1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
Suzuki M, Funayama T, Suzuki M, Kobayashi Y. Radiation-quality-dependent bystander cellular effects induced by heavy-ion microbeams through different pathways. JOURNAL OF RADIATION RESEARCH 2023; 64:824-832. [PMID: 37658690 PMCID: PMC10516730 DOI: 10.1093/jrr/rrad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 09/03/2023]
Abstract
We investigated the radiation-quality-dependent bystander cellular effects using heavy-ion microbeams with different ion species. The heavy-ion microbeams were produced in Takasaki Ion Accelerators for Advanced Radiation Application, National Institutes for Quantum Science and Technology. Carbon (12C5+, 220 MeV), neon (20Ne7+, 260 MeV) and argon (40Ar13+, 460 MeV) ions were used as the microbeams, collimating the beam size with a diameter of 20 μm. After 0.5 and 3 h of irradiation, the surviving fractions (SFs) are significantly lower in cells irradiated with carbon ions without a gap-junction inhibitor than those irradiated with the inhibitor. However, the same SFs with no cell killing were found with and without the inhibitor at 24 h. Conversely, no cell-killing effect was observed in argon-ion-irradiated cells at 0.5 and 3 h; however, significantly low SFs were found at 24 h with and without the inhibitor, and the effect was suppressed using vitamin C and not dimethyl sulfoxide. The mutation frequency (MF) in cells irradiated with carbon ions was 8- to 6-fold higher than that in the unirradiated control at 0.5 and 3 h; however, no mutation was observed in cells treated with the gap-junction inhibitor. At 24 h, the MFs induced by each ion source were 3- to 5-fold higher and the same with and without the inhibitor. These findings suggest that the bystander cellular effects depend on the biological endpoints, ion species and time after microbeam irradiations with different pathways.
Collapse
Affiliation(s)
- Masao Suzuki
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
3
|
Maier A, Bailey T, Hinrichs A, Lerchl S, Newman RT, Fournier C, Vandevoorde C. Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells-A Critical Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095670. [PMID: 37174189 PMCID: PMC10178159 DOI: 10.3390/ijerph20095670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Naturally occurring radon and its short lived progeny are the second leading cause of lung cancer after smoking, and the main risk factor for non-smokers. The radon progeny, mainly Polonium-218 (218Po) and Polonium-214 (214Po), are responsible for the highest dose deposition in the bronchial epithelium via alpha-decay. These alpha-particles release a large amount of energy over a short penetration range, which results in severe and complex DNA damage. In order to unravel the underlying biological mechanisms which are triggered by this complex DNA damage and eventually give rise to carcinogenesis, in vitro radiobiology experiments on mammalian cells have been performed using radon exposure setups, or radon analogues, which mimic alpha-particle exposure. This review provides an overview of the different experimental setups, which have been developed and used over the past decades for in vitro radon experiments. In order to guarantee reliable results, the design and dosimetry of these setups require careful consideration, which will be emphasized in this work. Results of these in vitro experiments, particularly on bronchial epithelial cells, can provide valuable information on biomarkers, which can assist to identify exposures, as well as to study the effects of localized high dose depositions and the heterogeneous dose distribution of radon.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Tarryn Bailey
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| | - Annika Hinrichs
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Physics Department, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sylvie Lerchl
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Richard T Newman
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| |
Collapse
|
4
|
Restier-Verlet J, Joubert A, Ferlazzo ML, Granzotto A, Sonzogni L, Al-Choboq J, El Nachef L, Le Reun E, Bourguignon M, Foray N. X-rays-Induced Bystander Effect Consists in the Formation of DNA Breaks in a Calcium-Dependent Manner: Influence of the Experimental Procedure and the Individual Factor. Biomolecules 2023; 13:biom13030542. [PMID: 36979480 PMCID: PMC10046354 DOI: 10.3390/biom13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Radiation-induced bystander effects (RIBE) describe the biological events occurring in non-targeted cells in the vicinity of irradiated ones. Various experimental procedures have been used to investigate RIBE. Interestingly, most micro-irradiation experiments have been performed with alpha particles, whereas most medium transfers have been done with X-rays. With their high fluence, synchrotron X-rays represent a real opportunity to study RIBE by applying these two approaches with the same radiation type. The RIBE induced in human fibroblasts by the medium transfer approach resulted in a generation of DNA double-strand breaks (DSB) occurring from 10 min