1
|
Salvador WOS, Ribeiro IAB, Nogueira DES, Ferreira FC, Cabral JMS, Rodrigues CAV. Bioprocess Economic Modeling: Decision Support Tools for the Development of Stem Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120791. [PMID: 36550997 PMCID: PMC9774475 DOI: 10.3390/bioengineering9120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Over recent years, the field of cell and gene therapy has witnessed rapid growth due to the demonstrated benefits of using living cells as therapeutic agents in a broad range of clinical studies and trials. Bioprocess economic models (BEMs) are fundamental tools for guiding decision-making in bioprocess design, being capable of supporting process optimization and helping to reduce production costs. These tools are particularly important when it comes to guiding manufacturing decisions and increasing the likelihood of market acceptance of cell-based therapies, which are often cost-prohibitive because of high resource and quality control costs. Not only this, but the inherent biological variability of their underlying bioprocesses makes them particularly susceptible to unforeseen costs arising from failed or delayed production batches. The present work reviews important concepts concerning the development of bioprocesses for stem cell therapy products and highlights the valuable role which BEMs can play in this endeavor. Additionally, some theoretical concepts relevant to the building and structuring of BEMs are explored. Finally, a comprehensive review of the existent BEMs so far reported in the scientific literature for stem cell-related bioprocesses is provided to showcase their potential usefulness.
Collapse
Affiliation(s)
- William O. S. Salvador
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Inês A. B. Ribeiro
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo E. S. Nogueira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico C. Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
2
|
Nair A, Horiguchi I, Fukumori K, Kino-oka M. Development of instability analysis for the filling process of human-induced pluripotent stem cell products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Proof-of-Concept of a Novel Cell Separation Technology Using Magnetic Agarose-Based Beads. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The safety of the cells used for Advanced Therapy Medicinal Products is crucial for patients. Reliable methods for the cell purification are very important for the commercialization of those new therapies. With the large production scale envisioned for commercialization, the cell isolation methods need to be efficient, robust, operationally simple and generic while ensuring cell biological functionality and safety. In this study, we used high magnetized magnetic agarose-based beads conjugated with protein A to develop a new method for cell separation. A high separation efficiency of 91% yield and consistent isolation performances were demonstrated using population mixtures of human mesenchymal stem cells and HER2+ SKBR3 cells (80:20, 70:30 and 30:70). Additionally, high robustness against mechanical stress and minimal unspecific binding obtained with the protein A base conjugated magnetic beads were significant advantages in comparison with the same magnetic microparticles where the antibodies were covalently conjugated. This study provided insights on features of large high magnetized microparticles, which is promising for the large-scale application of cell purification.
Collapse
|
4
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Gene therapy process change evaluation framework: Transient transfection and stable producer cell line comparison. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Rivera-Ordaz A, Peli V, Manzini P, Barilani M, Lazzari L. Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs 2021; 35:693-714. [PMID: 34727354 PMCID: PMC8561684 DOI: 10.1007/s40259-021-00503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 10/28/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are manufactured as advanced therapy medicinal products for tissue replacement applications. With this aim, the feasibility of hiPSC large-scale expansion in existing bioreactor systems under current good manufacturing practices (cGMP) has been tested. Yet, these attempts have lacked a paradigm shift in culture settings and technologies tailored to hiPSCs, which jeopardizes their clinical translation. The best approach for industrial scale-up of high-quality hiPSCs is to design their manufacturing process by following quality-by-design (QbD) principles: a scientific, risk-based framework for process design based on relating product and process attributes to product quality. In this review, we analyzed the hiPSC expansion manufacturing process implementing the QbD approach in the use of bioreactors, stressing the decisive role played by the cell quantity, quality and costs, drawing key QbD concepts directly from the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Paolo Manzini
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Mario Barilani
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| |
Collapse
|
6
|
Mendonça da Silva J, Stamatis C, Chalmers SA, Erro E, Selden C, Farid SS. Decisional tool for cost of goods analysis of bioartificial liver devices for routine clinical use. Cytotherapy 2021; 23:683-693. [PMID: 34116945 DOI: 10.1016/j.jcyt.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AIMS Bioartificial liver devices (BALs) are categorized as advanced therapy medicinal products (ATMPs) with the potential to provide temporary liver support for liver failure patients. However, to meet commercial demands, next-generation BAL manufacturing processes need to be designed that are scalable and financially feasible. The authors describe the development and application of a process economics decisional tool to determine the cost of goods (COG) of alternative BAL process flowsheets across a range of industrial scales. METHODS The decisional tool comprised an information database linked to a process economics engine, with equipment sizing, resource consumption, capital investment and COG calculations for the whole bioprocess, from cell expansion and encapsulation to fluidized bed bioreactor (FBB) culture to cryopreservation and cryorecovery. Four different flowsheet configurations were evaluated across demands, with cell factories or microcarriers in suspension culture for the cell expansion step and single-use or stainless steel technology for the FBB culture step. RESULTS The tool outputs demonstrated that the lowest COG was achieved with microcarriers and stainless steel technology independent of the annual demand (1500-30 000 BALs/year). The analysis identified the key cost drivers were parameters impacting the medium volume and cost. CONCLUSIONS The tool outputs can be used to identify cost-effective and scalable bioprocesses early in the development process and minimize the risk of failing to meet commercial demands due to technology choices. The tool predictions serve as a useful benchmark for manufacturing ATMPs.
