1
|
Zhang X, Cao Y, Wang M, Li Y, Yin H, Ni H, Yang S, Yu F, Yang J, Peng L, Hu M, Li D, Liu D. Primary Cilia Regulate the Homeostasis and Regeneration of the Stem Cell Niche in the Tooth. J Cell Physiol 2025; 240:e31517. [PMID: 39734274 DOI: 10.1002/jcp.31517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.
Collapse
Affiliation(s)
- Xinming Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengge Wang
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Yujia Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fan Yu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lisu Peng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
2
|
Moore ER, Konermann A. Investigating the Role of Primary Cilia and Bone Morphogenetic Protein Signaling in Periodontal Ligament Response to Orthodontic Strain In Vivo and In Vitro: A Pilot Study. Int J Mol Sci 2024; 25:12648. [PMID: 39684361 DOI: 10.3390/ijms252312648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontal ligament (PDL) cells are crucial for mechanosensation and mechanotransduction within the PDL, yet the role of primary cilia in orthodontic force transmission has not been examined. While bone morphogenetic protein (BMP) signaling significantly influences ciliary function, its effect on cellular responses to mechanical stress has not been investigated. This study aims to investigate whether primary cilia and BMP signaling are involved in the periodontal ligament's response to orthodontic tooth movement and the resultant mechanical strain. To visualize primary cilia, human PDL cells were cultured on glass-bottom dishes for five days, with a subset fixed daily, followed by immunostaining with anti-acetylated α-tubulin and Alexa Fluor 568 and imaging using a fluorescence microscope under 405 nm and 561 nm laser excitation. Human PDL cells were grown on Bioflex® culture plates and subsequently exposed to static tensile strains of 2.5%, 5%, 10%, 20%, on a FX-6000T™ Tension System for 24 h. RT-qPCR was performed to evaluate changes in expression of primary cilia via Ift88 expression, mechanotransduction via Cox2 expression, and BMP signaling-related genes. Histological specimens from orthodontically loaded and control human premolars were investigated for primary cilia and BMP signaling using immunohistochemistry and confocal microscopy. Primary cilia were observed in PDL cells from day one, with their incidence and length increasing over time alongside cell density. BMP signaling components, including upregulated genes such as Bmp7 (10.99-14.97 fold), Alk2 (3.19-5.45 fold), and Bmpr2 (1.64-8.40 fold), consistently responded to strain, while Cox2 and Ift88 showed differential regulation depending on strain intensity. In vivo, orthodontic movement activated BMP signaling and increased primary cilium incidence in the PDL. These findings indicate the potential role of primary cilia and BMP signaling in the mechanosensitivity of PDL cells under orthodontic forces. Further studies are required to understand the complex mechanotransduction mechanisms and role of these components in cellular adaptation during orthodontic tooth movement.
Collapse
Affiliation(s)
- Emily R Moore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Anna Konermann
- Department of Orthodontics, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
3
|
Pei SL, Chen RS, Chen MH. Roles of centrioles in neural attraction of dental pulp stem cells. J Formos Med Assoc 2024; 123:934-941. [PMID: 38155028 DOI: 10.1016/j.jfma.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND/PURPOSE Human nerve development is vital, affecting trauma recovery and dental issues. Early embryonic clues link nerves to tooth development via factors like Wnt and Hedgehog pathways. Centrosomes play a role, and centriole issues can disrupt oral development, as in oral facial digital syndrome type 1. This study aimed to delve deeper into the role and influence of centrioles on the development of dental nerves. METHODS Cell migration assessed by co-culturing mouse neural tissue and human dental pulp stem cells (DPSCs). Centrioles were fluorescently stained, and their positions observed with confocal microscopy. Centrinone was employed to inhibit centriole activity, evaluating its impact on cell mobility under activity inhibition. RESULTS As the distance between nerve tissue and DPSCs decreased, more DPSCs had centrioles near nerve tissue. Co-culture with nerve tissue increased DPSCs migration toward it. In contrast, DPSCs cultured alone or with fibroblasts showed weaker migration, indicating neural tissue's attractive influence. The addition of 125 nM centrinone halted cell migration and centriole polymerization. After centrinone removal over two days, centrioles returned to normal, suggesting continued motility inhibition. CONCLUSION Centrioles direct cell movement and polarization. There are two scenarios: centrioles at the cell center with the nucleus moving backward (as in NIH3T3 cells) and both cells and centrioles moving forward (as in DPSCs). DPSCs' attraction to neural tissue may shed light on nerve guidance by tooth germs, aiding embryonic cell differentiation into nerves. However, further in vivo and in vitro studies are needed to confirm the specific mechanism.