to 4 h post-irradiation. Such RIBE was found to be dependent on dose and on the number of donor cells. The RIBE induced with the micro-irradiation approach produced DSB with the same temporal occurrence. Culture media containing high concentrations of phosphates were found to inhibit RIBE, while media rich in calcium increased it. The contribution of the RIBE to the biological dose was evaluated after synchrotron X-rays, media transfer, micro-irradiation, and 6 MeV photon irradiation mimicking a standard radiotherapy session: the RIBE may represent less than 1%, about 5%, and about 20% of the initial dose, respectively. However, RIBE may result in beneficial or otherwise deleterious effects in surrounding tissues according to their radiosensitivity status and their capacity to release Ca2+ ions in response to radiation.
Collapse
Affiliation(s)
- Juliette Restier-Verlet
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Aurélie Joubert
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Joëlle Al-Choboq
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Laura El Nachef
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- INSERM U1296 unit “Radiation: Defense/Health/Environment” Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-4-78-78-28-28
| |
Collapse
|
5
|
Wang Y, Ni J, Kong X, Du C, Xue H, Gao H, Liu K, Zhang Y, Yin Y, Wu T, Cui T, Sun L. Low-energy electron microdosimetry assessment based on the two-dimensional monolayer human normal mesh-type cell population model. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Rocheteau P, Warot G, Chapellier M, Zampaolo M, Chretien F, Piquemal F. Cryopreserved Stem Cells Incur Damages Due To Terrestrial Cosmic Rays Impairing Their Integrity Upon Long-Term Storage. Cell Transplant 2022; 31:9636897211070239. [PMID: 35170351 PMCID: PMC8855380 DOI: 10.1177/09636897211070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stem cells have the capacity to ensure the renewal of tissues and organs. They
could be used in the future for a wide range of therapeutic purposes and are
preserved at liquid nitrogen temperature to prevent any chemical or biological
activity up to several decades before their use. We show that the cryogenized
cells accumulate damages coming from natural radiations, potentially inducing
DNA double-strand breaks (DSBs). Such DNA damage in stem cells could lead to
either mortality of the cells upon thawing or a mutation diminishing the
therapeutic potential of the treatment. Many studies show how stem cells react
to different levels of radiation; the effect of terrestrial cosmic rays being
key, it is thus also important to investigate the effect of the natural
radiation on the cryopreserved stem cell behavior over time. Our study showed
that the cryostored stem cells totally shielded from cosmic rays had less DSBs
upon long-term storage. This could have important implications on the long-term
cryostorage strategy and quality control of different cell banks.
Collapse
Affiliation(s)
- P Rocheteau
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - G Warot
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Chapellier
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Zampaolo
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - F Chretien
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - F Piquemal
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Centre National de la Recherche Scientifique and Université de Bordeaux, Gradignan, France
| |
Collapse
|
8
|
Mozzoni P, Pinelli S, Corradi M, Ranzieri S, Cavallo D, Poli D. Environmental/Occupational Exposure to Radon and Non-Pulmonary Neoplasm Risk: A Review of Epidemiologic Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10466. [PMID: 34639764 PMCID: PMC8508162 DOI: 10.3390/ijerph181910466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022]
Abstract
Although Radon (Rn) is a known agent for lung cancer, the link between Rn exposure and other non-pulmonary neoplasms remains unclear. The aim of this review is to investigate the role of Rn in the development of tumors other than lung cancer in both occupational and environmental exposure. Particularly, our attention has been focused on leukemia and tumors related to brain and central nervous system (CNS), skin, stomach, kidney, and breast. The epidemiologic literature has been systematically reviewed focusing on workers, general population, and pediatric population. A weak increase in leukemia risk due to Rn exposure was found, but bias and confounding factors cannot be ruled out. The results of studies conducted on stomach cancer are mixed, although with some prevalence for a positive association with Rn exposure. In the case of brain and CNS cancer and skin cancer, results are inconclusive, while no association was found for breast and kidney cancers. Overall, the available evidence does not support a conclusion that a causal association has been established between Rn exposure and the risk of other non-pulmonary neoplasms mainly due to the limited number and heterogeneity of existing studies. To confirm this result, a statistical analysis should be necessary, even if it is now not applicable for the few studies available.