Collapse
Affiliation(s)
- Joana Mendonça da Silva
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Christos Stamatis
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Sherri-Ann Chalmers
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Eloy Erro
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Clare Selden
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Suzanne S Farid
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
7
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Estimation of manufacturing development costs of cell-based therapies: a feasibility study. Cytotherapy 2021; 23:730-739. [PMID: 33593688 DOI: 10.1016/j.jcyt.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Cell-based therapies (CBTs) provide opportunities to treat rare and high-burden diseases. Manufacturing development of these innovative products is said to be complex and costly. However, little research is available providing insight into resource use and cost drivers. Therefore, this study aimed to assess the feasibility of estimating the cost of manufacturing development of two cell-based therapy case studies using a CBT cost framework specifically designed for small-scale cell-based therapies. METHODS A retrospective costing study was conducted in which the cost of developing an adoptive immunotherapy of Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs) and a pluripotent stem cell (PSC) master cell bank was estimated. Manufacturing development was defined as products advancing from technology readiness level 3 to 6. The study was conducted in a Scottish facility. Development steps were recreated via developer focus groups. Data were collected from facility administrative and financial records and developer interviews. RESULTS Application of the manufacturing cost framework to retrospectively estimate the manufacturing design cost of two case studies in one Scottish facility appeared feasible. Manufacturing development cost was estimated at £1,201,016 for CTLs and £494,456 for PSCs. Most costs were accrued in the facility domain (56% and 51%), followed by personnel (20% and 32%), materials (19% and 15%) and equipment (4% and 2%). CONCLUSIONS Based on this study, it seems feasible to retrospectively estimate resources consumed in manufacturing development of cell-based therapies. This fosters inclusion of cost in the formulation and dissemination of best practices to facilitate early and sustainable patient access and inform future cost-conscious manufacturing design decisions.
Collapse
|
9
|
Horiguchi I, Torizal FG, Nagate H, Inose H, Inamura K, Hirata O, Hayashi H, Horikawa M, Sakai Y. Protection of human induced pluripotent stem cells against shear stress in suspension culture by Bingham plastic fluid. Biotechnol Prog 2020; 37:e3100. [PMID: 33169533 PMCID: PMC8244041 DOI: 10.1002/btpr.3100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Suspension culture is an important method used in the industrial preparation of pluripotent stem cells (PSCs), for regenerative therapy and drug screening. Generally, a suspension culture requires agitation to keep PSC aggregates suspended and to promote mass transfer, but agitation also causes cell damage. In this study, we investigated the use of a Bingham plastic fluid, supplemented with a polysaccharide‐based polymer, to preserve PSCs from cell damage in suspension culture. Rheometric analysis showed that the culture medium gained yield stress and became a Bingham plastic fluid, after supplementation with the polymer FP003. A growth/death analysis revealed that 2 days of aggregate formation and 2 days of suspension in the Bingham plastic medium improved cell growth and prevented cell death. After the initial aggregation step, whereas strong agitation (120 rpm) of a conventional culture medium resulted in massive cell death, in the Bingham plastic fluid we obtained the same growth as the normal culture with optimal agitation (90 rpm). This indicates that Bingham plastic fluid protected cells from shear stress in suspension culture and could be used to enhance their robustness when developing a large‐scale.
Collapse
Affiliation(s)
- Ikki Horiguchi
- Department of Biotechnology, Osaka University, Osaka, Japan
| | - Fuad Gandhi Torizal
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Hotaka Nagate
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Haruka Inose
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Kousuke Inamura
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Yasuyuki Sakai
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Syed MS, Mirakhorli F, Marquis C, Taylor RA, Warkiani ME. Particle movement and fluid behavior visualization using an optically transparent 3D-printed micro-hydrocyclone. BIOMICROFLUIDICS 2020; 14:064106. [PMID: 33269035 PMCID: PMC7679180 DOI: 10.1063/5.0025391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
A hydrocyclone is a macroscale separation device employed in various industries, with many advantages, including high-throughput and low operational costs. Translating these advantages to microscale has been a challenge due to the microscale fabrication limitations that can be surmounted using 3D printing technology. Additionally, it is difficult to simulate the performance of real 3D-printed micro-hydrocyclones because of turbulent eddies and the deviations from the design due to printing resolution. To address these issues, we propose a new experimental method for the direct observation of particle motion in 3D printed micro-hydrocyclones. To do so, wax 3D printing and soft lithography were used in combination to construct a transparent micro-hydrocyclone in a single block of polydimethylsiloxane. A high-speed camera and fluorescent particles were employed to obtain clear in situ images and to confirm the presence of the vortex core. To showcase the use of this method, we demonstrate that a well-designed device can achieve a 95% separation efficiency for a sample containing a mixture of (desired) stem cells and (undesired) microcarriers. Overall, we hope that the proposed method for the direct visualization of particle trajectories in micro-hydrocyclones will serve as a tool, which can be leveraged to accelerate the development of micro-hydrocyclones for biomedical applications.
