1
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2024. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
3
|
Zhang J, Sun B, Shen W, Wang Z, Liu Y, Sun Y, Zhang J, Liu R, Wang Y, Bai T, Ma Z, Luo C, Qiao X, Zhang X, Yang S, Sun Y, Jiang D, Yang K. In Silico Analyses, Experimental Verification and Application in DNA Vaccines of Ebolavirus GP-Derived pan-MHC-II-Restricted Epitopes. Vaccines (Basel) 2023; 11:1620. [PMID: 37897022 PMCID: PMC10610722 DOI: 10.3390/vaccines11101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background and Purpose: Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), which causes extremely high mortality and widespread epidemics. The only glycoprotein (GP) on the surface of EBOV particles is the key to mediating viral invasion into host cells. DNA vaccines for EBOV are in development, but their effectiveness is unclear. The lack of immune characteristics resides in antigenic MHC class II reactivity. (2) Methods: We selected MHC-II molecules from four human leukocyte antigen II (HLA-II) superfamilies with 98% population coverage and eight mouse H2-I alleles. IEDB, NetMHCIIpan, SYFPEITHI, and Rankpep were used to screen MHC-II-restricted epitopes with high affinity for EBOV GP. Further immunogenicity and conservation analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis and binding affinity analysis of EBOV GP epitopes and selected MHC-II molecules were performed using data from NetMHCIIpan. The selective GP epitopes were verified by the enzyme-linked immunospot (ELISpot) assay using splenocytes of BALB/c (H2d), C3H, and C57 mice after DNA vaccine pVAX-GPEBO immunization. Subsequently, BALB/c mice were immunized with Protein-GPEBO, plasmid pVAX-GPEBO, and pVAX-LAMP/GPEBO, which encoded EBOV GP. The dominant epitopes of BALB/c (H-2-I-AdEd genotype) mice were verified by the enzyme-linked immunospot (ELISpot) assay. It is also used to evaluate and explore the advantages of pVAX-LAMP/GPEBO and the reasons behind them. (3) Results: Thirty-one HLA-II-restricted and 68 H2-I-restricted selective epitopes were confirmed to have high affinity, immunogenicity, and conservation. Nineteen selective epitopes have cross-species reactivity with good performance in MHC-II molecular docking. The ELISpot results showed that pVAX-GPEBO could induce a cellular immune response to the synthesized selective peptides. The better immunoprotection of the DNA vaccines pVAX-LAMP/GPEBO coincides with the enhancement of the MHC class II response. (4) Conclusions: Promising MHC-II-restricted candidate epitopes of EBOV GP were identified in humans and mice, which is of great significance for the development and evaluation of Ebola vaccines.
Collapse
Affiliation(s)
- Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- Yingtan Detachment, Jiangxi Corps, Chinese People’s Armed Police Force, Yingtan 335000, China
| | - Wenyang Shen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Zhenjie Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yang Liu
- Institute of AIDS Prevention and Control, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China;
| | - Yubo Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Jiaxing Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Ruibo Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Tianyuan Bai
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Zilu Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Cheng Luo
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Xupeng Qiao
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- Institute of AIDS Prevention and Control, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China;
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China
- Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710038, China
| |
Collapse
|
4
|
Chen W, Mao H, Chen L, Li L. The pivotal role of FAM134B in selective ER-phagy and diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119277. [PMID: 35477002 DOI: 10.1016/j.bbamcr.2022.119277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
FAM134B is also known as the reticulophagy regulator 1 (RETREG1) or JK-1. FAM134B consists of two long hydrophobic fragments with a reticulon-homology domain, an N-terminal cytoplasmic domain, and a C-terminal cytoplasmic domain. FAM134B plays an important role in regulating selective ER-phagy, and is related to the occurrence and development of many diseases. In the present review, we describe theFAM134B molecular structure, subcellular localization, tissue distribution, and review its mechanisms of action during selective ER-phagy. Furthermore, we summarize the relationship between FAM134B and diseases, including neoplastic diseases, degenerative diseases, central nervous system disease, and infectious diseases. Considering the pleiotropic action of FAM134B, targeting FAM134B may be a potent therapeutic avenue for these diseases.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
5
|
Adekanmbi O, Ilesanmi O, Lakoh S. Ebola: A review and focus on neurologic manifestations. J Neurol Sci 2021; 421:117311. [PMID: 33493959 DOI: 10.1016/j.jns.2021.117311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/15/2022]
Abstract
Ebolavirus disease (EVD) is a severe, highly contagious, and often fatal systemic disease in human and non-human primates. Zoonotic and human-to-human transmission have been well documented. Ebolaviruses are endemic to Equatorial and West Africa and there have been over 20 outbreaks in sub-Saharan Africa since 1976. The largest known outbreak of EVD occurred between 2013 and 2016 across several West African countries. It resulted in 28,646 suspected and confirmed cases and 11,323 deaths. There are 5 species within the genus Ebolavirus with 4 of them being clinically significant. In patients with EVD, neurologic manifestations range from mild symptoms such as confusion to severe neurologic diseases such as meningitis and encephalitis. Altered mental status, from mild confusion to delirium with hallucinations, may also occur. Rare neuropsychiatric manifestations of EVD include psychological or cognitive symptoms, including short-term memory loss, insomnia, and depression or anxiety. Although Ebolavirus RNA has been detected in cerebrospinal fluid, the body of knowledge around the pathogenic mechanisms of neurological disease is not yet fully understood. Studies are needed to understand the acute and chronic neuronal pathologic as well as biochemical cerebrospinal fluid changes in Ebolavirus infection.
