1
|
Yu DSX, Hui CK, Ismail-Fitry MR, Koirala P, Nirmal N, Nor-Khaizura MAR. High-pressure processing and heat treatment of Murrah buffalo milk: Comparative study on microbial changes during refrigerated storage. Int J Food Microbiol 2025; 426:110926. [PMID: 39368122 DOI: 10.1016/j.ijfoodmicro.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study aims to evaluate the effect of high-pressure processing (HPP) (500 and 600 MPa for 3 min and 5 min) on the microbial changes of Murrah buffalo milk in comparison to heat treatment (72 °C for 15 s of holding time) during refrigerated storage of 28 days. The results indicated that the total plate count (TPC) of raw milk at day 0 was 5.5 ± 0.6 log10 CFU/mL. At day 0, heat treatment lowered TPC to 3.9 ± 0.6, while HPP treatment was in the range of 4.1 ± 0.3 to 4.8 ± 0.6 log10 CFU/mL. Similarly, lowered yeast and mold count and lactic acid bacteria were noted in heat- and HPP-treated milk samples compared to the control sample during refrigerated storage. There were no Staphylococcus aureus and Escherichia coli detected in heat and HPP-treated samples. Heat or HPP treatment at 600 MPa for 5 min significantly extended the shelf-life of Murrah buffalo milk for three weeks at the refrigerated storage. In addition, HPP treatment did not alter the pH, lightness (L* value), protein, or fat content of Murrah buffalo milk during refrigerated storage. Hence HPP at 600 MPa for 5 min could be a suitable alternative to conventional heat treatment.
Collapse
Affiliation(s)
- Darren Sim Xuan Yu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chong Kah Hui
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Rabiu AG, Marcus AJ, Olaitan MO, Falodun OI. Systematic review and meta-analyses of the role of drinking water sources in the environmental dissemination of antibiotic-resistant Escherichia coli in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3720-3734. [PMID: 38379376 DOI: 10.1080/09603123.2024.2320934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Escherichia coli are pathogenic and antibiotic-resistant organisms that can spread to humans through water. However, there is sparse synthesised information on the dissemination of antibiotic-resistant E. coli through drinking water in Africa. This review provides an overview of the environmental spread of antimicrobial-resistant E. coli through drinking water in Africa. We performed a systematic review based on PRISMA guidelines, and 40 eligible studies from 12 countries were identified until June 2023. Four electronic databases (PubMed, Elsevier, AJOL, and DOAJ) were searched. Studies that employed phenotypic tests (n = 24/40) in identifying the bacterium outstripped those that utilised genome-based methods (n = 13). Of the 40 studies, nine and five, respectively, assessed the bacterium for antimicrobial resistance (AMR) phenotype and genotype. Multiple antibiotic resistance indices of 0.04-0.1 revealed a low level of antibiotic resistance. The detection of multidrug-resistant E. coli carrying resistance genes in certain water sources suggests that AMR-surveillance expansion should include drinking water.
Collapse
Affiliation(s)
- Akeem Ganiyu Rabiu
- Department of Microbiology, Federal University of Health Sciences, Ila-Orangun, Nigeria
| | | | | | | |
Collapse
|
3
|
Peterle VM, Cardoso JAB, Ferraz CM, Sousa DFD, Pereira N, Nassar AFDC, Castro V, Mathias LA, Cardozo MV, Rossi GAM. Microbiological Quality of Coconut Water Sold in the Grande Vitória Region, Brazil, and Phenogenotypic Antimicrobial Resistance of Associated Enterobacteria. Microorganisms 2024; 12:1883. [PMID: 39338557 PMCID: PMC11434256 DOI: 10.3390/microorganisms12091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to evaluate the microbiological quality of coconut water sold from street carts equipped with cooling coils or refrigerated at bakeries in the Grande Vitória Region, Brazil. Additionally, it assessed the phenotypic and genotypic antimicrobial resistance profiles of isolated enterobacteria. The results indicated that coconut water sold at street carts had lower microbiological quality compared to refrigerated samples, as evidenced by significantly higher counts of mesophilic microorganisms. Using MALDI-TOF, the following opportunistic pathogens were identified: Citrobacter freundii, Enterobacter bugandensis, E. kobei, E. roggenkampii, Klebsiella pneumoniae, and Kluyvera ascorbata. Three isolates-E. bugandensis, K. pneumoniae, and K. ascorbata-were classified as multidrug-resistant (MDR). Widespread resistance to β-lactams and cephalosporins was detected, and some isolates were resistant to quinolones, nitrofurans, and phosphonic acids. The gene blaCTX-M-2 was detected in C. freundii, E. bugandensis, E. kobei, and K. ascorbata. However, genes blaNDM, blaKPC, blaCMY-1, and blaCMY-2 were not detected in any isolate. The findings underscore the need to enhance good manufacturing practices in this sector to control the spread of antimicrobial resistance (AMR). To our knowledge, this is the first study documenting the presence of potentially pathogenic enterobacteria in coconut water samples and their associated phenotypic and genotypic AMR profiles.
