1
|
Murugaiyan K, Amirthalingam S, Hwang NSY, Jayakumar R. Role of FGF-18 in Bone Regeneration. J Funct Biomater 2023; 14:jfb14010036. [PMID: 36662083 PMCID: PMC9864085 DOI: 10.3390/jfb14010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In tissue engineering, three key components are cells, biological/mechanical cues, and scaffolds. Biological cues are normally proteins such as growth factors and their derivatives, bioactive molecules, and the regulators of a gene. Numerous growth factors such as VEGF, FGF, and TGF-β are being studied and applied in different studies. The carriers used to release these growth factors also play an important role in their functioning. From the early part of the 1990s, more research has beenconductedon the role of fibroblast growth factors on the various physiological functions in our body. The fibroblast growth factor family contains 22 members. Fibroblast growth factors such as 2, 9, and 18 are mainly associated with the differentiation of osteoblasts and in bone regeneration. FGF-18 stimulates the PI3K/ERK pathway and smad1/5/8 pathway mediated via BMP-2 by blocking its antagonist, which is essential for bone formation. FGF-18 incorporated hydrogel and scaffolds had showed enhanced bone regeneration. This review highlights these functions and current trends using this growth factor and potential outcomes in the field of bone regeneration.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | | | - Nathaniel Suk-Yeon Hwang
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: or
| |
Collapse
|
2
|
Amirthalingam S, Lee SS, Pandian M, Ramu J, Iyer S, Hwang NS, Jayakumar R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci 2021; 9:2439-2453. [DOI: 10.1039/d0bm01496f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparing the bone regeneration potential of nano whitlockite or nano bioglass in combination with FGF-18, loaded in an injectable, shear-thinning chitin/PLGA hydrogel for craniofacial bone regeneration.
Collapse
Affiliation(s)
| | - Seunghun S. Lee
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Mahalakshmi Pandian
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Rangasamy Jayakumar
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| |
Collapse
|
3
|
Wu Y, Hong Z, Xu W, Chen J, Wang Q, Chen J, Ni W, Mei Z, Xie Z, Ma Y, Wang J, Lu J, Chen C, Fan S, Shen S. Circular RNA circPDE4D Protects against Osteoarthritis by Binding to miR-103a-3p and Regulating FGF18. Mol Ther 2020; 29:308-323. [PMID: 33125858 PMCID: PMC7791010 DOI: 10.1016/j.ymthe.2020.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/05/2020] [Accepted: 09/01/2020] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a common, age-related, and painful disease characterized by cartilage destruction, osteophyte formation, and synovial hyperplasia. This study revealed that circPDE4D, a circular RNA derived from human linear PDE4D, plays a critical role in maintaining the extracellular cellular matrix (ECM) during OA progression. circPDE4D was significantly downregulated in OA cartilage tissues and during stimulation with inflammatory cytokines. The knockdown of circPDE4D predominantly contributed to Aggrecan loss and the upregulation of matrix catabolic enzymes, including MMP3, MMP13, ADAMTS4, and ADAMTS5, but not proliferation or apoptosis. In a murine model of destabilization of the medial meniscus (DMM), the intraarticular injection of circPDE4D alleviated DMM-induced cartilage impairments. Mechanistically, we found that circPDE4D exerted its effect by acting as a sponge for miR-103a-3p and thereby regulated FGF18 expression, which is a direct target of miR-103a-3p. In conclusion, our findings highlight a novel protective role of circPDE4D in OA pathogenesis and indicate that the targeting of the circPDE4D-miR-103a-3p-FGF18 axis might provide a potential and promising approach for OA therapy.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Zhenghua Hong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China; Department of Orthopaedic Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Qingxin Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China; Department of Orthopaedic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Zhejiang, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China
| | - Jianhong Lu
- Department of Clinical Laboratory, China Coast Guard Hospital of the People's Armed Police Force, Zhejiang, China