Collapse
Affiliation(s)
- Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.M.); (S.P.); (M.C.); (S.R.)
- Centre for Research in Toxicology (CERT), University of Parma, Via A. Gramsci 14, 43126 Parma, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.M.); (S.P.); (M.C.); (S.R.)
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.M.); (S.P.); (M.C.); (S.R.)
- Centre for Research in Toxicology (CERT), University of Parma, Via A. Gramsci 14, 43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.M.); (S.P.); (M.C.); (S.R.)
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy;
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy;
| |
Collapse
|
9
|
Li CY. Non-canonical roles of apoptotic and DNA double-strand break repair factors in mediating cellular response to ionizing radiation. Int J Radiat Biol 2021; 99:915-924. [PMID: 34187285 PMCID: PMC8758794 DOI: 10.1080/09553002.2021.1948139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To provide an updated summary of recent advances in our understanding of the non-canonical roles of apoptotic and DNA double-strand break repair factors in various biological processes, especially in the cellular response to radiotherapy. CONCLUSION Apoptotic caspases are usually considered as "executioners'' of unwanted or damaged cells or tissues. However, recent studies indicated they play multiple additional, often counterintuitive roles in many biological processes. Similarly, DNA double-strand break (DSB) repair factors were also found to play unexpected roles beyond repairing damaged DNA. In this review, I will summarize key findings on the non-canonical roles of apoptotic and DSB repair factors in disparate biological and pathological processes such as radiation-induced genetic instability and carcinogenesis, wound healing and tissue regeneration, induced pluripotent stem cell induction, spontaneous and stochastic generation of cancer stem cells, and cancer immunotherapy. I believe these findings will usher in more studies in this exciting and rapidly evolving field.
Collapse
|
10
|
Swati, Chadha VD. Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies - A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108370. [PMID: 34083045 DOI: 10.1016/j.mrrev.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant 'bystander' cells and even to the unexposed progeny of the irradiated cells. These 'off-targeted' effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Swati
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
11
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
12
|
Mazzotta M, Mazzotta A, Fernández M, Cazzato R, D'Ettorre G. 222Radon carcinogenesis: Risk estimation in different working environments. JOURNAL OF RADIATION AND CANCER RESEARCH 2021. [DOI: 10.4103/jrcr.jrcr_10_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
14
|
Kwan WS, Nikezic D, Roy VAL, Yu KN. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2898. [PMID: 32331399 PMCID: PMC7215282 DOI: 10.3390/ijerph17082898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
The present paper reviews available background information for studying multiple stressor effects of radon (222Rn) and phthalates in children and provides insights on future directions. In realistic situations, living organisms are collectively subjected to many environmental stressors, with the resultant effects being referred to as multiple stressor effects. Radon is a naturally occurring radioactive gas that can lead to lung cancers. On the other hand, phthalates are semi-volatile organic compounds widely applied as plasticizers to provide flexibility to plastic in consumer products. Links of phthalates to various health effects have been reported, including allergy and asthma. In the present review, the focus on indoor contaminants was due to their higher concentrations and to the higher indoor occupancy factor, while the focus on the pediatric population was due to their inherent sensitivity and their spending more time close to the floor. Two main future directions in studying multiple stressor effects of radon and phthalates in children were proposed. The first one was on computational modeling and micro-dosimetric studies, and the second one was on biological studies. In particular, dose-response relationship and effect-specific models for combined exposures to radon and phthalates would be necessary. The ideas and methodology behind such proposed research work are also applicable to studies on multiple stressor effects of collective exposures to other significant airborne contaminants, and to population groups other than children.