Collapse
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Pei SL, Chen RS, Chen MH. The crucial role of centrioles in tooth growth and development. J Formos Med Assoc 2024:S0929-6646(24)00214-6. [PMID: 38704334 DOI: 10.1016/j.jfma.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
6
|
Moore ER. Primary Cilia: The New Face of Craniofacial Research. Biomolecules 2022; 12:biom12121724. [PMID: 36551151 PMCID: PMC9776107 DOI: 10.3390/biom12121724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium is a solitary, sensory organelle that extends from the surface of nearly every vertebrate cell, including craniofacial cells. This organelle converts chemical and physical external stimuli into intracellular signaling cascades and mediates several well-known signaling pathways simultaneously. Thus, the primary cilium is considered a cellular signaling nexus and amplifier. Primary cilia dysfunction directly results in a collection of diseases and syndromes that typically affect multiple organ systems, including the face and teeth. Despite this direct connection, primary cilia are largely unexplored in craniofacial research. In this review, I briefly summarize craniofacial abnormalities tied to the primary cilium and examine the existing information on primary cilia in craniofacial development and repair. I close with a discussion on preliminary studies that motivate future areas of exploration that are further supported by studies performed in long bone and kidney cells.
Collapse
Affiliation(s)
- Emily R Moore
- Harvard School of Dental Medicine, Department of Developmental Biology, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Chang PE, Li S, Kim HY, Lee DJ, Choi YJ, Jung HS. BBS7-SHH Signaling Activity Regulates Primary Cilia for Periodontal Homeostasis. Front Cell Dev Biol 2021; 9:796274. [PMID: 34957122 PMCID: PMC8703258 DOI: 10.3389/fcell.2021.796274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Objectives: Mechanical stimuli are essential for the maintenance of periodontal ligament (PDL) homeostasis. Although there are several studies on atrophic changes in PDL due to occlusal hypofunction, the underlying mechanism is still unknown. Here, we aimed to explore the changes of gene expression in occlusal hypofunctional PDL and elucidate the related role in maintaining the PDL homeostasis. Methods: To investigate the transcriptomic difference between control and hypofunctional PDL tissue from patients, RNA sequencing was performed on 34 human teeth. The atrophic changes in PDL were evaluated by histological analysis. The effect of the Bardet-Biedl syndrome 7 (BBS7) knockdown was evaluated by the RT-qPCR, Western blot, wound healing, and tubule formation assay. Results: We detected that the expression of BBS7 was downregulated in occlusal hypofunctional PDL through RNA sequencing. Dynamic changes, including the number of periodontal ligament cells, alignment of collagen fibers, diameter of blood vessels, appearance of primary cilia, and torturous oxytalan fibers, were observed following occlusal hypofunction. Furthermore, Sonic hedgehog signaling (Shh) activity was closely associated with BBS7 expression in PDL cells. In addition, the cell migration and angiogenesis were also suppressed by BBS7 knockdown in vitro. Conclusion: We suggest that BBS7 plays an essential role in maintaining Shh signaling activity for PDL homeostasis.