Collapse
Affiliation(s)
- Olukemi Adekanmbi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - Olayinka Ilesanmi
- Department of Community Medicine, University of Ibadan, Ibadan, Nigeria; Department of Community Medicine, University College Hospital, Ibadan, Nigeria.
| | - Sulaiman Lakoh
- Department of Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone; Department of Medicine, University of Sierra Leone Teaching Hospitals Complex, Sierra Leone
| |
Collapse
|
6
|
Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 2020; 34:4147-4162. [PMID: 31950548 PMCID: PMC7079041 DOI: 10.1096/fj.201902534r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Peter W. Halcrow
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Koffi L. Lakpa
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Zahra Afghah
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Nicole M. Miller
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Steven F. Dowdy
- Department of Cellular and Molecular MedicineUniversity of California San Diego (UCSD) School of MedicineLa JollaCAUSA
| | - Jonathan D. Geiger
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Xuesong Chen
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| |
Collapse
|
7
|
Su QD, He SH, Yi Y, Qiu F, Lu XX, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, Qiu XG, Bi SL. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine 2018; 36:6053-6060. [PMID: 30195490 DOI: 10.1016/j.vaccine.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
Abstract
Ebola virus (EBOV) disease (EVD) leads to lethal hemorrhagic fever with a case fatality rate as high as 90%, thus posing a serious global public health concern. However, while several vaccines based on the EBOV glycoprotein have been confirmed to be effective in animal experiments, no licensed vaccines or effective treatments have been approved since the first outbreak was reported in 1976. In this study, we prepared the extracellular domain of the EBOV GP protein (designated as N20) by prokaryotic expression and purification via chromatography. Using CTA1-DD (designated as H45) as a mucosal adjuvant, we evaluated the immunogenicity of N20 by intranasal administration and the associated protective efficacy against mouse-adapted EBOV challenge in mice. We found that intranasal vaccination with H45-adjuvanted N20 could stimulate humoral immunity, as supported by GP-specific IgG titers; Th1 cellular immunity, based on IgG subclasses and IFN-γ/IL-4 secreting cells; and mucosal immunity, based on the presence of anti-EBOV IgA in vaginal lavages. We also confirmed that the vaccine could completely protect mice against a lethal mouse-adapted EBOV (MA-EBOV) challenge with few side effects (based on weight loss). In comparison, mice that received N20 or H45 alone succumbed to lethal MA-EBOV challenge. Therefore, mucosal vaccination with H45-adjuvanted N20 represents a potential vaccine candidate for the prevention of EBOV in an effective, safe, and convenient manner.
Collapse
Affiliation(s)
- Qiu-Dong Su
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Shi-Hua He
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yao Yi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Feng Qiu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Xin Lu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Zhi-Yuan Jia
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Qing-Ling Meng
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Ting Fan
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Rui-Guang Tian
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Jonathan Audet
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xiang-Guo Qiu
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Depatment of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sheng-Li Bi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China.
| |
Collapse
|
8
|
Patent highlights: February-March 2016. Pharm Pat Anal 2016; 5:203-9. [PMID: 27336587 DOI: 10.4155/ppa-2016-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|