1
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Álvarez-Palomo B, Veiga A, Raya A, Codinach M, Torrents S, Ponce Verdugo L, Rodriguez-Aierbe C, Cuellar L, Alenda R, Arbona C, Hernández-Maraver D, Fusté C, Querol S. Public Cord Blood Banks as a source of starting material for clinical grade HLA-homozygous induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:408. [PMID: 35962457 PMCID: PMC9372949 DOI: 10.1186/s13287-022-02961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing number of clinical trials for induced pluripotent stem cell (iPSC)-derived cell therapy products makes the production on clinical grade iPSC more and more relevant and necessary. Cord blood banks are an ideal source of young, HLA-typed and virus screened starting material to produce HLA-homozygous iPSC lines for wide immune-compatibility allogenic cell therapy approaches. The production of such clinical grade iPSC lines (haplolines) involves particular attention to all steps since donor informed consent, cell procurement and a GMP-compliant cell isolation process. METHODS Homozygous cord blood units were identified and quality verified before recontacting donors for informed consent. CD34+ cells were purified from the mononuclear fraction isolated in a cell processor, by magnetic microbeads labelling and separation columns. RESULTS We obtained a median recovery of 20.0% of the collected pre-freezing CD34+, with a final product median viability of 99.1% and median purity of 83.5% of the post-thawed purified CD34+ population. CONCLUSIONS Here we describe our own experience, from unit selection and donor reconsenting, in generating a CD34+ cell product as a starting material to produce HLA-homozygous iPSC following a cost-effective and clinical grade-compliant procedure. These CD34+ cells are the basis for the Spanish bank of haplolines envisioned to serve as a source of cell products for clinical research and therapy.
Collapse
Affiliation(s)
- Belén Álvarez-Palomo
- Cell Therapy Service, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain. .,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain.
| | - Anna Veiga
- Programa de Medicina Regenerativa, Institut d'Investigació Biomèdica de Bellvitge. IDIBELL, Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Angel Raya
- Programa de Medicina Regenerativa, Institut d'Investigació Biomèdica de Bellvitge. IDIBELL, Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Codinach
- Cell Therapy Service, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Silvia Torrents
- Cell Therapy Service, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
| | - Laura Ponce Verdugo
- Centro de Transfusión, Tejidos y Células de Málaga, Avda. Doctor Gálvez Ginachero s/n, 29009, Malaga, Spain
| | - Clara Rodriguez-Aierbe
- Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Barrio Labeaga 46A, 48960, Galdakao, Spain.,Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Leopoldo Cuellar
- Axencia Galega de Sangue, Órganos e Tecidos, Rúa Xoaquín Díaz de Rábago 2, 15705, Santiago, Spain
| | - Raquel Alenda
- Centro de Transfusión de la Comunidad de Madrid, Avda. de la Democracia, s/n, 28032, Madrid, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunidad Valenciana, Av. del Cid, 65-acc, 46014, Valencia, Spain.,Fundacion para el Fomento de la Investigación Sanitaria de la Comuitat Valenciana, Avda. de Catalunya, 21, 46020, Valencia, Spain
| | | | - Cristina Fusté
- REDMO/Fundació i Institut de Recerca Josep Carreras, C/Muntaner, 383 2n, 08021, Barcelona, Spain
| | - Sergi Querol
- Cell Therapy Service, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
4
|
Rosser AE, Busse ME, Gray WP, Badin RA, Perrier AL, Wheelock V, Cozzi E, Martin UP, Salado-Manzano C, Mills LJ, Drew C, Goldman SA, Canals JM, Thompson LM. Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain 2022; 145:1584-1597. [PMID: 35262656 PMCID: PMC9166564 DOI: 10.1093/brain/awac086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Collapse
Affiliation(s)
- Anne E. Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Cardiff University Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff CF10 3AX, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Monica E. Busse
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - William P. Gray
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- University Hospital of Wales Healthcare NHS Trust, Department of Neurosurgery, Cardiff CF14 4XW, UK
| | - Romina Aron Badin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Vicki Wheelock
- University of California Davis, Department of Neurology, 95817 Sacramento, CA, USA
| | - Emanuele Cozzi
- Transplant Immunology Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital—Ospedale Giustinianeo, Padova, Italy
| | - Unai Perpiña Martin
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Laura J. Mills
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Cheney Drew
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Steven A. Goldman
- Centre for Translational Neuromedicine, University of Rochester, 14642 Rochester, NY, USA
- University of Copenhagen Faculty of Health and Medical Sciences, DK-2200 Kobenhavn, Denmark
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Leslie M. Thompson
- University of California Irvine, Department of Psychiatry and Human Behaviour, Department of Neurobiology and Behavior and the Sue and Bill Gross Stem Cell Center, 92697 Irvine, CA, USA
| |
Collapse
|
5
|
Wang ZB, Wang ZT, Sun Y, Tan L, Yu JT. The future of stem cell therapies of Alzheimer's disease. Ageing Res Rev 2022; 80:101655. [PMID: 35660003 DOI: 10.1016/j.arr.2022.101655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) places a heavy burden on the global economy. There is no effective disease-modifying treatment available at present. Since the advent of induced pluripotent stem cells (iPSCs) reprogrammed from human somatic cells, new approaches using iPSC-derived products provided novel insights into AD pathogenesis and drug candidates for the AD treatment. Multiple recent studies using animal models have increased the possibility of reducing pathology and improving cognitive function by cell replacement therapies. In this review, we summarized the advantages, limitations, and future directions of cell replacement therapy, discussed the safety and ethical concerns of this novel therapeutic approach and the possibility of translation to clinical practice.