Collapse
Affiliation(s)
- Valéria Modolo Peterle
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, ES, Brazil
| | | | - Carolina Magri Ferraz
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, ES, Brazil
| | | | - Natália Pereira
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | | | - Vanessa Castro
- Instituto Biológico (IB) de São Paulo, Rua Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil
| | - Luis Antonio Mathias
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Marita Vedovelli Cardozo
- Department of Pathology, Reproduction and One Health, Sao Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | | |
Collapse
|
4
|
Kalpana P, Falkenberg T, Yasobant S, Saxena D, Schreiber C. Agroecosystem exploration for Antimicrobial Resistance in Ahmedabad, India: A Study Protocol. F1000Res 2024; 12:316. [PMID: 38644926 PMCID: PMC11026950 DOI: 10.12688/f1000research.131679.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) has emerged as one of the leading threats to public health. AMR possesses a multidimensional challenge that has social, economic, and environmental dimensions that encompass the food production system, influencing human and animal health. The One Health approach highlights the inextricable linkage and interdependence between the health of people, animal, agriculture, and the environment. Antibiotic use in any of these areas can potentially impact the health of others. There is a dearth of evidence on AMR from the natural environment, such as the plant-based agriculture sector. Antibiotics, antibiotic-resistant bacteria (ARB), and related AMR genes (ARGs) are assumed to present in the natural environment and disseminate resistance to fresh produce/vegetables and thus to human health upon consumption. Therefore, this study aims to investigate the role of vegetables in the spread of AMR through an agroecosystem exploration in Ahmedabad, India. Protocol The present study will be executed in Ahmedabad, located in Gujarat state in the Western part of India, by adopting a mixed-method approach. First, a systematic review will be conducted to document the prevalence of ARB and ARGs on fresh produce in South Asia. Second, agriculture farmland surveys will be used to collect the general farming practices and the data on common vegetables consumed raw by the households in Ahmedabad. Third, vegetable and soil samples will be collected from the selected agriculture farms and analyzed for the presence or absence of ARB and ARGs using standard microbiological and molecular methods. Discussion The analysis will help to understand the spread of ARB/ARGs through the agroecosystem. This is anticipated to provide an insight into the current state of ARB/ARGs contamination of fresh produce/vegetables and will assist in identifying the relevant strategies for effectively controlling and preventing the spread of AMR.
