1
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
2
|
Abstract
Endothelial cells are important constituents of blood vessels and play a critical role in vascular homeostasis. They do not only control the exchanges between the blood and the surrounding tissues, but are also essential in regulating blood flow, modulating immune-cell trafficking and controlling vascular growth and repair. Endothelial dysfunction leads to cardiovascular diseases and is characterized by deficiency in secretion of vasodilator molecules, elevated reactive oxygen species (ROS), expression of adhesion molecules and excretion of proinflammatory cytokines. The sex hormones, estrogens, androgens and progestogens, regulate endothelial functions. Because cardiovascular disease risk increases after menopause, it is believed that female hormones, estrogens and progestogens promote endothelial cell health and function whereas androgens, the male hormones, might be detrimental. However, as illustrated in the present review, the picture might not be that simple. In addition, sex influences endothelial cell physiology independently of sex hormones but at genetic level.
Collapse
Affiliation(s)
- Jerome Robert
- University Hospital of Zurich, Institute of Clinical Chemistry, Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|
3
|
Connor SG, Parizel PM, Wycoco V, Prentice DA. The relationship between spider naevi & de novo arteriovenous malformations in chronic liver disease. BJR Case Rep 2022; 8:20220081. [PMID: 36211609 PMCID: PMC9518740 DOI: 10.1259/bjrcr.20220081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
We report a patient with decompensated alcoholic liver cirrhosis (Child-Turcotte-Pugh class C) who developed a de novo left frontal cerebral AVM and a subcutaneous left temporal scalp spider naevus. Arteriovenous malformations (AVMs) are vascular abnormalities previously thought to be congenital in nature, although new research has revealed the potential for de novo AVM formation through a two-hit hypothesis. We propose that the oestrogen-rich environment seen in chronic liver disease could act as the second hit to allow for an angiogenic state favouring de novo AVM development. We also postulate that spider naevi are formed through a similar mechanism and may represent early-stage AVMs.
Collapse
Affiliation(s)
- Sophia G Connor
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Paul M Parizel
- David Hartley Chair of Radiology, Royal Perth Hospital & University of Western Australia, Perth, Australia
- Western Australia National Imaging Facility (WA NIF) Node, Perth, Western Australia
| | - Victor Wycoco
- The Neurological Intervention & Imaging Service of Western Australia (NIISWA), Hospital Ave, Nedlands, Western Australia, Australia
| | - David A Prentice
- The Perron Institute for Translational and Neurological Science, QE II Medical Centre Ralph & Patricia Sarich Neuroscience Building, 8 Verdun St, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Younis A, Hardowar L, Barker S, Hulse RP. The consequence of endothelial remodelling on the blood spinal cord barrier and nociception. Curr Res Physiol 2022; 5:184-192. [PMID: 35434652 PMCID: PMC9010889 DOI: 10.1016/j.crphys.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities. However, it is widely appreciated that the sensory neurons do not act alone. These work in harmony with inflammatory and vascular systems to modulate pain perception. The spinal cord has an extensive interaction with the capillary network in the form of a blood spinal cord barrier to ensure homeostatic control of the spinal cord neuron milieu. However, there is an extensive appreciation that disturbances in the blood spinal cord barrier contribute to the onset of chronic pain. Enhanced vascular permeability and impaired blood perfusion have both been highlighted as contributors to chronic pain manifestation. Here, we discuss the evidence that demonstrates alterations in the blood spinal cord barrier influences nociceptive processing and perception of pain.
Collapse
Affiliation(s)
- Awais Younis
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Sarah Barker
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
5
|
Weber CM, Clyne AM. Sex differences in the blood-brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5:011509. [PMID: 33758788 PMCID: PMC7968933 DOI: 10.1063/5.0035610] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The number of people diagnosed with neurodegenerative diseases is on the rise. Many of these diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and motor neuron disease, demonstrate clear sexual dimorphisms. While sex as a biological variable must now be included in animal studies, sex is rarely included in in vitro models of human neurodegenerative disease. In this Review, we describe these sex-related differences in neurodegenerative diseases and the blood-brain barrier (BBB), whose dysfunction is linked to neurodegenerative disease development and progression. We explain potential mechanisms by which sex and sex hormones affect BBB integrity. Finally, we summarize current in vitro BBB bioengineered models and highlight their potential to study sex differences in BBB integrity and neurodegenerative disease.