Collapse
|
6
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Fan BS, Liu Y, Zhang JY, Chen YR, Yang M, Yu JK. Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Res Ther 2021; 12:307. [PMID: 34051865 PMCID: PMC8164236 DOI: 10.1186/s13287-021-02360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The stem cells of the stem cell banks have prominent problems for insufficient sources, easy contamination, unstable biological characteristics after serial subcultivations, and high cost. METHODS After collecting the construction processes of the existing stem cell banks and suggestions from authoritative experts in the past 10 years, 230 reference principles were obtained, and finally, the principles of "5C" for the establishment of modern standardized stem cell banks were summarized, and their related applications on the management of sports injuries were reviewed as well. RESULTS The basic principles of "5C" for the establishment of modern standardized stem cell banks include (1) principle of informed consent, (2) confidentiality principle, (3) conformity principle, (4) contamination-free principle, and (5) commonweal principle. The applications of stem cells on repairs, reconstructions, and regenerations of sports injuries were also reviewed, especially in tissue-engineered cartilage, tissue-engineered meniscus, and tissue-engineered ligament. CONCLUSIONS The proposal of the basic principles of "5C" is conducive to relevant stem cell researchers and clinical medical experts to build modern stem cell banks in a more standardized and efficient manner while avoiding some major mistakes or problems that may occur in the future. On this basis, stem cells from stem cell banks would be increasingly used in the management of sports injuries. More importantly, these days, getting stem cell samples are difficult in a short time, and such banks with proper legal consent may help the scientific community.
Collapse
Affiliation(s)
- Bao-Shi Fan
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Yang Liu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Ji-Ying Zhang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - You-Rong Chen
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Meng Yang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Jia-Kuo Yu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China. .,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
8
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
9
|
Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res 2020; 49:102035. [PMID: 33221677 DOI: 10.1016/j.scr.2020.102035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
The development of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka and colleagues in 2006 has led to a potential new paradigm in cellular therapeutics, including the possibility of producing patient-specific, disease-specific and immune matched allogeneic cell therapies. One can envisage two routes to immunologically compatible iPSC therapies: using genetic modification to generate a 'universal donor' with reduced expression of Human Leukocyte Antigens (HLA) and other immunological targets or developing a haplobank containing iPSC lines specifically selected to provide HLA matched products to large portions of the population. HLA matched lines can be stored in a designated physical or virtual global bank termed a 'haplobank'. The process of 'iPSC haplobanking' refers to the banking of iPSC cell lines, selected to be homozygous for different HLA haplotypes, from which therapeutic products can be derived and matched immunologically to patient populations. By matching iPSC and derived products to a patient's HLA class I and II molecules, one would hope to significantly reduce the risk of immune rejection and the use of immunosuppressive medication. Immunosuppressive drugs are used in several conditions (including autoimmune disease and in transplantation procedures) to reduce rejection of infused cells, or transplanted tissue and organs, due to major and minor histocompatibility differences between donor and recipient. Such regimens can lead to immune compromise and pathological consequences such as opportunistic infections or malignancies due to decreased cancer immune surveillance. In this article, we will discuss what is practically involved if one is developing and executing an iPSC haplobanking strategy.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.
| | - Paul J Fairchild
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Carlheinz R Müller
- Zentrales Knochenmarkspender-Register Deutschland (ZKRD), Helmholtzstraße, 1089081 Ulm, Germany
| | - Marc L Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Jihwan Song
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Sharpe M, Barry J, Kefalas P. Clinical Adoption of Advanced Therapies: Challenges and Opportunities. J Pharm Sci 2020; 110:1877-1884. [PMID: 32918916 DOI: 10.1016/j.xphs.2020.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
As the cell and gene therapy field matures the powerful therapeutic potential of these innovative therapies is starting to be shown, particularly in the fields of oncology and childhood immune deficiency diseases. However, as more therapies enter late stage clinical trials, advances and innovation are required in manufacturing, logistics, regulation, reimbursement and the healthcare setting to ensure that systems are in place to support wider clinical adoption of these promising treatments. A window of opportunity exists to implement new methodologies for best practice in both the ability to manufacture products reproducibly at scale, as well as ensuring healthcare systems are not overwhelmed by the variety and complexity of these new therapies and the additional burden they will place on already stretched facilities. If all interested parties work together it will be possible for the sector to develop the necessary processes, skilled staff and infrastructure needed as more treatments move from clinical trial to marketed products.
Collapse
Affiliation(s)
- Michaela Sharpe
- Moare Solutions Ltd, 99 Canterbury Road, Whitstable, Kent CT5 4HG, UK.
| | - Jacqueline Barry
- Cell and Gene Therapy Catapult, Guys Hospital, 12th Floor Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Panos Kefalas
- Cell and Gene Therapy Catapult, Guys Hospital, 12th Floor Tower Wing, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
11
|
Mah N, Seltmann S, Aran B, Steeg R, Dewender J, Bultjer N, Veiga A, Stacey GN, Kurtz A. Access to stem cell data and registration of pluripotent cell lines: The Human Pluripotent Stem Cell Registry (hPSCreg). Stem Cell Res 2020; 47:101887. [PMID: 32707486 DOI: 10.1016/j.scr.2020.101887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
The value of human pluripotent stem cells (hPSC) in regenerative medicine has yet to reach its full potential. The road from basic research tool to clinically validated PSC-derived cell therapy products is a long and winding one, leading researchers, clinicians, industry and regulators alike into undiscovered territory. All stakeholders must work together to ensure the development of safe and effective cell therapies. Similarly, utilization of hPSC in meaningful and controlled disease modeling and drug screening applications requires information on the quality and suitability of the applied cell lines. Central to these common goals is the complete documentation of hPSC data, including the ethical provenance of the source material, the hPSC line derivation, culture conditions and genetic constitution of the lines. Data surrounding hPSC is scattered amongst diverse sources, including publications, supplemental data, researcher lab books, accredited lab reports, certificates of analyses and public data repositories. Not all of these data sources are publicly accessible nor associated with metadata nor stored in a standard manner, such that data can be easily found and retrieved. The Human Pluripotent Stem Cell Registry (hPSCreg; https://hpscreg.eu/) was started in 2007 to impart provenance and transparency towards hPSC research by registering and collecting standard properties of hPSC lines. In this chapter, we present a short primer on the history of stem cell-based products, summarize the ethical and regulatory issues introduced in the course of working with hPSC-derived products and their associated data, and finally present the Human Pluripotent Stem Cell Registry as a valuable resource for all stakeholders in therapies and disease modeling based on hPSC-derived cells.
