where proliferating spermatogonia reside and returned to the luminal compartment, where differentiating spermatids and spermatozoa reside. The migration pattern resembled that of germ cell development in vivo. Immunohistochemical and colocalization studies revealed that transplanted HUMSCs expressed the germ cell markers octamer-binding transcription factor 4, α6 integrin, C-kit and VASA, confirming the germ cell differentiation. In addition, it was observed that tubules transplanted with HUMSCs exhibited marked improvement in the histological features damaged by the chemotherapeutic busulfan, as judged by morphology and quantitative histology. Taken together, these data demonstrated the capacity of HUMSCs to form germ cells in the testes and to repair testicular tissue. These findings suggest a potential utility of HUMSCs to treat the infertility and testicular insufficiency caused by cancer therapeutics.
Collapse
Affiliation(s)
- HUI CHEN
- Department of Neurosurgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - QIU-LING TANG
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - XIAO-YING WU
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-CHUN XIE
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-MIN LIN
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - GU-YU HO
- Department of Transformation Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LIAN MA
- Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, Shenzhen, Guangdong 518122, P.R. China
- Correspondence to: Professor Lian Ma, Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, 6 Longxing South Road, Shenzhen, Guangdong 518122, P.R. China, E-mail:
| |
Collapse
|
33
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
34
|
Shuai H, Shi C, Lan J, Chen D, Luo X. Double labelling of human umbilical cord mesenchymal stem cells with Gd-DTPA and PKH26 and the influence on biological characteristics of hUCMSCs. Int J Exp Pathol 2015; 96:63-72. [PMID: 25649907 DOI: 10.1111/iep.12111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine whether double labelling of human umbilical cord mesenchymal stem cells (hUCMSCs) with gadolinium-diethylene triamine penta-acetic acid (Gd-DTPA) and PKH26 influences their biological characteristics. A tissue adherence technique was used to separate and purify the hUCMSCs and flow cytometry was performed to detect the surface markers expressed on them. Gd-DTPA and PKH26 were used to label the stem cells and MRI and fluorescence microscopy were used to detect the double-labelled hUCMSCs. A MTT assay was used to delineate the growth curve. Transmission electron microscopy (TEM) and atomic force microscopy were used to demonstrate the ultrastructural features of the hUCMSCs. Flow cytometry showed that hUCMSCs highly expressed CD29, CD90, CD44 and CD105. No expression of CD31, CD34 and CD45 was detected. Very low expression of HLA-DR and CD40 was detected. Atomic force microscopy showed these cells were long, spindle shaped, and the cytoplasm and nucleus had clear boundaries. After double labelling, TEM showed Gd particles aggregated in the cytoplasm in a cluster pattern. The proliferation activity, cell cycle, apoptosis and differentiation of the stem cells were not influenced by double labelling. Thus a tissue adherence technique is helpful to separate and purify hUCMSCs effectively; and Gd-DTPA and PKH26 are promising tracers in the investigation of migration and distribution of hUCMSCs in vivo.
Collapse
Affiliation(s)
- Hanlin Shuai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
35
|
Jadalannagari S, Aljitawi OS. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:314-22. [PMID: 25517045 DOI: 10.1089/ten.teb.2014.0404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.
Collapse
Affiliation(s)
| | - Omar S Aljitawi
- 1Department of Bioengineering, University of Kansas, Lawrence, Kansas.,2Department of Hematology/Oncology, Blood and Marrow Transplant Program, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
36
|
Chen Y, Yu Y, Chen L, Ye L, Cui J, Sun Q, Li K, Li Z, Liu L. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration. Stem Cells Int 2015; 2015:549432. [PMID: 26136785 PMCID: PMC4468342 DOI: 10.1155/2015/549432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.