Collapse
Affiliation(s)
- Callie M. Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Chen L, Yang Y, Zhang L, Li C, Coffie JW, Geng X, Qiu L, You X, Fang Z, Song M, Gao X, Wang H. Aucubin promotes angiogenesis via estrogen receptor beta in a mouse model of hindlimb ischemia. J Steroid Biochem Mol Biol 2017; 172:149-159. [PMID: 28711487 DOI: 10.1016/j.jsbmb.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
Aucubin (AU) is an iridoid glycoside that has been shown to display estrogenic properties and has various pharmacological effects. Herein, we described the angiogenic properties of AU. In the study, hindlimb ischemia was induced by ligation of femoral artery on the right leg of ovariectomized mice. AU treatment significantly accelerated perfusion recovery and reduced tissue injury in mice muscle. Quantification of CD31-positive vessels in hindlimb muscles provided evidences that AU promoted angiogenesis in peripheral ischemia. In addition, results from quantitative PCR and western blot suggested AU induced angiogenesis via vascular endothelial cell growth factor (VEGF)/Akt/endothelial nitric oxide synthase (eNOS) signaling pathway. More interestingly, AU's angiogenic effects could be completely abolished in estrogen receptor beta (ERβ) knockout mice. In conclusion, the underlying mechanisms were elucidated that AU produced pro-angiogenic effects through ERβ-mediated VEGF signaling pathways. These results expand knowledge about the beneficial effects of AU in angiogenesis and blood flow recovery. It might provide insight into the ERβ regulating neovascularisation in hindlimb ischemia and identify AU as a potent new compound used for the treatment of peripheral vascular disease.
Collapse
Affiliation(s)
- Lu Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lusha Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Joel Wake Coffie
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Geng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Lizhen Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Xingyu You
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Zhirui Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Song
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
7
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Rafikova O, Rafikov R, Meadows ML, Kangath A, Jonigk D, Black SM. The sexual dimorphism associated with pulmonary hypertension corresponds to a fibrotic phenotype. Pulm Circ 2015; 5:184-97. [PMID: 25992281 DOI: 10.1086/679724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/18/2014] [Indexed: 01/23/2023] Open
Abstract
Although female predominance in the development of all types of pulmonary hypertension (PH) is well established, many clinical studies have confirmed that females have better prognosis and higher survival rate than males. There is no clear explanation of why sex influences the pathogenesis and progression of PH. Using a rat angioproliferative model of PH, which closely resembles the primary pathological changes observed in humans, we evaluated the role of sex in the development and progression of PH. Female rats had a more pronounced increase in medial thickness in the small pulmonary arteries. However, the infiltration of small pulmonary arteries by inflammatory cells was found only in male rats, and this corresponded to increased myeloperoxidase activity and abundant adventitial and medial fibrosis that were not present in female rats. Although the level of right ventricle (RV) peak systolic pressure was similar in both groups, the survival rate in male rats was significantly lower. Moreover, male rats presented with a more pronounced increase in RV thickness that correlated with diffuse RV fibrosis and significantly impaired right cardiac function. The reduction in fibrosis in female rats correlated with increased expression of caveolin-1 and reduced endothelial nitric oxide synthase-derived superoxide. We conclude that, in the pathogenesis of PH, female sex is associated with greater remodeling of the pulmonary arteries but greater survival. Conversely, in males, the development of pulmonary and cardiac fibrosis leads to early and severe RV failure, and this may be an important reason for the lower survival rate among males.
Collapse
Affiliation(s)
- Olga Rafikova
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA ; These authors contributed equally to this study
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA ; These authors contributed equally to this study
| | - Mary Louise Meadows
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Archana Kangath
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Stephen M Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Wang H, Si L, Li X, Deng W, Yang H, Yang Y, Fu Y. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands. Neural Regen Res 2015; 7:1095-100. [PMID: 25722700 PMCID: PMC4340023 DOI: 10.3969/j.issn.1673-5374.2012.14.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynaecology and Obstetrics, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihui Si
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University, Changchun 130044, Jilin Province, China
| | - Xiaoxi Li
- Department of Gynaecology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Weiguo Deng
- Department of Children's Heatlh, School of Public Health, Jilin Univeristy, Changchun 130021, China
| | - Haimiao Yang
- Department of Scientific Research, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yuyan Yang
- Department of Gynaecology and Obstetrics, Minzu Hospital of Yitong County, Yitong 130700, Jilin Province, China
| | - Yan Fu
- Department of Gynaecology and Obstetrics, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
10
|
Barnabas O, Wang H, Gao XM. Role of estrogen in angiogenesis in cardiovascular diseases. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2014; 10:377-82. [PMID: 24454332 PMCID: PMC3888921 DOI: 10.3969/j.issn.1671-5411.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022]
Abstract
The formation of new blood vessels from existing ones is a major process of angiogenesis and it is most effective in the vascular systems. The physiological process like hypoxia inducible factors involved in the regeneration of damaged tissues varies within the vascular systems in the endothelium and could be limited due to some major angiogenic growth factors like vascular endothelial growth factor, fibroblast growth factors and epidermal growth factor among others which bring about this cellular vascular regrowth. These physiological processes leading to cellular vascular regrowth could be a major function for the treatment of cardiovascular diseases such as ischemia and atherosclerosis. Estrogens are one of the known factors within the cellular mechanisms that could initiate repairs to the damaged vascular tissues, since estrogens are known inducers of angiogenesis leading to this cellular regrowth. Research has also shown that this cellular regrowth is induced by vascular angiogenic growth factors via the estrogen receptors. In this review we will attempt to summarize the main angiogenic growth factors involved in these physiological processes leading to angiogenesis and possible new mechanisms that could lead to this vascular regrowth. And also we will try to summarize some reports on the effect of estrogen on these physiological processes leading to angiogenesis in cardiovascular diseases.