Collapse
Affiliation(s)
- Nancy Mah
- Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefanie Seltmann
- Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Begoña Aran
- Stem Cell Bank, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Rachel Steeg
- Fraunhofer UK Research Ltd, Technology and Innovation Centre, Glasgow, UK
| | - Johannes Dewender
- Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Bultjer
- Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Veiga
- Stem Cell Bank, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Glyn N Stacey
- ISCBI, Barley, UKSSCBio Ltd, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Andreas Kurtz
- Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Amini N, Paluh JL, Xie Y, Saxena V, Sharfstein ST. Insulin production from hiPSC-derived pancreatic cells in a novel wicking matrix bioreactor. Biotechnol Bioeng 2020; 117:2247-2261. [PMID: 32314809 DOI: 10.1002/bit.27359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
Clinical use of pancreatic β islets for regenerative medicine applications requires mass production of functional cells. Current technologies are insufficient for large-scale production in a cost-efficient manner. Here, we evaluate advantages of a porous cellulose scaffold and demonstrate scale-up to a wicking matrix bioreactor as a platform for culture of human endocrine cells. Scaffold modifications were evaluated in a multiwell platform to find the optimum surface condition for pancreatic cell expansion followed by bioreactor culture to confirm suitability. Preceding scale-up, cell morphology, viability, and proliferation of primary pancreatic cells were evaluated. Two optimal surface modifications were chosen and evaluated further for insulin secretion, cell morphology, and viable cell density for human-induced pluripotent stem cell-derived pancreatic cells at different stages of differentiation. Scale-up was accomplished with uncoated, amine-modified cellulose in a miniature bioreactor, and insulin secretion and cell metabolic profiles were determined for 13 days. We achieved 10-fold cell expansion in the bioreactor along with a significant increase in insulin secretion compared with cultures on tissue culture plastic. Our findings define a new method for expansion of pancreatic cells a on wicking matrix cellulose platform to advance cell therapy biomanufacturing for diabetes.
Collapse
Affiliation(s)
- Nooshin Amini
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Janet L Paluh
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| |
Collapse
|
13
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
14
|
Quality Standards of Stem Cell Sources for Clinical Treatment of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:9-19. [PMID: 33105492 DOI: 10.1007/978-981-15-4370-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A large number of experimental and clinical studies have shown that cell transplantation has therapeutic effects for PD, AD and other neurodegenerative diseases or damages. Good Manufacturing Practice (GMP) guidance must be defined to produce clinical-grade cells for transplantation to the patients. Standardized quality and clinical preparation procedures of the transplanted cells will ensure the therapeutic efficacy and reduce the side-effect risk of cell therapy. Here we review the cell quality standards governing the clinical transplantation of stem cells for neurodegenerative diseases to clinical practitioners. These quality standards include cell quality control, minimal suggested cell doses for undergoing cell transplantation, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, not charging the patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
Collapse
|
15
|
Kudva YC, Nair KS. Diabetes Mellitus: A Perspective on the Post-Insulin Era. Mayo Clin Proc 2020; 95:15-21. [PMID: 31902410 DOI: 10.1016/j.mayocp.2019.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Yogish C Kudva
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
16
|
Shariatzadeh M, Chandra A, Wilson SL, McCall MJ, Morizur L, Lesueur L, Chose O, Gepp MM, Schulz A, Neubauer JC, Zimmermann H, Abranches E, Man J, O’Shea O, Stacey G, Hewitt Z, Williams DJ. Distributed automated manufacturing of pluripotent stem cell products. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2020; 106:1085-1103. [PMID: 31983799 PMCID: PMC6954896 DOI: 10.1007/s00170-019-04516-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
Establishing how to effectively manufacture cell therapies is an industry-level problem. Decentralised manufacturing is of increasing importance, and its challenges are recognised by healthcare regulators with deviations and comparability issues receiving specific attention from them. This paper is the first to report the deviations and other risks encountered when implementing the expansion of human pluripotent stem cells (hPSCs) in an automated three international site-decentralised manufacturing setting. An experimental demonstrator project expanded a human embryonal carcinoma cell line (2102Ep) at three development sites in France, Germany and the UK using the CompacT SelecT (Sartorius Stedim, Royston, UK) automated cell culture platform. Anticipated variations between sites spanned material input, features of the process itself and production system details including different quality management systems and personnel. Where possible, these were pre-addressed by implementing strategies including standardisation, cell bank mycoplasma testing and specific engineering and process improvements. However, despite such measures, unexpected deviations occurred between sites including software incompatibility and machine/process errors together with uncharacteristic contaminations. Many only became apparent during process proving or during the process run. Further, parameters including growth rate and viability discrepancies could only be determined post-run, preventing 'live' corrective measures. The work confirms the critical nature of approaches usually taken in Good Manufacturing Practice (GMP) manufacturing settings and especially emphasises the requirement for monitoring steps to be included within the production system. Real-time process monitoring coupled with carefully structured quality systems is essential for multiple site working including clarity of decision-making roles. Additionally, an over-reliance upon post-process visual microscopic comparisons has major limitations; it is difficult for non-experts to detect deleterious culture changes and such detection is slow.