Collapse
Affiliation(s)
- Pi En Chang
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | | | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
8
|
Primary cilia in hard tissue development and diseases. Front Med 2021; 15:657-678. [PMID: 34515939 DOI: 10.1007/s11684-021-0829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/13/2020] [Indexed: 10/20/2022]
Abstract
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Collapse
|
9
|
Hermyt M, Metscher B, Rupik W. Ultrastructural studies of developing egg tooth in grass snake Natrix natrix (Squamata, Serpentes) embryos, supported by X-ray microtomography analysis. ZOOLOGY 2021; 146:125913. [PMID: 33765551 DOI: 10.1016/j.zool.2021.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
The egg tooth development is similar to the development of all the other vertebrate teeth except earliest developmental stages because the egg tooth develops directly from the oral epithelium instead of the dental lamina similarly to null generation teeth. The developing egg tooth of Natrix natrix changes its curvature differently than the egg tooth of the other investigated unidentates due to the presence of the rostral groove. The developing grass snake egg tooth comprises dental pulp and the enamel organ. The fully differentiated enamel organ consists of outer enamel epithelium, stellate reticulum, and ameloblasts in its inner layer. The enamel organ directly in contact with the oral cavity is covered with periderm instead of outer enamel epithelium. Stellate reticulum cells in the grass snake egg tooth share intercellular spaces with the basal part of ameloblasts and are responsible for their nutrition. Ameloblasts during egg tooth differentiation pass through the following stages: presecretory, secretory, and mature. The ameloblasts from the grass snake egg tooth show the same cellular changes as reported during mammalian amelogenesis but are devoid of Tomes' processes. Odontoblasts of the developing grass snake egg tooth pass through the following classes: pre-odontoblasts, secretory odontoblasts, and ageing odontoblasts. They have highly differentiated secretory apparatus and in the course of their activity accumulate lipofuscin. Grass snake odontoblasts possess processes which are poor in organelles. In developing egg tooth cilia have been identified in odontoblasts, ameloblasts and cells of the stellate reticulum. Dental pulp cells remodel collagen matrix during growth of the grass snake egg tooth. They degenerate in a way previously not described in other teeth.
Collapse
Affiliation(s)
- Mateusz Hermyt
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, 9 Bankowa Str., 40-007, Katowice, Poland
| | - Brian Metscher
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, 1090, Austria
| | - Weronika Rupik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, 9 Bankowa Str., 40-007, Katowice, Poland.
| |
Collapse
|
10
|
Larionova D, Lesot H, Huysseune A. Miniaturization: How many cells are needed to build a tooth? Dev Dyn 2021; 250:1021-1035. [PMID: 33452709 DOI: 10.1002/dvdy.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Organs that develop early in life, and are replaced by a larger version as the animal grows, often represent a miniature version of the adult organ. Teeth constituting the first functional dentition in small-sized teleost fish, such as medaka (Oryzias latipes), are examples of such miniature organs. With a dentin cone as small as the size of one human cell, or even smaller, these teeth raise the question how many dentin-producing cells (odontoblasts) are required to build such a tooth, and whether this number can be as little as one. RESULTS Based on detailed observations with transmission electron microscopy (TEM) and TEM-based 3D-reconstructions, we show that only one mesenchymal cell qualifies as a true odontoblast. A second mesenchymal cell potentially participates in dentin formation, but only at a late stage of tooth development. Moreover, the fate of these cells appears to be specified very early during tooth development. CONCLUSIONS Our observations indicate that in this system, one single odontoblast fulfills roles normally exerted by a large and communicating cell population. First-generation teeth in medaka thus provide an exciting model to study integration of multiple functions into a single cell.
Collapse
Affiliation(s)
- Daria Larionova
- Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Hervé Lesot
- Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Yuan X, Cao X, Yang S. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death Dis 2019; 10:63. [PMID: 30683845 PMCID: PMC6347632 DOI: 10.1038/s41419-018-0951-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022]
Abstract
Primary cilia and intraflagellar transport (IFT) proteins control a wide variety of processes during tissue development and homeostasis. However, their role in regulation of stem cell properties during tooth development remains elusive. Here, we revealed that dental pulp stem cells (DPSCs) express IFT80, which is required for maintaining DPSC properties. Mice with deletion of IFT80 in odontoblast lineage show impaired molar root development and delayed incisor eruption through reduced DPSC proliferation and differentiation, and disrupted odontoblast polarization. Impaired odontoblast differentiation resulted from disrupted hedgehog (Hh) signaling pathways. Decreased DPSC proliferation is associated with impaired fibroblast growth factor 2 (FGF2) signaling caused by loss of IFT80, leading to the disruption of FGF2-FGFR1-PI3K-AKT signaling in IFT80-deficient DPSCs. The results provide the first evidence that IFT80 controls tooth development through influencing cell proliferation, differentiation, and polarization, and Hh and FGF/AKT signaling pathways, demonstrating that IFT proteins are likely to be the new therapeutic targets for tooth and other tissue repair and regeneration.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA.