Collapse
Affiliation(s)
- Oche Barnabas
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Wang
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China ; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-Mei Gao
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China ; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: Who, what, where, and when? Brain Res 2013; 1514:107-22. [DOI: 10.1016/j.brainres.2013.02.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 02/08/2023]
|
12
|
Leiter JRS, Upadhaya R, Anderson JE. Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. Am J Physiol Cell Physiol 2012; 302:C1306-15. [DOI: 10.1152/ajpcell.00305.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related sarcopenia reduces the size, strength, and function of muscle, and the diameter of muscle fibers. It also disrupts the dystrophin-glycoprotein complex, dislocating nitric oxide synthase 1 (NOS-1) and reducing sarcolemmal integrity. This study of quadriceps muscle in 18-mo-old mice showed that NO-donor treatment with isosorbide dinitrate (I) for 6 wk, in combination with voluntary exercise for 3 wk, increased muscle mass by 25% and stimulated cell proliferation. The resulting fiber hypertrophy was accompanied by a lower ratio of protein:DNA, consistent with myogenic-cell hyperplasia. Treatment enhanced the ratio of NOS-1:β-dystroglycan in correlation with fiber diameter, improved sarcolemmal integrity, and increased vascular density after an increase in vascular endothelial growth factor protein at 3 wk. Results demonstrate that age-related muscle refractoriness to exercise can be overcome with NO-donor treatment. Since activation of muscle stem cells and vascular perfusion are limiting factors in the maintenance, regeneration, and growth of aged muscle, results suggest the feasibility of using NO-donor drugs to combat atrophy and muscle ischemia. Improved function and quality of life from the NO-amplified effects of exercise may be useful in aging and other conditions such as disuse, insulin resistance, or microgravity.
Collapse
Affiliation(s)
- Jeff R. S. Leiter
- Departments of 1Surgery,
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Judy E. Anderson
- Biological Sciences, and
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Bairagi S, Gopal J, Nathan AA, Babu SS, Kumar NP, Dixit M. Glucose-induced increase in circulating progenitor cells is blunted in polycystic amenorrhoeic subjects. Hum Reprod 2012; 27:844-53. [PMID: 22252083 DOI: 10.1093/humrep/der457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glucose-induced kinetics of bone marrow-derived stem cells in healthy females is presently unknown. The objectives of this study were to determine whether circulating levels of CD133(+), CD34(+) and CD133(+)CD34(+) cells increase in response to glucose load in healthy females and whether the kinetics is altered in amenorrhoeic women. The other objective of the work was to compare the endothelial differentiation potential of peripheral blood-derived endothelial progenitor cells (EPCs) from healthy versus amenorrhoeic women. METHODS In this case-control study, 44 amenorrhoeic subjects and 36 age-matched females with no menstrual disturbance were recruited at Apollo Hospitals, a Tertiary health care center in Chennai, India. Circulating bone marrow-derived stem cells were measured by two color direct flow cytometry. Cultured progenitor cells were characterized at Day 7 and 14 for expression of endothelial markers and production of nitric oxide (NO) via immunofluoroscence. RESULTS The amenorrhoeic subjects were insulin resistant with homeostatic model of assessment of insulin resistance values of 3.33 ± 0.3 versus 1.75 ± 0.148 observed for controls (P< 0.0001). Among the amenorrhoeic subjects, 38 subjects had polycystic ovaries with no signs of hyperandrogenism. Fasting levels of CD133(+), CD34(+) and CD133(+)CD34(+) cells were reduced in amenorrhoeic subjects (P< 0.001). There was a 1.5 to 2-fold increase in the circulating levels of these cells in response to 75 g oral glucose challenge at 1 and 2 h post-load conditions in controls, which was significantly blunted for CD133(+) (P< 0.001) and CD133(+)CD34(+) (P< 0.001) cells in amenorrhoeic subjects. A positive correlation was observed between estrogen and fasting CD133(+) (r= 0.205, P= 0.070), CD34(+) (r= 0.249, P= 0.027) and CD133(+)CD34(+) (r= 0.217, P= 0.055) cell counts. Additionally, fasting counts for CD34(+) and CD133(+)CD34(+) cells positively correlated with FSH and inversely correlated with LH and C-peptide in the polycystic group. Cultured cells from polycystic subjects exhibited reduced adherence to fibronectin and expressed lower levels of endothelial nitric-oxide synthase and NO. CONCLUSIONS Oral glucose-induced increase in circulating numbers of CD133(+) and CD133(+)CD34(+) cells and endothelial differentiation potential of peripheral blood-derived EPCs is attenuated in insulin resistant amenorrhoeic subjects.
Collapse
Affiliation(s)
- Soumi Bairagi
- Laboratory of Vascular Biology, Department of Biotechnology, Indian Institute of Technology Madras, BT 415, Chennai 600036, India
| | | | | | | | | | | |
Collapse
|
14
|
de Jesus Perez VA. Making sense of the estrogen paradox in pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 184:629-30. [PMID: 21920924 DOI: 10.1164/rccm.201107-1184ed] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|