Collapse
Affiliation(s)
- W. S. Kwan
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| | - D. Nikezic
- Department of Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, RS-36300 Novi Pazar, Serbia;
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | | | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Targeting Specific Sites in Biological Systems with Synchrotron X-Ray Microbeams for Radiobiological Studies at the Photon Factory. QUANTUM BEAM SCIENCE 2020. [DOI: 10.3390/qubs4010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
X-ray microbeams have been used to explore radiobiological effects induced by targeting a specific site in living systems. Synchrotron radiation from the Photon Factory, Japan, with high brilliance and highly parallel directionality is a source suitable for delivering a particular beam size or shape, which can be changed according to target morphology by using a simple metal slit system (beam size from 5 μm to several millimeters). Studies have examined the non-targeted effects, called bystander cellular responses, which are thought to be fundamental mechanisms of low-dose or low-dose-rate effects in practical radiation risk research. Narrow microbeams several tens of micrometers or less in their size targeted both the cell nucleus and the cytoplasm. Our method combined with live-cell imaging techniques has challenged the traditional radiobiological dogma that DNA damage is the only major cause of radiation-induced genetic alterations and is gradually revealing the role of organelles, such as mitochondria, in these biological effects. Furthermore, three-dimensionally cultured cell systems have been used as microbeam targets to mimic organs. Combining the spatial fractionation of X-ray microbeams and a unique ex vivo testes organ culture technique revealed that the tissue-sparing effect was induced in response to the non-uniform radiation fields. Spatially fractionated X-ray beams may be a promising tool in clinical radiation therapy.
Collapse
|
16
|
Suzuki M, Yasuda N, Kitamura H. Lethal and mutagenic bystander effects in human fibroblast cell cultures subjected to low-energy-carbon ions. Int J Radiat Biol 2019; 96:179-186. [PMID: 31633439 DOI: 10.1080/09553002.2020.1683637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We studied lethal and mutagenic bystander effects in normal human fibroblasts irradiated with low-energy-carbon ions.Materials and methods: After cells reached confluence, cells were irradiated with initial energies of 6 MeV/n carbon ions. The residual energy and LET value were 4.6 MeV/n and 309 keV/µm. The doses used for survival and mutational studies were 0.082 and 0.16 Gy. Irradiation was carried out using 4 different irradiation conditions and plating conditions: (1) The entire cell area on the Mylar film was irradiated (We abbreviate as 'all irradiation'); (2) Irradiated and unirradiated cells were pooled in a 1:1 ratio and plated as a single culture until the plating for lethal and mutagenic experiments (We abbreviate as 'mixed population'); (3) Only half of the area on the Mylar film were irradiated using an ion-beam stopper (We abbreviate as 'half irradiation'); and (4) Only half of the area of the cells were irradiated, and a specific inhibitor of gap junctions was added to the culture (We abbreviate as 'half irradiation with inhibitor'). Cell samples were analyzed for lethal and mutagenic bystander effects, including a PCR evaluation of the mutation spectrum.Results: The surviving fraction of all irradiation was the same as the half irradiation case. The surviving fractions of both mixed population and the half irradiation with inhibitor were the same level and higher than those of all irradiation and half irradiation. The mutation frequencies at the HPRT (the hypoxanthine-guanine phosphoribosyl transferase) locus of all irradiation and half irradiation were at the same level and were higher than those of mixed population and half irradiation with inhibitor, respectively.Conclusion: There is evidence that the bystander effects for both lethality and mutagenicity occurred in the unirradiated half of the cells, in which only half of the cells were irradiated with the carbon ions. These results suggest that the bystander cellular effects via gap-junction-mediated cell-cell communication are induced by high-LET-carbon ions.