Collapse
Affiliation(s)
- Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Amit Chandra
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
- Present Address: Yposkesi, 26, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Lise Morizur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Léa Lesueur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Olivier Chose
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Michael M. Gepp
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Present Address: Knappschaft Eye Clinic Sulzbach, An der Klinik 10, 66280 Sulzbach, Germany
| | - Julia C. Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
- Saarland University, 66123 Saarbruecken, Germany
- Universidad Católica del Norte, Coquimbo, Chile
| | - Elsa Abranches
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Jennifer Man
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Oxfordshire, UK
| | - Orla O’Shea
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Glyn Stacey
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Adaptimmune, 60 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RX UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology (CSCB), University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| |
Collapse
|
17
|
Vitillo L, Tovell VE, Coffey P. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Curr Eye Res 2019; 45:361-371. [DOI: 10.1080/02713683.2019.1691237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Loriana Vitillo
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Victoria E. Tovell
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Pete Coffey
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
18
|
Ben M'Barek K, Bertin S, Brazhnikova E, Jaillard C, Habeler W, Plancheron A, Fovet CM, Demilly J, Jarraya M, Bejanariu A, Sahel JA, Peschanski M, Goureau O, Monville C. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials 2019; 230:119603. [PMID: 31732225 DOI: 10.1016/j.biomaterials.2019.119603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration as well as some forms of Retinitis Pigmentosa (RP) are characterized by a retinal degeneration involving the retinal pigment epithelium (RPE). Various strategies were proposed to cure these disorders including the replacement of RPE cells using human pluripotent stem cells (hPSCs), an unlimited source material to generate in vitro RPE cells. The formulation strategy of the cell therapy (either a reconstructed sheet or a cell suspension) is crucial to achieve an efficient and long lasting therapeutic effect. We previously developed a hPSC-RPE sheet disposed on human amniotic membrane that sustained the vision of rodents with retinal degeneration compared to the same cells injected as a suspension. However, the transplantation strategy was difficult to implement in large animals. Herein we developed two medical devices for the preparation, conservation and implantation of the hPSC-RPE sheet in nonhuman primates. The surgery was safe and well tolerated during the 7-week follow up. The graft integrity was preserved in primates. Moreover, the hPSC-RPE sheet did not induce teratoma or grafted cell dispersion to other organs in rodent models. This work clears the way for the first cell therapy for RP patients carrying RPE gene mutations (LRAT, RPE65 and MERTK).
Collapse
Affiliation(s)
- Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Stéphane Bertin
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Elena Brazhnikova
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Céline Jaillard
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Alexandra Plancheron
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | | | | | - Mohamed Jarraya
- Banque de Tissus Humain, Hôpital Saint Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Ana Bejanariu
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - José-Alain Sahel
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France; Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marc Peschanski
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France.
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France; UEVE U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
19
|
Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem Cells Int 2019; 2019:4568979. [PMID: 30809263 PMCID: PMC6364130 DOI: 10.1155/2019/4568979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/01/2019] [Indexed: 12/25/2022] Open
Abstract
Retinal degeneration is an irreversible phenomenon caused by various disease conditions including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). During the course of these diseases, photoreceptors (PRs) are susceptible to degeneration due to their malfunctions or to a primary dysfunction of the retinal pigment epithelium (RPE). Once lost, these cells could not be endogenously regenerated in humans, and cell therapy to replace the lost cells is one of the promising strategies to recover vision. Depending on the nature of the primary defect and the stage of the disease, RPE cells, PRs, or both might be transplanted to achieve therapeutic effects. We describe in this review the current knowledge and recent progress to develop such approaches. The different cell sources proposed for cell therapy including human pluripotent stem cells are presented with their advantages and limits. Another critical aspect described herein is the pharmaceutical formulation of the end product to be delivered into the eye of patients. Finally, we also outline the future research directions in order to develop a complex multilayered retinal tissue for end-stage patients.
Collapse
|
20
|
Jang S, Collin de l'Hortet A, Soto-Gutierrez A. Induced Pluripotent Stem Cell-Derived Endothelial Cells: Overview, Current Advances, Applications, and Future Directions. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:502-512. [PMID: 30653953 DOI: 10.1016/j.ajpath.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Endothelial cells are prevalent in our bodies and serve multiple functions. By lining the vasculature, they provide a barrier to tissues and facilitate the transport of molecules and cells. They also maintain hemostasis and modulate blood flow by reacting to chemokines and releasing signal molecules. Thus, endothelial dysfunction leads to a wide variety of diseases, including atherosclerosis and coronary artery disease. In today's era of stem cell research, induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) have emerged for research and engineering purposes. They are not only tools for studying disease states but are also a crucial part of efforts to engineer vessel and organ grafts. As the techniques in cell culture, microfluidics, and personalized medicine concomitantly improve, the potential for iPSC-ECs is enormous. We review functions of endothelium in our bodies, the development and uses of iPSC-ECs, and the possible avenues to explore in the future.