Collapse
Affiliation(s)
- Yuanwei Chen
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongchun Yu
- 2Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120, China
| | - Lin Chen
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lanfeng Ye
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junhui Cui
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Sun
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kaide Li
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Li
- 3Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- *Zhiyong Li: and
| | - Lei Liu
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- *Lei Liu:
| |
Collapse
|
37
|
Asgari HR, Akbari M, Abbasi M, Ai J, Korouji M, Aliakbari F, Babatunde KA, Aval FS, Joghataei MT. Human Wharton's jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:22-9. [PMID: 25810872 PMCID: PMC4366739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/11/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The present day challenge is how to obtain germ cells from stem cells to treat patients with cancer and infertility. Much more efforts have been made to develop a procedure for attaining germ cells in vitro. Recently, human umbilical cord-derived mesenchymal stem cells (HUMSCs) have been introduced with higher efficacy for differentiation. In this work, we tried to explore the efficacy of HUMSCs and some effective products of placental cells such as transforming growth factors. This study is aimed to optimize a co-culture condition for HUMSCs with placental cells to obtain primordial germ cells (PGCs) and reach into oocyte-like cells in vitro. MATERIALS AND METHODS In this experimental study, HUMSCs and placental cells were co-cultured for 14 days without any external inducer in vitro. Then HUMSCs were assessed for expression of PGC markers; Octamer-binding transcription factor 4(OCT4), Tyrosine-protein kinase Kit (CKIT), Stage specific embryonic antigen 4 (SSEA4), DEAD (Asp-Glu-Ala-Asp) box polypeptide 4(DDX4) and oocyte specific markers; Growth differentiation factor-9(GDF9), Zona pellucida glycoprotein 3(ZP3). The pertinent markers were assessed by immunocytochemistry and Q-PCR. RESULTS Co-cultured HUMSCs with placental cells (including amniotic and chorionic cells) presented Oct4 and DDX4, primordial germ cells specific markers significantly, but increment in expression of oocyte-like cell specific markers, GDF9 and ZP3 did not reach to statistically significant threshold. CONCLUSION Placental cell supplements Transforming growth factor (TGF α, β) and basic fibroblast growth factor (bFGF) in a co-culture model can provide proper environment for induction of HUMSCs into PGCs and expression of oocyte-like markers.
Collapse
Affiliation(s)
- Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mehdi Abbasi. Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-21-64053303;
| | - Jafar Ai
- Department of Tissue engineering, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Korouji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshte Aliakbari
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
38
|
Hendrijantini N, Kresnoadi U, Salim S, Agustono B, Retnowati E, Syahrial I, Mulawardhana P, Wardhana MP, Pramono C, Rantam FA. Study Biocompatibility and Osteogenic Differentiation Potential of Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) with Gelatin Solvent. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.87039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Duffy CRE, Zhang R, How SE, Lilienkampf A, Tourniaire G, Hu W, West CC, de Sousa P, Bradley M. A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. Biomater Sci 2014; 2:1683-1692. [PMID: 32481948 DOI: 10.1039/c4bm00112e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in regenerative medicine due to their wide multilineage potential as well as their ability to suppress/modulate the immune response. Maintaining these cells in vitro and expanding them on a clinically relevant scale remains a challenge that needs to be addressed to realise their full potential. Current culture methods for MSCs typically rely on animal sourced substrates and often result in a heterogeneous population of cells with varying degrees of differentiation capacity. Here, a high-throughput platform was used to identify synthetic substrates for MSC culture that not only facilitated growth but also maintained the MSC phenotype. Two polymers, PU157 (synthesised from poly(butyleneglycol) and 4,4'-methylenediphenyldiisocyanate with 3-(dimethylamino)-1,2-propanediol as a chain extender) and PA338 (N-methylaniline modified poly(methylmethacrylate-co-glycidylmethacrylate)) were able to maintain the growth and phenotype of human embryonic derived mesenchymal progenitors (hES-MPs) and adipose derived MSCs (ADMSCs) for five and ten passages, respectively. Cell phenotype and multipotency were confirmed by flow cytometry analysis of ten MSC markers and differentiation analysis. These new polymer substrates provide a chemically defined synthetic surface for efficient, long-term MSC culture.
Collapse
Affiliation(s)
- Cairnan R E Duffy
- Centre for Regenerative Medicine, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mellott AJ, Shinogle HE, Moore DS, Detamore MS. Fluorescent Photo-conversion: A second chance to label unique cells. Cell Mol Bioeng 2014; 8:187-196. [PMID: 25914756 DOI: 10.1007/s12195-014-0365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Collapse
Affiliation(s)
- Adam J Mellott
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045
| | - Heather E Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - David S Moore
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045 ; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
41
|
Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering. PLoS One 2014; 9:e110764. [PMID: 25329501 PMCID: PMC4203828 DOI: 10.1371/journal.pone.0110764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/24/2014] [Indexed: 01/17/2023] Open
Abstract
To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton’s jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton’s jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15–20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton’s jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.