Collapse
Affiliation(s)
- Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nakahiro Yasuda
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Japan
| | - Hisashi Kitamura
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
17
|
Panzarini E, Vergallo C, Fanizzi FP, Mariano S, Tata AM, Dini L. The dialogue between died and viable cells: in vitro and in vivo bystander effects and 1H-NMR-based metabolic profiling of soluble factors. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The bystander effect (BE) is an important biological phenomenon that induces damages in distant and not directly affected by a chemical/physical stress cells. This effect, well known in ionizing radiation treatment, relies on reactive signals released by exposed cells and transmitted via cell–cell interaction or culture medium. In this study, cycloheximide (CHX)-induced apoptotic U937 cells and untreated THP-1 cells were chosen to investigate the chemical-induced BE. The effects of apoptotic U937 cells culture medium, Conditioned Medium (CM), on THP-1 cells were evaluated by morphological and immunohistochemical analysis performed by light microscopy; 1D 1H and 2D J-resolved (JRES) NMR metabolomic analysis has been used to characterize the molecules involved in the BE. In summary, this study indicates that: CM of CHX-treated U937 cells induces a time-dependent induction of toxicity, probably apoptotic cell death, and macrophagic differentiation in THP-1 cells; CM contains different metabolites respect fresh culture medium; CM recruits in vivo activated fibroblasts, endothelial cells, macrophages and mononuclear inflammatory cells in rat calf muscles. These data suggest that CHX exposed cells could cause BE through the release, during the apoptotic process, of soluble factors into the medium that could be exploited in anticancer protocols.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Cristian Vergallo
- Department of Pharmacy , University of Chieti-Pescara “G. D’Annunzio” , Chieti , Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
- CNR-Nanotec , Lecce , Italy
| |
Collapse
|
18
|
Liu R, Zhao T, Swat MH, Reynoso FJ, Higley KA. Development of computational model for cell dose and DNA damage quantification of multicellular system. Int J Radiat Biol 2019; 95:1484-1497. [DOI: 10.1080/09553002.2019.1642537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ruirui Liu
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maciej H. Swat
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
19
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
20
|
Nawrocki T, Tritt TC, Neti PVSV, Rosen AS, Dondapati AR, Howell RW. Design and testing of a microcontroller that enables alpha particle irradiators to deliver complex dose rate patterns. Phys Med Biol 2018; 63:245022. [PMID: 30524061 PMCID: PMC8528213 DOI: 10.1088/1361-6560/aaf269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is increasing interest in using alpha particle emitting radionuclides for cancer therapy because of their unique cytotoxic properties which are advantageous for eradicating tumor cells. The high linear energy transfer (LET) of alpha particles produces a correspondingly high density of ionizations along their track. Alpha particle emitting radiopharmaceuticals deposit this energy in tissues over prolonged periods with complex dose rate patterns that depend on the physical half-life of the radionuclide, and the biological uptake and clearance half-times in tumor and normal tissues. We have previously shown that the dose rate increase half-time that arises as a consequence of these biokinetics can have a profound effect on the radiotoxicity of low-LET radiation. The microcontroller hardware and software described here offer a unique way to deliver these complex dose rate patterns with a broad-beam alpha particle irradiator, thereby enabling experiments to study the radiobiology of complex dose rate patterns of alpha particles. Complex dose rate patterns were created by precise manipulation of the timing of opening and closing of the electromechanical shutters of an α-particle irradiator. An Arduino Uno and custom circuitry was implemented to control the shutters. The software that controls the circuits and shutters has a user-friendly Graphic User Interface (GUI). Alpha particle detectors were used to validate the programmed dose rate profiles. Circuit diagrams and downloadable software are provided to facilitate adoption of this technology by other radiobiology laboratories.