Collapse
Affiliation(s)
- Maira Shakeel Syed
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fateme Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Christopher Marquis
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
11
|
Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:185-228. [PMID: 33090237 DOI: 10.1007/10_2020_147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called "Digital Twin" of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.
Collapse
|
12
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
13
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
14
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Estimating capital investment and facility footprint in cell therapy facilities. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Bandeiras C, Cabral JMS, Gabbay RA, Finkelstein SN, Ferreira FC. Bringing Stem Cell‐Based Therapies for Type 1 Diabetes to the Clinic: Early Insights from Bioprocess Economics and Cost‐Effectiveness Analysis. Biotechnol J 2019; 14:e1800563. [DOI: 10.1002/biot.201800563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/21/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
- Division of Clinical Informatics, Department of MedicineBeth Israel Deaconess Medical Center 1330 Beacon Street Brookline MA 02446 USA
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
| | - Robert A. Gabbay
- Joslin Diabetes Medical CenterHarvard Medical School One Joslin Place Boston MA 02216 USA
| | - Stan N. Finkelstein
- Division of Clinical Informatics, Department of MedicineBeth Israel Deaconess Medical Center 1330 Beacon Street Brookline MA 02446 USA
- Institute for Data, Systems and SocietyMassachusetts Institute of Technology 50 Ames Street Cambridge MA 02139 USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa 1049‐001 Lisboa Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de Lisboa 1049‐001 Lisboa Portugal
| |
Collapse
|
16
|
Quinn C, Young C, Thomas J, Trusheim M. Estimating the Clinical Pipeline of Cell and Gene Therapies and Their Potential Economic Impact on the US Healthcare System. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2019; 22:621-626. [PMID: 31198178 DOI: 10.1016/j.jval.2019.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/05/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To estimate, at the indication level, durable gene and cellular therapy new product launches in the United States through 2030, and the number of treated patients. METHODS A statistical analysis of clinical trials pipeline data and disease incidence and prevalence was conducted to estimate the impact of new cell and gene therapies. We used Citeline's® Pharmaprojects® database to estimate the rates and timing of new product launches, on the basis of the phase of development, duration in phase, and probability of progression. Disease incidence and prevalence data were combined with estimates of market adoption to project the size of reimbursed patient populations. RESULTS We project that about 350 000 patients will have been treated with 30 to 60 products by 2030. About half the launches are expected to be in B-cell (CD-19) lymphomas and leukemias. CONCLUSIONS Cell and gene therapies promise durable clinical benefit from a single treatment course. High upfront reimbursement for these products means that the total costs could exceed what the healthcare system can manage. This creates a need for precision financing solutions and new reimbursement models that can ensure appropriate patient access to needed treatments, increase affordability for payers, and sustain private investment in innovation.
Collapse
Affiliation(s)
- Casey Quinn
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Colin Young
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan Thomas
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark Trusheim
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Pinto D, Bandeiras C, Fuzeta M, Rodrigues CAV, Jung S, Hashimura Y, Tseng R, Milligan W, Lee B, Ferreira FC, Silva C, Cabral JMS. Scalable Manufacturing of Human Mesenchymal Stromal Cells in the Vertical‐Wheel Bioreactor System: An Experimental and Economic Approach. Biotechnol J 2019; 14:e1800716. [DOI: 10.1002/biot.201800716] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/12/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Diogo Pinto
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| | - Cátia Bandeiras
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- Division of Clinical Informatics, Department of MedicineBeth Israel Deaconess Medical Center1330 Beacon Street Brookline MA 02446 USA
| | - Miguel Fuzeta
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| | - Sunghoon Jung
- PBS Biotech Inc1183 Calle Suerte Camarillo CA 93012 USA
| | - Yas Hashimura
- PBS Biotech Inc1183 Calle Suerte Camarillo CA 93012 USA
| | - Rong‐Jeng Tseng
- AventaCell Biomedical Corp., Global Center for Medical Innovation (GCMI)575 14th St NW Atlanta GA 30318 USA
| | - William Milligan
- AventaCell Biomedical Corp., Global Center for Medical Innovation (GCMI)575 14th St NW Atlanta GA 30318 USA
| | - Brian Lee
- PBS Biotech Inc1183 Calle Suerte Camarillo CA 93012 USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| | - Cláudia Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaAvenida Rovisco Pais Lisboa 1049‐001 Portugal
| |
Collapse
|
18
|