Collapse
Affiliation(s)
- Pachillu Kalpana
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, NRW, 53113, Germany
- One Health Graduate School, Center for Development Research (ZEF), University of Bonn, Bonn, NRW, 53113, Germany
| | - Timo Falkenberg
- One Health Graduate School, Center for Development Research (ZEF), University of Bonn, Bonn, NRW, 53113, Germany
- Institute for Hygiene and Public Health (IHPH), Universitätsklinikum Bonn (University Hospital Bonn), Bonn, NRW, 53127, Germany
| | - Sandul Yasobant
- One Health Graduate School, Center for Development Research (ZEF), University of Bonn, Bonn, NRW, 53113, Germany
- Institute for Hygiene and Public Health (IHPH), Universitätsklinikum Bonn (University Hospital Bonn), Bonn, NRW, 53127, Germany
- School of Epidemiology & Public Health, Datta Meghe Institute of Medical Sciences (DMIMS), Wardha, Maharastra, 442004, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar, Gujarat, 382042, India
| | - Deepak Saxena
- School of Epidemiology & Public Health, Datta Meghe Institute of Medical Sciences (DMIMS), Wardha, Maharastra, 442004, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar, Gujarat, 382042, India
| | - Christiane Schreiber
- Institute for Hygiene and Public Health (IHPH), Universitätsklinikum Bonn (University Hospital Bonn), Bonn, NRW, 53127, Germany
| |
Collapse
|
5
|
Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
6
|
Antioxidant Activity, Microbiological Quality, and Acceptability of Spontaneously Fermented Shrimp Sausage (Litopenaeus vannamei). J FOOD QUALITY 2022. [DOI: 10.1155/2022/5553432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermented shrimp sausages are prepared spontaneously with Litopenaeus vannamei as raw material. Shrimp is one of the marine sources with rich chitosan as bioactive compounds, antioxidants, vitamin E, and probiotic lactic acid bacteria (LAB) produced by fermentation processes. This study aimed to analyze the variations in antioxidant activity, vitamin E content, total LAB, total pathogenic bacteria, pH, and acceptability of shrimp sausage produced at different fermentation times. A completely randomized experimental design study was performed using four levels of exposure time, including control (0 days), 1, 2, and 3 days. The treatment was conducted spontaneously with 1.2% salt concentration, a drying temperature of 50°C for 3 h, and fermentation at 35°C. The evaluated parameters included the antioxidant activity measured with the radical 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) method, vitamin E levels by high-performance liquid chromatography, total LAB with total plate count, and Escherichia coli bacteria by the most probable number method. Salmonella sp. and Staphylococcus aureus were estimated by the identification method. A pH meter was used to assess acidity, and hedonic organoleptic testing was performed for taste, aroma, color, and texture. The results show significant differences in antioxidant activity, vitamin E, and shrimp sausage acceptability at varied fermentation times
. However, the best formulation was obtained with the first-day fermented shrimp sausage, as shown by its bioactive content and the level of acceptability.
Collapse
|
7
|
Tracking Fecal Bacterial Dispersion from Municipal Wastewater to Peri-Urban Farms during Monsoon Rains in Hue City, Vietnam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189580. [PMID: 34574504 PMCID: PMC8468961 DOI: 10.3390/ijerph18189580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Disease outbreaks attributed to monsoon flood-induced pathogen exposure are frequently reported, especially in developing cities with poor sanitation. Contamination levels have been monitored in past studies, yet the sources, routes, and extents of contamination are not always clear. We evaluated pollution from municipal wastewater (MWW) discharge and investigated fecal contamination by Escherichia coli (E. coli) in three agricultural fields on the outskirts of Hue City, Vietnam. After E. coli concentration was determined in irrigation water (IRW), MWW, soil, vegetables (VEG), and manure, its dispersion from MWW was tracked using multilocus sequence typing (MLST) and phylogenetic analyses during the wet and dry seasons. IRW was severely contaminated; 94% of the samples were positive with E. coli exceeding the stipulated standards, while VEG contamination was very low in both seasons. The confirmed total number of isolates was comparable between the seasons; however, results from MLST and phylogenetic clustering revealed more links between the sites and samples to MWW during the wet season. The wet season had four mixed clusters of E. coli isolates from multiple locations and samples linked to MWW, while only one mixed cluster also linking MWW to IRW was observed during the dry season. The most prevalent sequence type (ST) complex 10 and two others (40 and 155) have been associated with disease outbreaks, while other STs have links to major pathotypes. Irrigation canals are significant routes for E. coli dispersion through direct links to the urban drainage-infested river. This study clarified the genotype of E. coli in Hue city, and the numerous links between the samples and sites revealed MWW discharge as the source of E. coli contamination that was enhanced by flooding.