Collapse
Affiliation(s)
- Sae Jang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| | | | | |
Collapse
|
21
|
Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, Kaneko S, Nakanishi M, Rao MS, Kurtz A, Stacey GN, Marsh SGE, Turner ML, Song J. Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells 2018; 36:1552-1566. [PMID: 30004605 DOI: 10.1002/stem.2865] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/17/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023]
Abstract
Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Young Huh
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David M Turner
- Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Soohyeon Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - James Robinson
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Jeremy E Stein
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - Sung Han Shim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang Pyo Hong
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Myung Seo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Mahendra S Rao
- New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, Hertfordshire, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Marc L Turner
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| |
Collapse
|
22
|
Bobba S, Di Girolamo N, Munsie M, Chen F, Pébay A, Harkin D, Hewitt AW, O'Connor M, McLenachan S, Shadforth AMA, Watson SL. The current state of stem cell therapy for ocular disease. Exp Eye Res 2018; 177:65-75. [PMID: 30029023 DOI: 10.1016/j.exer.2018.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Herein, we review the safety, efficacy, regulatory standards and ethical implications of the use of stem cells in ocular disease. A literature review was conducted, registered clinical trials reviewed, and expert opinions sought. Guidelines and codes of conduct from international societies and professional bodies were also reviewed. Collated data is presented on current progress in the field of ocular regenerative medicine, future challenges, the clinical trial process and ethical considerations in stem cell therapy. A greater understanding of the function and location of ocular stem cells has led to rapid advances in possible therapeutic applications. However, in the context of significant technical challenges and potential long-term complications, it is imperative that stem cell practices operate within formal clinical trial frameworks. While there remains broad scope for innovation, ongoing evidence-based review of potential interventions and the development of standardized protocols are necessary to ensure patient safety and best practice in ophthalmic care.
Collapse
Affiliation(s)
- Samantha Bobba
- Prince of Wales Hospital Clinical School, High Street, Randwick, Sydney, New South Wales, 2031, Australia.
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Megan Munsie
- Centre for Stem Cell Systems, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fred Chen
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia, 6009, Australia
| | - Alice Pébay
- Centre for Stem Cell Systems, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia; Centre for Eye Research Australia, Level 7/32 Gisborne Street, East Melbourne, Victoria, 3002, Australia
| | - Damien Harkin
- School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Level 7/32 Gisborne Street, East Melbourne, Victoria, 3002, Australia; School of Medicine, University of Tasmania, Churchill Avenue, Hobart, Tasmania, 7005, Australia
| | - Michael O'Connor
- School of Medicine, Western Sydney University, Victoria Road Parramatta, New South Wales, Parramatta, 2150, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Audra M A Shadforth
- School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Stephanie L Watson
- Prince of Wales Hospital Clinical School, High Street, Randwick, Sydney, New South Wales, 2031, Australia; Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales, 2000, Australia; Sydney Eye Hospital, 8 Macquarie Street, Sydney, New South Wales, 2000, Australia.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Islet and pancreas transplantation prove that β cell replacement can cure the glycemic derangements in type 1 diabetes (T1D). Induced pluripotent stem cells (iPSCs) can differentiate into functional insulin-producing cells, able to restore normoglycemia in diabetic animal models. iPSCs in particular can be derived from the somatic cells of a person with T1D. This review aims to clarify if it is possible to transplant autologous iPSC-derived β cells without immunosuppression or which are the alternative approaches. RECENT FINDINGS Several lines of evidence show that autologous iPSC and their derivatives can be immune rejected, and this immunogenicity depends on the reprogramming, the type of cells generated, the transplantation site, and the genetic/epigenetic modifications induced by reprogramming and differentiation. Besides, cell replacement in T1D should keep in consideration also the possibility of autoimmune reaction against autologous stem cell-derived β cells. Autologous iPSC-derived β cells could be immunogenic upon transplantation, eliciting both auto and allogeneic immune response. A strategy to protect cells from immune rejection is still needed. This strategy should be efficacious in protecting the grafted cells, but also avoid toxicity and the risk of tumor formation.
Collapse
Affiliation(s)
- Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
24
|
Didié M, Galla S, Muppala V, Dressel R, Zimmermann WH. Immunological Properties of Murine Parthenogenetic Stem Cell-Derived Cardiomyocytes and Engineered Heart Muscle. Front Immunol 2017; 8:955. [PMID: 28855904 PMCID: PMC5557729 DOI: 10.3389/fimmu.2017.00955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
Pluripotent parthenogenetic stem cells (pSCs) can be derived by pharmacological activation of unfertilized oocytes. Homozygosity of the major histocompatibility complex (MHC) in pSCs makes them an attractive cell source for applications in allogeneic tissue repair. This was recently demonstrated for pSC-based tissue-engineered heart repair. A detailed analysis of immunological properties of pSC-derived cardiomyocytes and engineered heart muscle (EHM) thereof is, however, lacking. The aim of this study was to determine baseline and cytokine-inducible MHC class I and MHC class II as well as programmed death ligand-1 (PDL-1) and co-stimulatory protein (CD40, CD80, CD86) expression in pSC-derived cardiomyocytes and pSC-EHM in vitro and in vivo. Cardiomyocytes from an MHC-homologous (H2d/d) pSC-line were enriched to ~90% by making use of a recently developed cardiomyocyte-specific genetic selection protocol. MHC class I and MHC class II expression in cardiomyocytes could only be observed after stimulation with interferon gamma (IFN-γ). PDL-1 was markedly upregulated under IFN-γ. CD40, CD80, and CD86 were expressed at low levels and not upregulated by IFN-γ. EHM constructed from H2d/d cardiomyocytes expressed similarly low levels of MHC class I, MHC class II, and costimulatory molecules under basal conditions. However, in EHM only MHC class I, but not MHC class II, molecules were upregulated after IFN-γ-stimulation. We next employed a cocultivation system with MHC-matched and MHC-mismatched splenocytes and T-cells to analyze the immune stimulatory properties of EHMs. Despite MHC-mismatched conditions, EHM did not induce splenocyte or T-cell proliferation in vitro. To evaluate the immunogenicity of pSC-derived cardiomyocytes in vivo, we implanted pSC-derived embryoid bodies after elimination of non-cardiomyocytes (cardiac bodies) under the kidney capsules of MHC-matched and -mismatched mice. Spontaneous beating of cardiac bodies could be observed for 28 days in the matched and for 7 days in the mismatched conditions. Teratomas formed after 28 days only in the MHC-matched conditions. Immunohistochemistry revealed single clusters of CD3-positive cells in the border zone of the implant in the mismatched conditions with few CD3-positive cells infiltrating the implant. Taken together, MHC-matched pSC-cardiomyocyte allografts show little immune cell activation, offering an explanation for the observed long-term retention of pSC-EHM allografts in the absence of immunosuppression.