Torres-Acosta MA, Harrison RP, Csaszar E, Rito-Palomares M, Brunck MEG. Ex vivo Manufactured Neutrophils for Treatment of Neutropenia-A Process Economic Evaluation. Front Med (Lausanne) 2019; 6:21. [PMID: 30881955 PMCID: PMC6405517 DOI: 10.3389/fmed.2019.00021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Neutropenia is a common side-effect of acute myeloid leukemia (AML) chemotherapy characterized by a critical drop in neutrophil blood concentration. Neutropenic patients are prone to infections, experience poorer clinical outcomes, and require expensive medical care. Although transfusions of donor neutrophils are a logical solution to neutropenia, this approach has not gained clinical traction, primarily due to challenges associated with obtaining sufficiently large numbers of neutrophils from donors whilst logistically managing their extremely short shelf-life. A protocol has been developed that produces clinical-scale quantities of neutrophils from hematopoietic stem and progenitor cells (HSPC) in 10 L single-use bioreactors (1). This strategy could be used to mass produce neutrophils and generate sufficient cell numbers to allow decisive clinical trials of neutrophil transfusion. We present a bioprocess model for neutrophil production at relevant clinical-scale. We evaluated two production scenarios, and the impact on cost of goods (COG) of multiple model parameters including cell yield, materials costs, and process duration. The most significant contributors to cost were consumables and raw materials, including the cost of procuring HSPC-containing umbilical cord blood. The model indicates that the most cost-efficient culture volume (batch size) is ~100 L in a single bioreactor. This study serves as a framework for decision-making and optimization strategies when contemplating the production of clinical quantities of cells for allogeneic therapy.
Collapse
Affiliation(s)
| | - Richard P Harrison
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, United Kingdom.,Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, Nottingham, United Kingdom
| | - Elizabeth Csaszar
- Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Mexico
| | - Marion E G Brunck
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
19
|
Ng KS, Smith JA, McAteer MP, Mead BE, Ware J, Jackson FO, Carter A, Ferreira L, Bure K, Rowley JA, Reeve B, Brindley DA, Karp JM. Bioprocess decision support tool for scalable manufacture of extracellular vesicles. Biotechnol Bioeng 2019; 116:307-319. [PMID: 30063243 PMCID: PMC6322973 DOI: 10.1002/bit.26809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022]
Abstract
Newly recognized as natural nanocarriers that deliver biological information between cells, extracellular vesicles (EVs), including exosomes and microvesicles, provide unprecedented therapeutic opportunities. Large-scale and cost-effective manufacturing is imperative for EV products to meet commercial and clinical demands; successful translation requires careful decisions that minimize financial and technological risks. Here, we develop a decision support tool (DST) that computes the most cost-effective technologies for manufacturing EVs at different scales, by examining the costs of goods associated with using published protocols. The DST identifies costs of labor and consumables during EV harvest as key cost drivers, substantiating a need for larger-scale, higher-throughput, and automated technologies for harvesting EVs. Importantly, we highlight a lack of appropriate technologies for meeting clinical demands, and propose a potentially cost-effective solution. This DST can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes when commercializing EV products.
Collapse
Affiliation(s)
- Kelvin S. Ng
- Harvard‐MIT Division of Health Sciences and TechnologyCambridgeMassachusetts
- Division of Engineering in Medicine, Department of MedicineBrigham & Women’s Hospital, Harvard Medical SchoolBostonMA
- Harvard Stem Cell InstituteCambridgeMassachusetts
- RoosterBioFrederickMaryland
| | - James A. Smith
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
- The Oxford‐UCL Centre for the Advancement of Sustainable Medical Innovation, University of OxfordOxfordUK
| | - Matthew P. McAteer
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Benjamin E. Mead
- Harvard‐MIT Division of Health Sciences and TechnologyCambridgeMassachusetts
- Division of Engineering in Medicine, Department of MedicineBrigham & Women’s Hospital, Harvard Medical SchoolBostonMA
- Harvard Stem Cell InstituteCambridgeMassachusetts
- Broad Institute of Harvard and MITCambridgeMassachusetts
- Koch Institute for Integrative Cancer Research, MITCambridgeMassachusetts
| | - Jamie Ware
- The Oxford‐UCL Centre for the Advancement of Sustainable Medical Innovation, University of OxfordOxfordUK
| | - Felix O. Jackson
- The Oxford‐UCL Centre for the Advancement of Sustainable Medical Innovation, University of OxfordOxfordUK
| | - Alison Carter
- Department of PaediatricsUniversity of OxfordOxfordUK
| | - Lino Ferreira
- University of Coimbra, Center for Neuroscience and Cell BiologyPortugal
| | - Kim Bure
- The Oxford‐UCL Centre for the Advancement of Sustainable Medical Innovation, University of OxfordOxfordUK
| | | | - Brock Reeve
- Harvard Stem Cell InstituteCambridgeMassachusetts
| | - David A. Brindley
- Harvard Stem Cell InstituteCambridgeMassachusetts
- The Oxford‐UCL Centre for the Advancement of Sustainable Medical Innovation, University of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Centre for Behavioural Medicine, UCL School of Pharmacy, University College LondonLondonUK
- UCSF‐Stanford Center of Excellence in Regulatory Science and InnovationSan FranciscoCalifornia
| | - Jeffrey M. Karp
- Harvard‐MIT Division of Health Sciences and TechnologyCambridgeMassachusetts
- Division of Engineering in Medicine, Department of MedicineBrigham & Women’s Hospital, Harvard Medical SchoolBostonMA
- Harvard Stem Cell InstituteCambridgeMassachusetts
- Broad Institute of Harvard and MITCambridgeMassachusetts
| |
Collapse
|
20
|
Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Lam C, Meinert E, Alturkistani A, Carter AR, Karp J, Yang A, Brindley D, Cui Z. Decision Support Tools for Regenerative Medicine: Systematic Review. J Med Internet Res 2018; 20:e12448. [PMID: 30567696 PMCID: PMC6315273 DOI: 10.2196/12448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Decisional tools have demonstrated their importance in informing manufacturing and commercial decisions in the monoclonal antibody domain. Recent approved therapies in regenerative medicine have shown great clinical benefits to patients. OBJECTIVE The objective of this review was to investigate what decisional tools are available and what issues and gaps have been raised for their use in regenerative medicine. METHODS We systematically searched MEDLINE to identify articles on decision support tools relevant to tissue engineering, and cell and gene therapy, with the aim of identifying gaps for future decisional tool development. We included published studies in English including a description of decisional tools in regenerative medicines. We extracted data using a predesigned Excel table and assessed the data both quantitatively and qualitatively. RESULTS We identified 9 articles addressing key decisions in manufacturing and product development challenges in cell therapies. The decision objectives, parameters, assumptions, and solution methods were analyzed in detail. We found that all decisional tools focused on cell therapies, and 6 of the 9 reviews focused on allogeneic cell therapy products. We identified no available tools on tissue-engineering and gene therapy products. These studies addressed key decisions in manufacturing and product development challenges in cell therapies, such as choice of technology, through modeling. CONCLUSIONS Our review identified a limited number of decisional tools. While the monoclonal antibodies and biologics decisional tool domain has been well developed and has shown great importance in driving more cost-effective manufacturing processes and better investment decisions, there is a lot to be learned in the regenerative medicine domain. There is ample space for expansion, especially with regard to autologous cell therapies, tissue engineering, and gene therapies. To consider the problem more comprehensively, the full needle-to-needle process should be modeled and evaluated.
Collapse
Affiliation(s)
- Ching Lam
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Edward Meinert
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Global Digital Health Unit, Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
| | - Abrar Alturkistani
- Global Digital Health Unit, Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
| | - Alison R Carter
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Karp
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Aidong Yang
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - David Brindley
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Bandeiras C, Cabral JM, Finkelstein SN, Ferreira FC. Modeling biological and economic uncertainty on cell therapy manufacturing: the choice of culture media supplementation. Regen Med 2018; 13:917-933. [PMID: 30488770 DOI: 10.2217/rme-2018-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To evaluate the cost-effectiveness of autologous cell therapy manufacturing in xeno-free conditions. MATERIALS & METHODS Published data on the isolation and expansion of mesenchymal stem/stromal cells introduced donor, multipassage and culture media variability on cell yields and process times on adherent culture flasks to drive cost simulation of a scale-out campaign of 1000 doses of 75 million cells each in a 400 square meter Good Manufacturing Practices facility. RESULTS & CONCLUSION Passage numbers in the expansion step are strongly associated with isolation cell yield and drive cost increases per donor of $1970 and 2802 for fetal bovine serum and human platelet lysate. Human platelet lysate decreases passage numbers and process costs in 94.5 and 97% of donors through lower facility and labor costs. Cost savings are maintained with full equipment depreciation and higher numbers of cells per dose, highlighting the number of cells per passage step as the key cost driver.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal.,Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Joaquim Ms Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| | - Stan N Finkelstein
- Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| |
Collapse
|
23
|
|
24
|
Jenkins MJ, Farid SS. Cost-effective bioprocess design for the manufacture of allogeneic CAR-T cell therapies using a decisional tool with multi-attribute decision-making analysis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Moloudi R, Oh S, Yang C, Teo KL, Lam ATL, Warkiani ME, Naing MW. Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions. Sci Rep 2018; 8:12481. [PMID: 30127526 PMCID: PMC6102204 DOI: 10.1038/s41598-018-31019-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Rapidly evolving cell-based therapies towards clinical trials demand alternative approaches for efficient expansion of adherent cell types such as human mesenchymal stem cells (hMSCs). Using microcarriers (100-300 µm) in a stirred tank bioreactor offers considerably enhanced surface to volume ratio of culture environment. However, downstream purification of the harvested cell product needs to be addressed carefully due to distinctive features and fragility of these cell products. This work demonstrates a novel alternative approach which utilizes inertial focusing to separate microcarriers (MCs) from the final cell suspension. First, we systematically investigated MC focusing dynamics inside scaled-up curved channels with trapezoidal and rectangular cross-sections. A trapezoidal spiral channel with ultra-low-slope (Tan(α) = 0.0375) was found to contribute to strong MC focusing (~300 < Re < ~400) while managing high MC volume fractions up to ~1.68%. Accordingly, the high-throughput trapezoidal spiral channel successfully separated MCs from hMSC suspension with total cell yield~94% (after two passes) at a high volumetric flow rate of ~30 mL/min (Re~326.5).