Collapse
|
8
|
Limayem A, Wasson S, Mehta M, Pokhrel AR, Patil S, Nguyen M, Chen J, Nayak B. High-Throughput Detection of Bacterial Community and Its Drug-Resistance Profiling From Local Reclaimed Wastewater Plants. Front Cell Infect Microbiol 2019; 9:303. [PMID: 31637218 PMCID: PMC6787911 DOI: 10.3389/fcimb.2019.00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Treated wastewater from reclaimed facilities (WWTP) has become a reusable source for a variety of applications, such as agricultural irrigation. However, it is also a potential reservoir of clinically-relevant multidrug resistant (MDR) pathogens, including ESKAPE (Enterococcus faecium and Streptococcus surrogates, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species along with the emerging nosocomial Escherichia strains). This study was performed to decipher the bacterial community structure through Illumina high throughput 16S rRNA gene sequencing, and to determine the resistance profile using the Sensititre antimicrobial susceptibility test (AST) conforming to clinical lab standards (NCCLS). Out of 1747 bacterial strains detected from wastewater influent and effluent, Pseudomonas was the most predominant genus related to ESKAPE in influent, with sequence reads corresponding to 21.356%, followed by Streptococcus (6.445%), Acinetobacter (0.968%), Enterococcus (0.063%), Klebsiella (0.038%), Escherichia (0.028%) and Staphylococcus (0.004%). Despite the different treatment methods used, the effluent still revealed the presence of some Pseudomonas strains (0.066%), and a wide range of gram-positive cocci, including Staphylococcus (0.194%), Streptococcus (0.63%) and Enterococcus (0.037%), in addition to gram-negative Acinetobacter (0.736%), Klebsiella (0.1%), and Escherichia sub-species (0.811%). The AST results indicated that the strains Escherichia along with Klebsiella and Acinetobacter, isolated from the effluent, displayed resistance to 11 antibiotics, while Pseudomonas was resistant to 7 antibiotics, and Streptococcus along with Staphylococcus were resistant to 9 antibiotics. Results herein, proved the existence of some nosocomial MDR pathogens, known for ESKAPE, with potential drug resistance transfer to the non-pathogen microbes, requiring targeted remediation.
Collapse
Affiliation(s)
- Alya Limayem
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Translational Medicine, Center for Education in Nanobioengineering, University of South Florida, Tampa, FL, United States
| | - Sarah Wasson
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Mausam Mehta
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anaya Raj Pokhrel
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Shrushti Patil
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Minh Nguyen
- College of Public Health, University of South Florida, Tampa, FL, United States.,College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Jing Chen
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Bina Nayak
- Pinellas County Utilities, Water Quality Division, Largo, FL, United States
| |
Collapse
|
9
|
Zhao S, He W, Ma Z, Liu P, Huang PH, Bachman H, Wang L, Yang S, Tian Z, Wang Z, Gu Y, Xie Z, Huang TJ. On-chip stool liquefaction via acoustofluidics. LAB ON A CHIP 2019; 19:941-947. [PMID: 30702741 PMCID: PMC6626638 DOI: 10.1039/c8lc01310a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microfluidic-based portable devices for stool analysis are important for detecting established biomarkers for gastrointestinal disorders and understanding the relationship between gut microbiota imbalances and various health conditions, ranging from digestive disorders to neurodegenerative diseases. However, the challenge of processing stool samples in microfluidic devices hinders the development of a standalone platform. Here, we present the first microfluidic chip that can liquefy stool samples via acoustic streaming. With an acoustic transducer actively generating strong micro-vortex streaming, stool samples and buffers in microchannel can be homogenized at a flow rate up to 30 μL min-1. After homogenization, an array of 100 μm wide micropillars can further purify stool samples by filtering out large debris. A favorable biocompatibility was also demonstrated for our acoustofluidic-based stool liquefaction chip by examining bacteria morphology and viability. Moreover, stool samples with different consistencies were liquefied. Our acoustofluidic chip offers a miniaturized, robust, and biocompatible solution for stool sample preparation in a microfluidic environment and can be potentially integrated with stool analysis units for designing portable stool diagnostics platforms.
Collapse
Affiliation(s)
- Shuaiguo Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|