1
|
Hollis WC, Farooq S, Khoshi MR, Patel M, Karnaukhova E, Eller N, Holada K, Scott DE, Simak J. Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells. Cell Mol Life Sci 2024; 81:376. [PMID: 39212707 PMCID: PMC11364738 DOI: 10.1007/s00018-024-05342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.
Collapse
Affiliation(s)
- Wanida C Hollis
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sehrish Farooq
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - M Reza Khoshi
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Mehulkumar Patel
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Nancy Eller
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dorothy E Scott
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jan Simak
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA.
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, OBRR, 10903 New Hampshire Avenue, WO Bldg. 52/72, Rm. 4210, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Turman JM, Cheplowitz AM, Tiwari C, Thomas T, Joshi D, Bhat M, Wu Q, Pong E, Chu SY, Szymkowski DE, Sharma A, Seveau S, Robinson JM, Kwiek JJ, Burton D, Rajaram MVS, Kim J, Hangartner L, Ganesan LP. Accelerated Clearance and Degradation of Cell-Free HIV by Neutralizing Antibodies Occurs via FcγRIIb on Liver Sinusoidal Endothelial Cells by Endocytosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1284-1296. [PMID: 33568400 DOI: 10.4049/jimmunol.2000772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
Neutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb. Compared with humanized FcγRIIb-expressing mice, HIV clearance was significantly slower in FcγRIIb knockout mice. Interestingly, a pentamix of neutralizing Abs cleared HIV faster compared with hyperimmune anti-HIV Ig (HIVIG), although the HIV Ab/Ag ratio was higher in immune complexes made of HIVIG and HIV than pentamix and HIV. The effector mechanism of LSEC FcγRIIb was identified to be endocytosis. Once endocytosed, both Ab-opsonized HIV pseudoviruses and HIV localized to lysosomes. This suggests that clearance of HIV, endocytosis, and lysosomal trafficking within LSEC occur sequentially and that the clearance rate may influence downstream events. Most importantly, we have identified LSEC FcγRIIb-mediated endocytosis to be the Fc effector mechanism to eliminate cell-free HIV by Abs, which could inform development of HIV vaccine and Ab therapy.
Collapse
Affiliation(s)
- James M Turman
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Alana M Cheplowitz
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Charu Tiwari
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Thushara Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Dhruvi Joshi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Menakshi Bhat
- Center for Retrovirus Research, Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | | | | | | | - Amit Sharma
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - John M Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Jesse J Kwiek
- Center for Retrovirus Research, Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Dennis Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Lars Hangartner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Latha P Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
3
|
Cheng D, Morsch M, Shami GJ, Chung RS, Braet F. Observation and characterisation of macrophages in zebrafish liver. Micron 2020; 132:102851. [PMID: 32092694 DOI: 10.1016/j.micron.2020.102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/22/2023]
Abstract
Kupffer cells are liver-resident macrophages that play an important role in mediating immune-related functions in mammals and humans. They are well-known for their capacity to phagocytose large amounts of waste complexes, cell debris, microbial particles and even malignant cells. Location, appearance and functional aspects are important features used to identify these characteristic cells of the liver sinusoid. To-date, there is limited information on the occurrence of macrophages in zebrafish liver. Therefore, we aimed to characterise the ultrastructural and functional aspects of liver-associated macrophages in the zebrafish model by taking advantage of the latest advances in zebrafish genetics and multimodal correlative imaging. Herein, we report on the occurrence of macrophages within the zebrafish liver exhibiting conventional ultrastructural features (e.g. presence of pseudopodia, extensive lysosomal apparatus, a phagolysosome and making up ∼3% of the liver volume). Intriguingly, these cells were not located within the sinusoidal vascular bed of hepatic tissue but instead resided between hepatocytes and lacked phagocytic function. While our results demonstrated the presence and structural similarities with liver macrophages from other experimental models, their functional characteristics were distinctly different from Kupffer cells that have been described in rodents and humans. These findings illustrate that the innate immune system of the zebrafish liver has some distinctly different characteristics compared to other animal experimental models. This conclusion underpins our call for future studies in order to have a better understanding of the physiological role of macrophages residing between the parenchymal cells of the zebrafish liver.
Collapse
Affiliation(s)
- Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | - Marco Morsch
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Gerald J Shami
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | - Roger S Chung
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
CETP Lowers TLR4 Expression Which Attenuates the Inflammatory Response Induced by LPS and Polymicrobial Sepsis. Mediators Inflamm 2016; 2016:1784014. [PMID: 27293313 PMCID: PMC4880711 DOI: 10.1155/2016/1784014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response to infection eliciting high mortality rate which is a serious health problem. Despite numerous studies seeking for therapeutic alternatives, the mechanisms involved in this disease remain elusive. In this study we evaluated the influence of cholesteryl ester transfer protein (CETP), a glycoprotein that promotes the transfer of lipids between lipoproteins, on the inflammatory response in mice. Human CETP transgenic mice were compared to control mice (wild type, WT) after polymicrobial sepsis induced by cecal ligation and puncture (CLP), aiming at investigating their survival rate and inflammatory profiles. Macrophages from the peritoneal cavity were stimulated with LPS in the presence or absence of recombinant CETP for phenotypic and functional studies. In comparison to WT mice, CETP mice showed higher survival rate, lower IL-6 plasma concentration, and decreased liver toll-like receptor 4 (TLR4) and acyloxyacyl hydrolase (AOAH) protein. Moreover, macrophages from WT mice to which recombinant human CETP was added decreased LPS uptake, TLR4 expression, NF-κB activation and IL-6 secretion. This raises the possibility for new therapeutic tools in sepsis while suggesting that lowering CETP by pharmacological inhibitors should be inconvenient in the context of sepsis and infectious diseases.