Collapse
Affiliation(s)
- Reza Moloudi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore.,Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Center for Health Technologies, University of Technology Sydney, Sydney, Ultimo NSW, 2007, Australia. .,Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, 119991, Russia.
| | - May Win Naing
- Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore.
| |
Collapse
|
27
|
Mizukami A, Pereira Chilima TD, Orellana MD, Neto MA, Covas DT, Farid SS, Swiech K. Technologies for large-scale umbilical cord-derived MSC expansion: Experimental performance and cost of goods analysis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
29
|
Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells Int 2018; 2018:4083921. [PMID: 30057622 PMCID: PMC6051015 DOI: 10.1155/2018/4083921] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
Over the last decades, mesenchymal stromal cells (MSC) have been the focus of intense research by academia and industry due to their unique features. MSC can be easily isolated and expanded through in vitro culture by taking full advantage of their self-renewing capacity. In addition, MSC exert immunomodulatory effects and can be differentiated into various lineages, which makes them highly attractive for clinical applications in cell-based therapies. In this review, we attempt to provide a brief historical overview of MSC discovery, characterization, and the first clinical studies conducted. The current MSC manufacturing platforms are reviewed with special attention regarding the use of bioreactors for the production of GMP-compliant clinically relevant cell numbers. The first commercial MSC-based products are also addressed, as well as the remaining challenges to the widespread use of MSC-derived products.
Collapse
|
30
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
31
|
Wallner K, Pedroza RG, Awotwe I, Piret JM, Senior PA, Shapiro AMJ, McCabe C. Stem cells and beta cell replacement therapy: a prospective health technology assessment study. BMC Endocr Disord 2018; 18:6. [PMID: 29382312 PMCID: PMC5791348 DOI: 10.1186/s12902-018-0233-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although current beta cell replacement therapy is effective in stabilizing glycemic control in highly selected patients with refractory type 1 diabetes, many hurdles are inherent to this and other donor-based transplantation methods. One solution could be moving to stem cell-derived transplant tissue. This study investigates a novel stem cell-derived graft and implant technology and explores the circumstances of its cost-effectiveness compared to intensive insulin therapy. METHODS We used a manufacturing optimization model based on work by Simaria et al. to model cost of the stem cell-based transplant doses and integrated its results into a cost-effectiveness model of diabetes treatments. The disease model simulated marginal differences in clinical effects and costs between the new technology and our comparator intensive insulin therapy. The form of beta cell replacement therapy was as a series of retrievable subcutaneous implant devices which protect the enclosed pancreatic progenitors cells from the immune system. This approach was presumed to be as effective as state of the art islet transplantation, aside from immunosuppression drawbacks. We investigated two different cell culture methods and several production and delivery scenarios. RESULTS We found the likely range of treatment costs for this form of graft tissue for beta cell replacement therapy. Additionally our results show this technology could be cost-effective compared to intensive insulin therapy, at a willingness-to-pay threshold of $100,000 per quality-adjusted life year. However, results also indicate that mass production has by far the best chance of providing affordable graft tissue, while overall there seems to be considerable room for cost reductions. CONCLUSIONS Such a technology can improve treatment access and quality of life for patients through increased graft supply and protection. Stem cell-based implants can be a feasible way of treating a wide range of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Klemens Wallner
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| | - Rene G. Pedroza
- Michael Smith Laboratories and Department of Chemical & Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Isaac Awotwe
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| | - James M. Piret
- Michael Smith Laboratories and Department of Chemical & Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Peter A. Senior
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, 2000 College Plaza, 8215 - 112 Street, Edmonton, AB T6G 2C8 Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - A. M. James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, 2000 College Plaza, 8215 - 112 Street, Edmonton, AB T6G 2C8 Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Surgery, University of Alberta, Edmonton, AB Canada
| | - Christopher McCabe
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| |
Collapse
|
32
|
Mehrian M, Guyot Y, Papantoniou I, Olofsson S, Sonnaert M, Misener R, Geris L. Maximizing neotissue growth kinetics in a perfusion bioreactor: An in silico strategy using model reduction and Bayesian optimization. Biotechnol Bioeng 2017; 115:617-629. [DOI: 10.1002/bit.26500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Mehrian
- Biomechanics Research Unit; GIGA In Silico Medicine; University of Liège; Liège Belgium
- Prometheus; The Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
| | - Yann Guyot
- Biomechanics Research Unit; GIGA In Silico Medicine; University of Liège; Liège Belgium
- Prometheus; The Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
| | - Ioannis Papantoniou
- Prometheus; The Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
- Skeletal Biology and Engineering Research Center; KU Leuven; Leuven Belgium