Collapse
|
42
|
Hu Y, Liang J, Cui H, Wang X, Rong H, Shao B, Cui H. Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen Res 2014; 8:1783-92. [PMID: 25206475 PMCID: PMC4145957 DOI: 10.3969/j.issn.1673-5374.2013.19.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/05/2013] [Indexed: 01/09/2023] Open
Abstract
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindle-shaped or fibroblast-like Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical ing and reverse-transcription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly down-regulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro.
Collapse
Affiliation(s)
- Ying Hu
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 200120, Heilongjiang Province, China ; Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Jun Liang
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Xinmei Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Harbin 200120, Heilongjiang Province, China
| | - Hua Rong
- Department of Ophthalmology, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Bin Shao
- Department of Head-Neck and Breast Tumor, Mudanjiang Tumor Hospital, Mudanjiang 157009, Heilongjiang Province, China
| | - Hao Cui
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 200120, Heilongjiang Province, China
| |
Collapse
|
43
|
Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 2014; 9:e98565. [PMID: 24887492 PMCID: PMC4041760 DOI: 10.1371/journal.pone.0098565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are in the foreground as a preferable application for treating diseases. However, the safety of hUC-MSCs after long-term culturing in vitro in serum-free medium remains unclear. METHODS hUC-MSCs were separated by adherent tissue culture. hUC-MSCs were cultured in serum-free MesenCult-XF medium and FBS-bases DMEM complete medium. At the 1st, 3rd, 5th, 8th, 10th, and 15th passage, the differentiation of MSCs into osteogenic, chondrogenic, and adipogenic cells was detected, and MTT, surface antigens were measured. Tumorigenicity was analyzed at the 15th passage. Conventional karyotyping was performed at passage 0, 8, and 15. The telomerase activity of hUC-MSCs at passage 1-15 was analyzed. RESULTS Flow cytometry analysis showed that very high expression was detected for CD105, CD73, and CD90 and very low expression for CD45, CD34, CD14, CD79a, and HLA-DR. MSCs could differentiate into osteocytes, chondrocytes, and adipocytes in vitro. There was no obvious chromosome elimination, displacement, or chromosomal imbalance as determined from the guidelines of the International System for Human Cytogenetic Nomenclature. Telomerase activity was down-regulated significantly when the culture time was prolonged. Further, no tumors formed in rats injected with hUC-MSCs (P15) cultured in serum-free and in serum-containing conditions. CONCLUSION Our data showed that hUC-MSCs met the International Society for Cellular Therapy standards for conditions of long-term in vitro culturing at P15. Since hUC-MSCs can be safely expanded in vitro and are not susceptible to malignant transformation in serum-free medium, these cells are suitable for cell therapy.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Aihuan Yue
- Jiangsu Beike Bio-Technology Co., Ltd, Taizhou, Jiangsu province, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Yigang Yin
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - RuZhu Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Yin Ren
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu province, China
- * E-mail:
| |
Collapse
|
44
|
Ha CZ, Chen HY, Wang J, Liu W, Zhang YX, Pan L, Wang WH, Chen SF, Wang DW, Wang LX. Effect of diabetic osteoblasts on osteogenic differentiation of human umbilical cord mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 159:388-93. [PMID: 24566377 DOI: 10.5507/bp.2014.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/22/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study was aimed to investigate whether osteoblasts from diabetic patients have a promoting effect on osteogenesis of human umbilical cord mesenchymal stem cells (HUMSCs). METHODS HUMSCs were co-cultured with osteoblasts of diabetic and non-diabetic patients. Morphological appearance and cytochemical characteristics of the non-diabetic osteoblasts and diabetic osteoblasts were observed by hematoxylin-eosin staining, type I collagen protein expression, alkaline phosphatase (ALP) staining and Alizarin Red S staining. Cell viability, type I collagen protein expression, ALP activity and osteocalcin mRNA expression in HUMSCs were investigated. RESULTS Compared with negative control group, the cell proliferation, type I collagen protein expression, ALP activity and osteocalcin mRNA were increased in HUMSCs co-cultured with diabetic and non-diabetic osteoblasts (P<0.05). There was no statistically significant difference in the HUMSCs cell proliferation, type I collagen protein expression, ALP activity and osteocalcin mRNA between the non-diabetic and diabetic group (P >0.05). CONCLUSIONS Similar to osteoblasts from non-diabetic patients, osteoblasts from diabetic patients also have the ability to promote HUMSCs proliferation, and leading to HUMSCs exhibit some characteristic of osteoblasts.