| | - Chao Chen
- Department of Orthopaedic Surgery, School of Traditional Chinese Medicine, Southern Medical University, Guangdong, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| |
Collapse
|
4
|
Guo P, Wang Y, Dai C, Tao C, Wu F, Xie X, Yu H, Zhu Q, Li J, Ye L, Yu F, Shan Y, Yu Z, Dhanasekaran R, Zheng R, Chen G. Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/β-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene 2017; 37:1220-1236. [DOI: 10.1038/s41388-017-0017-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
|
5
|
Mahapatra C, Singh RK, Kim JJ, Patel KD, Perez RA, Jang JH, Kim HW. Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27573-27584. [PMID: 27649064 DOI: 10.1021/acsami.6b09769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Providing an osteogenic stimulatory environment is a key strategy to construct stem cell-based bone-equivalent tissues. Here we design a stem cell delivering gel matrix made of collagen (Col) with bioactive glass nanocarriers (BGn) that incorporate osteogenic signaling molecule, fibroblast growth factor 18 (FGF18), a reservoir considered to cultivate and promote osteogenesis of mesenchymal stem cells (MSCs). The presence of BGn in the gel was shown to enhance the osteogenic differentiation of MSCs, possibly due to the therapeutic role of ions released. The mesoporous nature of BGn was effective in loading FGF18 at large quantity, and the FGF18 release from the BGn-Col gel matrix was highly sustainable with almost a zero-order kinetics, over 4 weeks as confirmed by the green fluorescence protein signal change. The released FGF18 was effective in accelerating osteogenesis (alkaline phosphatase activity and bone related gene expressions) and bone matrix formation (osteopontin, bone sialoprotein, and osteocalcin production) of MSCs. This was attributed to the bone morphogenetic protein (BMP) signaling pathway, where the FGF18 release stimulated the endogenous secretion of BMP2 and the downstream signal Smad1/5/8. Taken together, the FGF18-BGn/Col gel is considered an excellent osteopromoting depot to support and signal MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine , Incheon 22212, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University , Cheonan 330-714, South Korea
| |
Collapse
|
6
|
Nunes QM, Li Y, Sun C, Kinnunen TK, Fernig DG. Fibroblast growth factors as tissue repair and regeneration therapeutics. PeerJ 2016; 4:e1535. [PMID: 26793421 PMCID: PMC4715458 DOI: 10.7717/peerj.1535] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.
Collapse
Affiliation(s)
- Quentin M. Nunes
- Department of Molecular and Clinical Cancer Medicine, NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tarja K. Kinnunen
- Department of Biology, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Howard D, Wardale J, Guehring H, Henson F. Delivering rhFGF-18 via a bilayer collagen membrane to enhance microfracture treatment of chondral defects in a large animal model. J Orthop Res 2015; 33:1120-7. [PMID: 25721940 DOI: 10.1002/jor.22882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 02/04/2023]
Abstract
Augmented microfracture techniques use growth factors, cells, and/or scaffolds to enhance the healing of microfracture-treated cartilage defects. This study investigates the effect of delivering recombinant human fibroblastic growth factor 18 (rhFHF18, Sprifermin) via a collagen membrane on the healing of a chondral defect treated with microfracture in an ovine model. Eight millimeter diameter chondral defects were created in the medial femoral condyle of 40 sheep (n = 5/treatment group). Defects were treated with microfracture alone, microfracture + intra-articular rhFGF-18 or microfracture + rhFGF-18 delivered on a membrane. Outcome measures included mechanical testing, weight bearing, International Cartilage Repair Society repair score, modified O'Driscoll score, qualitative histology, and immunohistochemistry for types I and II collagen. In animals treated with 32 μg rhFGF-18 + membrane and intra-articularly, there was a statistically significant improvement in weight bearing at 2 and 4 weeks post surgery and in the modified O'Driscoll score compared to controls. In addition, repair tissue stained was more strongly stained for type II collagen than for type I collagen. rhFGF-18 delivered via a collagen membrane at the point of surgery potentiates the healing of a microfracture treated cartilage defect.