| | - Simon Olofsson
- Department of Computing; Imperial College London; London United Kingdom
| | - Maarten Sonnaert
- Prometheus; The Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
- Department of Metallurgy and Materials Engineering; KU Leuven; Leuven Belgium
| | - Ruth Misener
- Department of Computing; Imperial College London; London United Kingdom
| | - Liesbet Geris
- Biomechanics Research Unit; GIGA In Silico Medicine; University of Liège; Liège Belgium
- Prometheus; The Division of Skeletal Tissue Engineering; KU Leuven; Leuven Belgium
- Biomechanics Section; KU Leuven; Leuven Belgium
| |
Collapse
|
33
|
Finding the design space of a filtration-based operation for the concentration of human pluripotent stem cells. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 2017; 19:1383-1391. [PMID: 28935190 DOI: 10.1016/j.jcyt.2017.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
Cell therapy products are frequently developed and produced without incorporating cost considerations into process development, contributing to prohibitively costly products. Herein we contextualize individual process development decisions within a broad framework for cost-efficient therapeutic manufacturing. This roadmap guides the analysis of cost of goods (COG) arising from tissue procurement, material acquisition, facility operation, production, and storage. We present the specific COG considerations related to each of these elements as identified through a 2013 International Society for Cellular Therapy COG survey, highlighting the differences between autologous and allogeneic products. Planning and accounting for COG at each step in the production process could reduce costs, allowing for more affordable market pricing to improve the long-term viability of the cell therapy product and facilitate broader patient access to novel and transformative cell therapies.
Collapse
|
35
|
Weil BD, Jenkins MJ, Uddin S, Bracewell DG, Wellings D, Farid SS, Veraitch F. An integrated experimental and economic evaluation of cell therapy affinity purification technologies. Regen Med 2017. [DOI: 10.2217/rme-2016-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To present an integrated techno-economic analysis assessing the feasibility of affinity purification technologies using the manufacture of induced pluripotent stem cell-derived progenitor photoreceptors for retinal dystrophies as a case study. Materials & methods: Sort purity, progenitor yield and viable cell recovery were investigated for three cell sorting techniques: fluorescent-activated cell sorting (FACS); magnetic-activated cell sorting (MACS); and a novel technology SpheriTech beads. Experimentally derived metrics were incorporated into an advanced bioprocess economics tool to determine cost of goods per dose for each technology. Results & conclusion: Technical and bioprocess benefits were noted with SpheriTech beads which, unlike FACS and MACS, require no cell labeling. This simplifies the bioprocess, reduces cell loss and leaves target cells label free. The economic tool predicted cost drivers and a critical dose (7 × 107 cells per dose) shifting the most cost-effective technology from FACS to MACS. Process optimization is required for SpheriTech to compete economically.
Collapse
Affiliation(s)
- Benjamin D Weil
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
- Royal Free Hospital Campus, Department of Haematology, University College London, Fleet Road, London NW3 2QG, UK
| | - Michael J Jenkins
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Siddique Uddin
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Daniel G Bracewell
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Donald Wellings
- SpheriTech Ltd, The Heath Business & Technical Park, Runcorn, Cheshire WA7 4QX, UK
| | - Suzanne S Farid
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Farlan Veraitch
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
36
|
Cunha B, Aguiar T, Carvalho SB, Silva MM, Gomes RA, Carrondo MJT, Gomes-Alves P, Peixoto C, Serra M, Alves PM. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization. J Biotechnol 2017; 248:87-98. [PMID: 28174039 DOI: 10.1016/j.jbiotec.2017.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells' characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50×106cellL-1day-1), expansion factors (14-16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30-50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development.
Collapse
Affiliation(s)
- Bárbara Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Tiago Aguiar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Sofia B Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Marta M Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Ricardo A Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Patrícia Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| |
Collapse
|
37
|
Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I. Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:485-498. [DOI: 10.1089/ten.teb.2016.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toon Lambrechts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Antleron, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Kelly W, Rubin J, Scully J, Kamaraju H, Wnukowski P, Bhatia R. Understanding and modeling retention of mammalian cells in fluidized bed centrifuges. Biotechnol Prog 2016; 32:1520-1530. [PMID: 27603018 DOI: 10.1002/btpr.2365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Within the last decade, fully disposable centrifuge technologies, fluidized-bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two-phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis-driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD-predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over-predict dead cell loss by up to 3-fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520-1530, 2016.