Collapse
Affiliation(s)
- Cheng-Zhi Ha
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hai-Ying Chen
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Juan Wang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Wei Liu
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Ying-Xin Zhang
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Li Pan
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Wei-Hua Wang
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Shuang-Feng Chen
- Oral Maxillofacial-Head and Neck Key Laboratory of Medical Biology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Da-Wei Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China.,School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
45
|
Analysis of feasibility of in vitro nuclear magnetic resonance tracking human umbilical cord mesenchymal stem cells by Gd-DTPA labeled. Magn Reson Imaging 2014; 32:934-40. [PMID: 24794127 DOI: 10.1016/j.mri.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Three different kinds of transfection reagents were used to mediate the transfection of gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) into human umbilical-cord-derived mesenchymal stem cells (hUCMSCs). The efficacy of different transfection reagents and the feasibility of NMR tracer in vitro of magnetized stem cells were estimated. METHODS After purification by tissue explants adherent method, the biological characteristics of hUCMSCs in vitro were identified by subculture and amplification. Calcium phosphate, Effectene and liposome2000 were used to transfect Gd-DTPA-labeled hUCMSCs respectively, and cell counting was used to mediate the transfection of Gd-DTPA into hUCMSCs, which were then induced to lipoblast and osteoblast in vitro. The determination of the transfection activities of the transfection reagents was conducted by measuring the magnetic resonance imaging (MRI) signal intensity of the Gd-DTPA-labeled cells and the concentration of gadolinium ion in the cells. Furthermore, the relationship between the signal intensity of Gd-DTPA-labeled hUCMSCsMRI, cell subculture and generations was studied. RESULTS Primary cells were obtained by tissue explants adherent for two weeks. The cells displayed a long spindle form and grew in swirl. After two passage generations, the cellular morphology became more homogeneous. The result detected by the flow cytometer showed that CD29C, D44, CD90, and CD105 were highly expressed, while no CD45, CD40, and HLA-DR expression was detected in the third generation cells. Directional induction in vitro caused the differentiation into lipoblast and osteoblast. After transfected by calcium phosphate, Effectene and liposome 2000, the signal intensity of stem cells was 2281.2±118.8, 2031.9±59.7 and 1887.4±40.8 measured by MRI. Differences between these three groups were statistically significant (P<0.05). The concentrations of gadolinium ion in three groups of stem cells were 0.178±0.009mg/L, 0.158±0.003mg/L and 0.120±0.002mg/L respectively, examined by inductively coupled plasma atomic emission spectrometry. No significant differences were found among these three groups (P<0.05). The proliferation and differentiation abilities of the Gd-DTPA-labeled stem cells were not affected. A minimum 5×10(4) Gd-DTPA-labeled stem cells could be traced with MRI in vitro and presented in high signal. The trace duration time in vitro was about 12days. CONCLUSIONS Tissue explants adherent method can be availably applied to purify hUCMSCs. The Effectene method was proved to have the best transfection effect. The proliferation ability and differentiation potency of Gd-DTPA-labeled hUCMSCs were not affected, and the NMR of labeled stem cells in vitro was proved to be feasible.
Collapse
|
46
|
Mellott AJ, Godsey ME, Shinogle HE, Moore DS, Forrest ML, Detamore MS. Improving viability and transfection efficiency with human umbilical cord wharton's jelly cells through use of a ROCK inhibitor. Cell Reprogram 2014; 16:91-7. [PMID: 24552552 DOI: 10.1089/cell.2013.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications.
Collapse
Affiliation(s)
- Adam J Mellott
- 1 Bioengineering Program, University of Kansas , Lawrence, KS, 66045
| | | | | | | | | | | |
Collapse
|
47
|
Chen X, Gan Y, Li W, Su J, Zhang Y, Huang Y, Roberts AI, Han Y, Li J, Wang Y, Shi Y. The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis 2014; 5:e1009. [PMID: 24457953 PMCID: PMC4040685 DOI: 10.1038/cddis.2013.537] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ(+)CD4(+) and IL-17A(+)CD4(+)T cells. Likewise, iNOS(-/-) MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.