Collapse
|
5
|
Morinaga H, Mayoral R, Heinrichsdorff J, Osborn O, Franck N, Hah N, Walenta E, Bandyopadhyay G, Pessentheiner AR, Chi TJ, Chung H, Bogner-Strauss JG, Evans RM, Olefsky JM, Oh DY. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 2015; 64:1120-30. [PMID: 25315009 PMCID: PMC4375077 DOI: 10.2337/db14-1238] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022]
Abstract
The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance.
Collapse
Affiliation(s)
- Hidetaka Morinaga
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Rafael Mayoral
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA Networked Biomedical Research Center on Hepatic and Digestive Diseases (CIBERehd), Monforte de Lemos 3-5, Instituto de Salud Carlos III, Madrid, Spain
| | - Jan Heinrichsdorff
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Niclas Franck
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Evelyn Walenta
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gautam Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ariane R Pessentheiner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Tyler J Chi
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Heekyung Chung
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Da Young Oh
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
6
|
Guo L, Zheng Z, Ai J, Huang B, Li XA. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice. J Biol Chem 2014; 289:14666-73. [PMID: 24719333 DOI: 10.1074/jbc.m113.537258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1(I179N) mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1(I179N) mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1(I179N) mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Ling Guo
- From the Department of Pediatrics, Saha Cardiovascular Research Center
| | - Zhong Zheng
- From the Department of Pediatrics, Graduate Center for Nutritional Sciences, and
| | - Junting Ai
- From the Department of Pediatrics, Graduate Center for Nutritional Sciences, and
| | - Bin Huang
- Kentucky Cancer Registry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Xiang-An Li
- From the Department of Pediatrics, Saha Cardiovascular Research Center, Kentucky Cancer Registry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
7
|
Shao B, Munford RS, Kitchens R, Varley AW. Hepatic uptake and deacylation of the LPS in bloodborne LPS-lipoprotein complexes. Innate Immun 2012; 18:825-33. [PMID: 22441700 DOI: 10.1177/1753425912442431] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Much evidence indicates that bacterial LPS (endotoxin) is removed from the bloodstream mainly by the liver, yet the hepatic uptake mechanisms remain uncertain and controversial. In plasma, LPS can be either 'free' (as aggregates, bacterial membrane fragments or loosely bound to albumin, CD14, or other proteins) or 'bound' (complexed with lipoproteins). Whereas most free LPS is taken up by Kupffer cells (KCs), lipoprotein-bound LPS has seemed to be cleared principally by hepatocytes. Here, we compared the liver's ability to take up and deacylate free LPS aggregates and the LPS in preformed LPS-high density lipoprotein (HDL) complexes. In mice examined from 1 h to 7 d after a small amount of fluorescent (FITC-)LPS was injected into a lateral tail vein, we found FITC-LPS almost entirely within, or adjacent to, KCs. As expected, FITC-LPS complexed with HDL (FITC-LPS-HDL) disappeared more slowly from the circulation and a smaller fraction of the injected dose of FITC-LPS was found in the liver. Unexpectedly, the FITC-LPS injected as FITC-LPS-HDL complexes was also found within sinusoids, adjacent to, or within, KCs. In other experiments, we found that both free and HDL-bound radiolabeled LPS underwent enzymatic deacylation by acyloxyacyl hydrolase (AOAH), the LPS-inactivating enzyme that is principally produced within the liver by KCs. Our observations suggest that KCs and AOAH play important roles in clearing and catabolizing both free LPS and the LPS in circulating LPS-HDL complexes.
Collapse
Affiliation(s)
- Baomei Shao
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| | | | | | | |
Collapse
|
8
|
Schaffert CS, Duryee MJ, Hunter CD, 3rd BCH, DeVeney AL, Huerter MM, Klassen LW, Thiele GM. Alcohol metabolites and lipopolysaccharide: roles in the development and/or progression of alcoholic liver disease. World J Gastroenterol 2009; 15:1209-18. [PMID: 19291821 PMCID: PMC2658861 DOI: 10.3748/wjg.15.1209] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/17/2009] [Accepted: 01/24/2009] [Indexed: 02/06/2023] Open
Abstract
The onset of alcoholic liver disease (ALD) is initiated by different cell types in the liver and a number of different factors including: products derived from ethanol-induced inflammation, ethanol metabolites, and the indirect reactions from those metabolites. Ethanol oxidation results in the production of metabolites that have been shown to bind and form protein adducts, and to increase inflammatory, fibrotic and cirrhotic responses. Lipopolysaccharide (LPS) has many deleterious effects and plays a significant role in a number of disease processes by increasing inflammatory cytokine release. In ALD, LPS is thought to be derived from a breakdown in the intestinal wall enabling LPS from resident gut bacterial cell walls to leak into the blood stream. The ability of adducts and LPS to independently stimulate the various cells of the liver provides for a two-hit mechanism by which various biological responses are induced and result in liver injury. Therefore, the purpose of this article is to evaluate the effects of a two-hit combination of ethanol metabolites and LPS on the cells of the liver to increase inflammation and fibrosis, and play a role in the development and/or progression of ALD.
Collapse
|