Collapse
Affiliation(s)
- William Kelly
- Dept. of Chemical Engineering, Villanova University, Villanova, PA
| | - Jonathan Rubin
- Cell Technology Pharmaceutical Development and Manufacturing Sciences, Janssen R&D, Spring House, PA
| | - Jennifer Scully
- Dept. of Chemical Engineering, Villanova University, Villanova, PA
| | - Hari Kamaraju
- Cell Technology Pharmaceutical Development and Manufacturing Sciences, Janssen R&D, Spring House, PA
| | - Piotr Wnukowski
- Janssen Infectious Diseases and Vaccines, Leiden, 2333, CN, the Netherlands
| | - Ravinder Bhatia
- Cell Technology Pharmaceutical Development and Manufacturing Sciences, Janssen R&D, Spring House, PA
| |
Collapse
|
39
|
Torres-Acosta MA, Ruiz-Ruiz F, Aguilar-Yáñez JM, Benavides J, Rito-Palomares M. Economic analysis of pilot-scale production of B-phycoerythrin. Biotechnol Prog 2016; 32:1472-1479. [PMID: 27556892 DOI: 10.1002/btpr.2344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Indexed: 11/07/2022]
Abstract
β-Phycoerythrin is a color protein with several applications, from food coloring to molecular labeling. Depending on the application, different purity is required, affecting production cost and price. Different production and purification strategies for B-phycoerythrin have been developed, the most studied are based on the production using Porphyridium cruentum and purified using chromatographic techniques or aqueous two-phase systems. The use of the latter can result in a less expensive and intensive recovery of the protein, but there is lack of a proper economic analysis to study the effect of using aqueous two-phase systems in a scaled-up process. This study analyzed the production of B-Phycoerythrin using real data obtained during the scale-up of a bioprocess using specialized software (BioSolve, Biopharm Services, UK). First, a sensitivity analysis was performed to identify critical parameters for the production cost, then a Monte Carlo analysis to emulate real processes by adding uncertainty to the identified parameters. Next, the bioprocess was analyzed to determine its financial attractiveness and possible optimization strategies were tested and discussed. Results show that aqueous two-phase systems retain their advantages of low cost and intensive recovery (54.56%); the costs of production per gram calculated (before titer optimization: US$15,709 and after optimization: US$2,374) allowed to obtain profit (in the range of US$millions in a 10-year period) for a potential company taking this production method by comparing the production cost against commercial prices. The bioprocess analyzed is a promising and profitable method for the generation of a highly purified B-phycoerythrin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1472-1479, 2016.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Federico Ruiz-Ruiz
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - José M Aguilar-Yáñez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Jorge Benavides
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Marco Rito-Palomares
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| |
Collapse
|
40
|
de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 2016; 236:88-109. [PMID: 27527397 DOI: 10.1016/j.jbiotec.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.
Collapse
Affiliation(s)
- António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal.
| |
Collapse
|
41
|
Hassan S, Huang H, Warren K, Mahdavi B, Smith D, Jong S, Farid SS. Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization. Regen Med 2016; 11:287-305. [DOI: 10.2217/rme-2015-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aims: Some allogeneic cell therapies requiring a high dose of cells for large indication groups demand a change in cell expansion technology, from planar units to microcarriers in single-use bioreactors for the market phase. The aim was to model the optimal timing for making this change. Materials & methods: A development lifecycle cash flow framework was created to examine the implications of process changes to microcarrier cultures at different stages of a cell therapy's lifecycle. Results: The analysis performed under assumptions used in the framework predicted that making this switch earlier in development is optimal from a total expected out-of-pocket cost perspective. From a risk-adjusted net present value view, switching at Phase I is economically competitive but a post-approval switch can offer the highest risk-adjusted net present value as the cost of switching is offset by initial market penetration with planar technologies. Conclusion: The framework can facilitate early decision-making during process development.
Collapse
Affiliation(s)
- Sally Hassan
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Hsini Huang
- Graduate Institute of Public Affairs & Department of Political Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Kim Warren
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - Behzad Mahdavi
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - David Smith
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - Simcha Jong
- Department of Management Science & Innovation, University College London, Gower St, London, WC1E 6BT, UK
- Harvard TH Chan School of Public Health, Dept Global Health & Population, Boston, MA 02115, USA
| | - Suzanne S Farid
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
42
|
Cunha B, Silva RJS, Aguiar T, Serra M, Daicic J, Maloisel JL, Clachan J, Åkerblom A, Carrondo MJT, Peixoto C, Alves PM. Improving washing strategies of human mesenchymal stem cells using negative mode expanded bed chromatography. J Chromatogr A 2015; 1429:292-303. [PMID: 26739915 DOI: 10.1016/j.chroma.2015.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
Abstract
The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential.
Collapse
Affiliation(s)
- Bárbara Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Ricardo J S Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Tiago Aguiar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - John Daicic
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden
| | - Jean-Luc Maloisel
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden
| | - John Clachan
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden
| | - Anna Åkerblom
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Cristina Peixoto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|