Collapse
Affiliation(s)
- Michael Didié
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Satish Galla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayakumar Muppala
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem Cell Sources and Their Potential for the Treatment of Retinal Degenerations. Invest Ophthalmol Vis Sci 2017; 57:ORSFd1-9. [PMID: 27116661 PMCID: PMC6892419 DOI: 10.1167/iovs.16-19127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer unprecedented opportunities for the development of strategies geared toward the treatment of retinal degenerative diseases. A variety of cellular sources have been investigated for various potential clinical applications, including tissue regeneration, disease modeling, and screening for non–cell-based therapeutic agents. As the field transitions from more than a decade of preclinical research to the first phase I/II clinical trials, we provide a concise overview of the stem cell sources most commonly used, weighing their therapeutic potential on the basis of their technical strengths/limitations, their ethical implications, and the extent of the progress achieved to date. This article serves as a framework for further in-depth analyses presented in the following chapters of this Special Issue.
Collapse
|
26
|
Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, Nanteau C, Potey A, Belle M, Rabesandratana O, Duebel J, Orieux G, Nandrot EF, Sahel JA, Goureau O. Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells 2017; 35:1176-1188. [PMID: 28220575 DOI: 10.1002/stem.2586] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/12/2016] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation. In less than 1 month, adherent hiPSCs are able to generate self-forming neuroretinal-like structures containing retinal progenitor cells (RPCs). Floating cultures of isolated structures enabled the differentiation of RPCs into all types of retinal cells in a sequential overlapping order, with the generation of transplantation-compatible CD73+ photoreceptor precursors in less than 100 days. Our XF/FF culture conditions allow the maintenance of both mature cones and rods in retinal organoids until 280 days with specific photoreceptor ultrastructures. Moreover, both hiPSC-derived retinal organoids and dissociated retinal cells can be easily cryopreserved while retaining their phenotypic characteristics and the preservation of CD73+ photoreceptor precursors. Concomitantly to neural retina, this process allows the generation of RPE cells that can be effortlessly amplified, passaged, and frozen while retaining a proper RPE phenotype. These results demonstrate that simple and efficient retinal differentiation of adherent hiPSCs can be accomplished in XF/FF conditions. This new method is amenable to the development of an in vitro GMP-compliant retinal cell manufacturing protocol allowing large-scale production and banking of hiPSC-derived retinal cells and tissues. Stem Cells 2017;35:1176-1188.
Collapse
Affiliation(s)
- Sacha Reichman
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Amélie Slembrouck
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Giuliana Gagliardi
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Antoine Chaffiol
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Angélique Terray
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Céline Nanteau
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Anais Potey
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Morgane Belle
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Oriane Rabesandratana
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Jens Duebel
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Gael Orieux
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Emeline F Nandrot
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
27
|
Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1031:371-386. [PMID: 29214583 DOI: 10.1007/978-3-319-67144-4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rare diseases are highly diverse and complex regarding molecular underpinning and clinical manifestation and afflict millions of patients worldwide. The lack of appropriate model systems with face and construct validity and the limited availability of live tissues and cells from patients has largely hampered the understanding of underlying disease mechanisms. As a consequence, there are no adequate treatment options available for the vast majority of rare diseases. Over the last decade, remarkable progress in pluripotent and adult stem cell biology and the advent of powerful genomic technologies opened up exciting new avenues for the investigation, diagnosis, and personalized therapy of intractable human diseases. Utilizing the entire range of available stem cell types will continue to cross-fertilize different research areas and leverage the investigation of rare diseases based on evidence-based medicine. Standardized cell engineering and manufacturing from inexhaustible stem cell sources should lay the foundation for next-generation drug discovery and cell therapies that are broadly applicable in regenerative medicine. In this chapter we discuss how patient- and disease-specific iPS cells as well as adult stem cells are changing the pace of biomedical research and the translational landscape.