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Panny A, Glurich I, Haws RM, Acharya A. Oral and Craniofacial Anomalies of Bardet-Biedl Syndrome: Dental Management in the Context of a Rare Disease. J Dent Res 2017; 96:1361-1369. [PMID: 28662344 DOI: 10.1177/0022034517716913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Standardized guidelines for the oral health management of patients with rare diseases exhibiting morphologic anomalies are currently lacking. This review considers Bardet-Biedl syndrome (BBS), a monogenic autosomal recessive nonmotile ciliopathy, as an archetypal condition. Dental anomalies are present in a majority of individuals affected by BBS due to abnormal embryonic orofacial and tooth development. Genetically encoded intrinsic oral structural anomalies and heterogeneous BBS clinical phenotypes and consequent oral comorbidities confound oral health management. Since the comorbid spectrum of BBS phenotypes spans diabetes, renal disease, obesity, sleep apnea, cardiovascular disease, and cognitive disorders, a broad spectrum of collateral oral disease may be encountered. The genetic impact of BBS on the anatomic development of oral components and oral pathology encountered in the context of various BBS phenotypes and their associated comorbidities are reviewed herein. Challenges encountered in managing patients with BBS are highlighted, emphasizing the spectrum of oral pathology associated with heterogeneous clinical phenotypic expression. Guidelines for provision of care across the spectrum of BBS clinical phenotypes are considered. Establishment of integrated medical-dental delivery models of oral care in the context of rare diseases is emphasized, including involvement of caregivers in the context of managing these patients with special needs.
Collapse
Affiliation(s)
- A Panny
- 1 Institute for Oral and Systemic Health, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - I Glurich
- 1 Institute for Oral and Systemic Health, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - R M Haws
- 2 Center for Clinical Research, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - A Acharya
- 1 Institute for Oral and Systemic Health, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| |
Collapse
|
13
|
Hampl M, Cela P, Szabo-Rogers HL, Kunova Bosakova M, Dosedelova H, Krejci P, Buchtova M. Role of Primary Cilia in Odontogenesis. J Dent Res 2017; 96:965-974. [PMID: 28605602 DOI: 10.1177/0022034517713688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue-producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.
Collapse
Affiliation(s)
- M Hampl
- 1 Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno, Czech Republic.,2 Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - P Cela
- 1 Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno, Czech Republic.,3 Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - H L Szabo-Rogers
- 4 Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,5 Center for Craniofacial Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - H Dosedelova
- 1 Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno, Czech Republic
| | - P Krejci
- 6 Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,7 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - M Buchtova
- 1 Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno, Czech Republic.,2 Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Zschocke J, Schossig A, Bosshardt DD, Karall D, Glueckert R, Kapferer-Seebacher I. Variable expressivity of TCTEX1D2 mutations and a possible pathogenic link of molar-incisor malformation to ciliary dysfunction. Arch Oral Biol 2017; 80:222-228. [PMID: 28475963 DOI: 10.1016/j.archoralbio.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Clarification of the molecular basis of a ciliopathy associated with molar-incisor malformation in a consanguineous Turkish family. DESIGN Full dental and clinical examinations, histologic analysis, comprehensive genetic analyses including exome sequencing, ciliary function tests and transmission electron microscopy of ciliary biopsies in the surviving patient. RESULTS Two siblings had situs inversus and complex heart defects suggestive of ciliary dysfunction. The affected girl who died in utero showed severe chest abnormalities compatible with Jeune syndrome which were not present in the affected boy. Dental investigations in the boy showed typical signs of molar-incisor-malformation. Exome sequencing identified a homozygous intragenic deletion in TCTEX1D2 which is predicted to completely remove protein function. Ciliary function tests and electron microscopy showed mild irregularities of motile cilia such as compound cilia and loss of membranes. CONCLUSIONS Our findings support the suggestion that TCTEX1D2 mutations have variable expressivity and may be associated with disturbances of embryonic development caused by both, ciliary signaling and motile dysfunction. The presence of molar-incisor-malformation in the living patient raises the possibility of a pathogenetic link of this rare dental anomaly to ciliary dysfunction during tooth development at least in some individuals.
Collapse
Affiliation(s)
- Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Anna Schossig
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Ines Kapferer-Seebacher
- Department of Operative and Restorative Dentistry, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development. PLoS One 2017; 12:e0170756. [PMID: 28122017 PMCID: PMC5266283 DOI: 10.1371/journal.pone.0170756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors.
Collapse
|
16
|
Affiliation(s)
- Deepak Venkatesh
- Department of Dentistry, ESIC Medical College and PGIMSR and Model Hospital, Bengaluru, Karnataka, India E-mail:
| |
Collapse
|