Collapse
Affiliation(s)
- X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Su
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - A I Roberts
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| | - Y Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| |
Collapse
|
48
|
Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 2014; 11:979-87. [PMID: 25076843 PMCID: PMC4115236 DOI: 10.7150/ijms.9139] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023] Open
Abstract
The healing process of the skin is a dynamic procedure mediated through a complex feedback of growth factors secreted by a variety of cells types. Despite the most recent advances in wound healing management and surgical procedures, these techniques still fail up to 50%, so cellular therapies involving mesenchymal stem cells (MSCs) are nowadays a promising treatment of skin ulcers which are a cause of high morbidity. The MSCs modulate the inflammatory local response and induce cell replacing, by a paracrine mode of action, being an important cell therapy for the impaired wound healing. The local application of human MSCs (hMSCs) isolated from the umbilical cord Wharton's jelly together with a poly(vinyl alcohol) hydrogel (PVA) membrane, was tested to promote wound healing in two dogs that were referred for clinical examination at UPVET Hospital, showing non-healing large skin lesions by the standard treatments. The wounds were infiltrated with 1000 cells/µl hMSCs in a total volume of 100 µl per cm(2) of lesion area. A PVA membrane was applied to completely cover the wound to prevent its dehydration. Both animals after the treatment demonstrated a significant progress in skin regeneration with decreased extent of ulcerated areas confirmed by histological analysis. The use of Wharton's jelly MSCs associated with a PVA membrane showed promising clinical results for future application in the treatment of chronic wounds in companion animals and humans.
Collapse
Affiliation(s)
- Jorge Ribeiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| | - Tiago Pereira
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Irina Amorim
- 3. Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 4. Instituto Português de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Rita Caseiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Maria A Lopes
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Lima
- 7. LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Andrea Gartner
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo J Bártolo
- 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Jorge Manuel Rodrigues
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 8. Hospital de S. João, Universidade do Porto (UP), Porto, Portugal. ; 9. Departmento de Dentistria, Universidade Fernando Pessoa (UFP), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Ana Colette Mauricio
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Ana Lúcia Luís
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| |
Collapse
|
49
|
Detamore MS. Human umbilical cord mesenchymal stromal cells in regenerative medicine. Stem Cell Res Ther 2013; 4:142. [PMID: 24456755 PMCID: PMC4029508 DOI: 10.1186/scrt353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cells of the human umbilical cord offer tremendous potential for improving human health. Cells from the Wharton’s jelly (umbilical cord stroma) in particular, referred to as human umbilical cord mesenchymal stromal cells (HUCMSCs), hold several advantages that make them appealing for translational research. In the previous issue of Stem Cell Research & Therapy, Chon and colleagues made an important contribution to the HUCMSC literature not only by presenting HUCMSCs as an emerging cell source for intervertebral disc regeneration in general and the nucleus pulposus in particular, but also by demonstrating that an extracellular matrix-based strategy might be preferred over the use of growth factors. By culturing HUCMSCs under hypoxia in serum-free conditions in the presence of Matrigel with laminin-111, they were able to achieve intense collagen II staining by 21 days without the addition of exogenous growth factors. There is tremendous translational significance here in that such raw materials may alleviate the need for the use of growth factors in some instances, and this may have important ramifications in reducing product cost and streamlining regulatory approval. Chon and colleagues provide a promising example of the potential of HUCMSCs, demonstrating the ability to guide HUCMSC differentiation even in the absence of serum and growth factors and supporting the use of HUCMSCs as a viable alternative in intervertebral disc regeneration.
Collapse
|
50
|
Wang L, Weiss ML, Detamore MS. Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells. ACTA ACUST UNITED AC 2013; 3:182-192. [PMID: 26279972 DOI: 10.2174/22102965113039990020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and non-invasive harvesting procedure. Their expansion and differentiation potential renders them a promising cell source for tissue engineering and clinical applications. This review discusses recent updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to support hematopoiesis and modulate immune response. We review the patents relevant to the application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it is critical to develop large-scale manufacturing of UCMSCs as well as the composition of expansion and differentiation media. Four clinical trials to date have examined the safety and efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more widely used in clinical trials.
Collapse
Affiliation(s)
- Limin Wang
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Michael S Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|