Collapse
|
28
|
Fairchild PJ, Horton C, Lahiri P, Shanmugarajah K, Davies TJ. Beneath the sword of Damocles: regenerative medicine and the shadow of immunogenicity. Regen Med 2016; 11:817-829. [DOI: 10.2217/rme-2016-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Few topics in regenerative medicine have inspired such impassioned debate as the immunogenicity of cell types and tissues differentiated from pluripotent stem cells. While early predictions suggested that tissues derived from allogeneic sources may evade immune surveillance altogether, the pendulum has since swung to the opposite extreme, with reports that the ectopic expression of a few developmental antigens may prompt rejection, even of tissues differentiated from autologous cell lines. Here we review the evidence on which these contradictory claims are based in order to reach an objective assessment of the likely magnitude of the immunological challenges ahead. Furthermore, we discuss how the inherent properties of pluripotent stem cells may inform strategies for reducing the impact of immunogenicity on the future ambitions of regenerative medicine.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Kumaran Shanmugarajah
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
29
|
Azuma K, Yamanaka S. Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. Regen Ther 2016; 4:36-47. [PMID: 31245486 PMCID: PMC6581825 DOI: 10.1016/j.reth.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 01/28/2016] [Indexed: 02/04/2023] Open
Abstract
In Japan, a research center network consisting of Kyoto University to provide clinical-grade induced Pluripotent Stem Cells (iPSC) and several major research centers to develop iPSC-based regenerative therapies was formed for the clinical application of iPSCs. This network is under the supervision of a newly formed funding agency, the Japan Agency for Medical Research and Development. In parallel, regulatory authorities of Japan, including the Ministry of Health, Labour and Welfare, and Pharmaceuticals and Medical Devices Agency, are trying to accelerate the development process of regenerative medicine products (RMPs) by several initiatives: 1) introduction of a conditional and time-limited approval scheme only applicable to RMPs under the revised Pharmaceuticals and Medical Devices Act, 2) expansion of a consultation program at the early stage of development, 3) establishment of guidelines to support efficient development and review and 4) enhancement of post-market safety measures such as introduction of patient registries and setting user requirements with cooperation from relevant academic societies and experts. Ultimately, the establishment of a global network among iPSC banks that derives clinical-grade iPSCs from human leukocyte antigens homozygous donors has been proposed. In order to share clinical-grade iPSCs globally and to facilitate global development of iPSC-based RMPs, it will be necessary to promote regulatory harmonization and to establish common standards related to iPSCs and differentiated cells based on scientific evidence.
Collapse
Key Words
- AMED, Japan Agency for Medical Research and Development
- BLA, Biological License Approval
- CFR, Code of Federal Regulations
- CiRA, Center for iPS Cell Research and Application
- DMF, Drug Master File
- ESC, embryonic stem cell
- FDA, Food and Drug Administration
- FY, fiscal year
- GAiT, Global Alliance for iPS Cell Therapies
- GCTP, Good Gene, Cell, Cellular and Tissue-based Products Manufacturing Practice
- GMP, good manufacturing practice
- HLA, human leukocyte antigen
- Haplobank
- IBRI, Institution of Biomedical Research and Innovation
- ICH, The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
- IND, Investigational New Drug
- INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support
- IRB, Institutional Review Board
- J-MACS, Japanese Registry for Mechanically Assisted Circulatory Support
- JST, Japan Science and Technology Agency
- Japan
- LVAD, left ventricular assist device
- METI, Ministry of Economy, Trade and Industry
- MEXT, Ministry of Education, Culture, Sports, Science and Technology
- MHLW, Ministry of Health, Labour and Welfare
- NEDO, New Energy and Industrial Technology Development Organization
- NIBIO, National Institute of Biomedical Innovation
- NIHS, National Institute of Health Science
- PAL, Pharmaceutical Affairs Law
- PIC/S, The Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme
- PMD Act, Pharmaceuticals and Medical Devices Act
- PMDA, Pharmaceuticals and Medical Devices Agency
- Policy
- R&D, research and development
- RM Act, the Act on the Safety of Regenerative Medicine
- RMP, regenerative medicine product
- Regenerative medicine
- Regulation
- Riken CDB, Riken Center for Developmental Biology
- U.S., United States
- WHO, World Health Organization
- iPS cells
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Kentaro Azuma
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Hung SSC, McCaughey T, Swann O, Pébay A, Hewitt AW. Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 2016; 53:1-20. [PMID: 27181583 DOI: 10.1016/j.preteyeres.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) and CRISPR-associated protein (Cas) system has enabled an accurate and efficient means to edit the human genome. Rapid advances in this technology could results in imminent clinical application, and with favourable anatomical and immunological profiles, ophthalmic disease will be at the forefront of such work. There have been a number of breakthroughs improving the specificity and efficacy of CRISPR/Cas-mediated genome editing. Similarly, better methods to identify off-target cleavage sites have also been developed. With the impending clinical utility of CRISPR/Cas technology, complex ethical issues related to the regulation and management of the precise applications of human gene editing must be considered. This review discusses the current progress and recent breakthroughs in CRISPR/Cas-based gene engineering, and outlines some of the technical issues that must be addressed before gene correction, be it in vivo or in vitro, is integrated into ophthalmic care. We outline a clinical pipeline for CRISPR-based treatments of inherited eye diseases and provide an overview of the important ethical implications of gene editing and how these may influence the future of this technology.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Tristan McCaughey
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Surgery, Monash University, Victoria, Australia
| | - Olivia Swann
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia.
| |
Collapse
|
31
|
Fairchild PJ. Taming the lion: the challenge of immunity in regenerative medicine. Regen Med 2016; 10:227-9. [PMID: 25933229 DOI: 10.2217/rme.15.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
Negroni E, Bigot A, Butler-Browne GS, Trollet C, Mouly V. Cellular Therapies for Muscular Dystrophies: Frustrations and Clinical Successes. Hum Gene Ther 2016; 27:117-26. [PMID: 26652770 DOI: 10.1089/hum.2015.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapy for muscular dystrophies was initiated in humans after promising results obtained in murine models. Early trials failed to show substantial clinical benefit, sending researchers back to the bench, which led to the discovery of many hurdles as well as many new venues to optimize this therapeutic strategy. In this review we summarize progress in preclinical cell therapy approaches, with a special emphasis on human cells potentially attractive for human clinical trials. Future perspectives for cell therapy in skeletal muscle are discussed, including the perspective of combined therapeutic approaches.