Collapse
Affiliation(s)
- Daniel Howard
- Orthopaedics Research Unit, University of Cambridge, Box 180, Addenbrooke's Hospital, Hill's Road, Cambridge, United Kingdom
| | - John Wardale
- Orthopaedics Research Unit, University of Cambridge, Box 180, Addenbrooke's Hospital, Hill's Road, Cambridge, United Kingdom
| | | | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom
| |
Collapse
|
8
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
9
|
Xia B, Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 2014; 95:495-505. [PMID: 25311420 PMCID: PMC4747051 DOI: 10.1007/s00223-014-9917-9] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA), the most prevalent chronic joint disease, increases in prevalence with age, and affects majority of individuals over the age of 65 and is a leading musculoskeletal cause of impaired mobility in the elderly. Because the precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of OA are poorly understood and there are currently no effective interventions to decelerate the progression of OA or retard the irreversible degradation of cartilage except for total joint replacement surgery. In this paper, the important molecular mechanisms related to OA pathogenesis will be summarized and new insights into potential molecular targets for the prevention and treatment of OA will be provided.
Collapse
Affiliation(s)
- Bingjiang Xia
- Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
10
|
Power J, Hernandez P, Guehring H, Getgood A, Henson F. Intra-articular injection of rhFGF-18 improves the healing in microfracture treated chondral defects in an ovine model. J Orthop Res 2014; 32:669-76. [PMID: 24436147 DOI: 10.1002/jor.22580] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/13/2013] [Indexed: 02/04/2023]
Abstract
Microfracture is a common cartilage repair procedure. Strategies to improve healing post-microfracture include the use of growth factors to enhance hyaline cartilage production. This study investigates the effect of intra-articular recombinant human fibroblastic growth factor 18 (rhFHF18) on the healing of a chondral defect treated with microfracture in an ovine model. Chondral defects (8 mm diameter) were created in the medial femoral condyle of 80 sheep (n = 16/treatment group). Defects were treated with microfracture alone or microfracture + intra-articular rhFGF-18 (administered either as one or two cycles of 3× weekly injections). Outcome measures included mechanical testing, macroscopic International Cartilage Repair Society repair score, modified O'Driscoll histology score, qualitative histology, and immunohistochemistry for types I, II, and VI collagen. In treated animals, there was a statistically significant improvement in ICRS tissue repair score and tissue infill score, in the modified O'Driscoll score between control and 1 cycle of rhFGF-18 at 6 m, and in the cartilage repair score and structural characteristic score between the control and both rhFGF-18 groups at 6 m. There was no evidence of degeneration of adjacent cartilage in the rhFGF-18 treated cartilage. The increase in hyaline cartilage-like tissue formed in the microfracture + rhFGF-18 treated groups indicates that rhFGF-18 potentiates the formation of hyaline cartilage repair following microfracture.
Collapse
Affiliation(s)
- Jonathon Power
- Orthopaedics Research Unit, University of Cambridge, Box 180, Addenbrooke's Hospital, Hill's Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
11
|
Pitkin M. Design features of implants for direct skeletal attachment of limb prostheses. J Biomed Mater Res A 2013; 101:3339-48. [PMID: 23554122 DOI: 10.1002/jbm.a.34606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/11/2022]
Abstract
In direct skeletal attachment (DSA) of limb prostheses, a construct is implanted into an amputee's residuum bone and protrudes out of the residuum's skin. This technology represents an alternative to traditional suspension of prostheses via various socket systems, with clear indications when the sockets cannot be properly fitted. Contemporary DSA was invented in the 1990s, and several implant systems have been introduced since then. The current review is intended to compare the design features of implants for DSA whose use in humans or in animal studies has been reported in the literature.
Collapse
Affiliation(s)
- M Pitkin
- Tufts University School of Medicine, Boston, Massachusetts, 02111; Poly-Orth International, Sharon, Massachusetts, 02067
| |
Collapse
|