Collapse
Affiliation(s)
- Elisa Negroni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Anne Bigot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Gillian S Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| |
Collapse
|
33
|
Understanding Stem Cell Immunogenicity in Therapeutic Applications. Trends Immunol 2015; 37:5-16. [PMID: 26687737 DOI: 10.1016/j.it.2015.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Stem cells and their differentiated progeny offer great hope for treating disease by providing an unlimited source of cells for repairing or replacing damaged tissue. Initial studies suggested that, unlike 'normal' transplants, specific characteristics of stem cells enabled them to avoid immune attack. However, recent findings have revealed that the immunogenicity of stem cells may have been underestimated. Here, we review the current understanding of the mechanisms of immune recognition associated with stem cell immunogenicity, and discuss the relevance of reprogramming and differentiation strategies used to generate cells or tissue from stem cells for implantation in eliciting an immune response. We examine the effectiveness of current strategies for minimising immune attack in light of our experience in the transplantation field and, in this context, outline important challenges moving forward.
Collapse
|
34
|
Donadeu FX, Esteves CL. Prospects and Challenges of Induced Pluripotent Stem Cells in Equine Health. Front Vet Sci 2015; 2:59. [PMID: 26664986 PMCID: PMC4672244 DOI: 10.3389/fvets.2015.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/02/2015] [Indexed: 01/12/2023] Open
Abstract
Pluripotent stem cells (PSCs) hold, through the capacity to differentiate into virtually all body cell types, unprecedented promise for human and animal medicine. PSCs are naturally found in the early embryo, and in rodents and humans they can be robustly harvested and grown in culture in the form of embryonic stem cells (ESCs); however, the availability of ESCs from horses is limited. ES-like cells named induced pluripotent stem cells (iPSCs) can be derived in vitro by transcription factor-mediated reprogramming of adult cells. As such, iPSCs can be generated in a patient-specific manner providing unmatched potential for tissue transplantation and in vitro disease modeling. In humans, clinical trials using iPSC-derived cells are already taking place and the use of in vitro iPSC models has identified novel mechanisms of disease and therapeutic targets. Although to a more limited extent, iPSCs have also been generated from horses, a species in which, after humans, these cells are likely to hold the greatest potential in regenerative medicine. Before a clinical use can be envisioned, however, significant challenges will need to be addressed in relation to the robust derivation, long-term culture, differentiation, and clinical safety of equine iPSCs. Toward this objective, recent studies have reported significant improvement in culture conditions and the successful derivation for the first time of functional cell types from equine iPSCs. Given the wide range of exciting applications they could have, it is hoped future research will make the biomedical promise of iPSCs a reality not only for humans but also horses.
Collapse
Affiliation(s)
- F Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian , UK
| | - Cristina L Esteves
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian , UK
| |
Collapse
|
35
|
Affiliation(s)
- Akihiro Asai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
36
|
Abstract
The development of induced pluripotent stem cells offers the possibility of the scalable manufacture of cellular therapies for regenerative medicine. Moreover, donors can be selected on the basis of major transplant antigen systems to match the widest possible number of recipients worldwide, reducing the likely risk of immunological rejection and the degree of immune suppression or tolerance required. If such cell lines are to be broadly available, there will need to be mutual recognition of common standards across different jurisdictions. Extensive international collaboration will be required around issues such as determination of the optimal homozygous human leukocyte antigens (HLA) panel, donor selection, screening and consent, good manufacturing practice (GMP), standards and quality control and regulatory legislation. The challenges in establishing a global GMP induced pluripotent stem cell (iPSC) haplobank are formidable. We argue that now is the time to attempt to reach international agreement around common standards for GMP iPSC manufacture before the field develops in a fragmented manner.
Collapse
Affiliation(s)
- Jacqueline Barry
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Johan Hyllner
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- Division of Biotechnology/IFM, Linköping University, Linköping, Sweden
| | - Glyn Stacey
- National Institute of Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG UK
| | - Craig J. Taylor
- Histocompatibility and Immunogenetics (Tissue Typing) Laboratory (Box 209), Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Marc Turner
- Scottish National Blood Transfusion Service, 21 Ellen’s Glen Road, Edinburgh, EH17 7QT Scotland UK
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland UK
| |
Collapse
|
37
|
Ilic D, Devito L, Miere C, Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 2015; 116:19-27. [PMID: 26582538 DOI: 10.1093/bmb/ldv045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human embryonic and induced pluripotent stem cells (hESC and hiPSC) have tremendous potential for clinical implementation. In spite of all hurdles and controversy, clinical trials in treatment of spinal cord injury, macular degeneration of retina, type 1 diabetes and heart failure are already ongoing. SOURCES OF DATA ClinicalTrials.gov database, International Clinical Trials Registry Platform, PubMed and press releases and websites of companies and institutions working on hESC- and iPSC-based cellular therapy. AREAS OF AGREEMENT The initial results from multiple clinical trials demonstrate that hESC-based therapies are safe and promising. AREAS OF CONTROVERSY Are iPSC cells safe in the clinical application? Is there a room for both hESC and iPSC in the future clinical applications? GROWING POINTS Increasing number of new clinical trials. AREAS TIMELY FOR DEVELOPING RESEARCH Development of hESC- and/or iPSC-based cellular therapy for other diseases.
Collapse
Affiliation(s)
- Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Liani Devito
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Cristian Miere
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | |
Collapse
|