Collapse
Affiliation(s)
- Tomer Nawrocki
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
22
|
Shi X, Seymour C, Mothersill C. Change of cell growth and mitochondrial membrane polarization in the progeny of cells surviving low-dose high-LET irradiation from Ra-226. ENVIRONMENTAL RESEARCH 2018; 167:51-65. [PMID: 30007873 DOI: 10.1016/j.envres.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In order to test the delayed effect of radiation on the progeny of irradiated survivors, the human keratinocyte cell line HaCaT and the fish common bluegill embryonic cell line CHSE/F were exposed to low-dose high-LET α-radiation from Ra-226 or γ-rays. The clonogenic survival fraction, mitochondrial membrane polarization (MMP) and reproductive ability of the descendants of the surviving cells were measured. For progeny of irradiated HaCaT survivors, no delayed cell death occurred. On the contrary, progeny at about 47 cell doublings after Ra-226 irradiation and progeny at about 14 cell doublings after γ-irradiation showed increased clonogenic survival. However the total cell number was reduced for progeny of Ra-226-treated cells up to about 47 cell doublings after irradiation and for progeny of γ-irradiated cells up to about 28 doublings after irradiation, which means low reproductive ability had appeared. In addition, α-radiation from Ra-226 had greater impact on the MMP of the HaCaT progeny than γ-rays. MMP of progeny of Ra-226-treated cells decreased at 5 cell doublings after irradiation and increased dose-dependently at 19 cell doublings after treatment, and then decreased dose-dependently at 47 cell doublings, while there was no significant effect on MMP in progeny of γ irradiated cells. The progeny of Ra-226-irradiated CHSE/F survivors showed more serious damage than the offspring of γ-irradiated CHSE/F cells. Significant, dose-dependent delayed cell death occurred in progeny of surviving cells up to about 61 cell doublings after Ra-226 treatment, and the reproductive ability was also significantly reduced. But the MMP increased, which might be because of the increased removal of dead cells. For progeny of CHSE/F cells surviving γ-rays radiation, no significant change in clonogenic survival occurred, except for offspring of cells surviving low dose (0.1 Gy and 0.5 Gy) irradiation, which had higher survival than control up to about 28 cell doublings after irradiation. But the number of cells which were the progeny of γ-irradiated survivors decreased dose-dependently up to about 28 cell doublings after γ-irradiation.
Collapse
Affiliation(s)
- Xiaopei Shi
- McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
23
|
McNamara AL, Ramos-Méndez J, Perl J, Held K, Dominguez N, Moreno E, Henthorn NT, Kirkby KJ, Meylan S, Villagrasa C, Incerti S, Faddegon B, Paganetti H, Schuemann J. Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Phys Med Biol 2018; 63:175018. [PMID: 30088810 DOI: 10.1088/1361-6560/aad8eb] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.
Collapse
Affiliation(s)
- Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
25
|
Lin X, Wei F, Major P, Al-Nedawi K, Al Saleh HA, Tang D. Microvesicles Contribute to the Bystander Effect of DNA Damage. Int J Mol Sci 2017; 18:ijms18040788. [PMID: 28387728 PMCID: PMC5412372 DOI: 10.3390/ijms18040788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen 518116, Guangdong, China.
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Hassan A Al Saleh
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
26
|
Nikezic D, Yu KN. Alpha-particle fluence in radiobiological experiments. JOURNAL OF RADIATION RESEARCH 2017; 58:195-200. [PMID: 27811200 PMCID: PMC5439373 DOI: 10.1093/jrr/rrw106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Two methods were proposed for determining alpha-particle fluence for radiobiological experiments. The first involved calculating the probabilities of hitting the target for alpha particles emitted from a source through Monte Carlo simulations, which when multiplied by the activity of the source gave the fluence at the target. The second relied on the number of chemically etched alpha-particle tracks developed on a solid-state nuclear track detector (SSNTD) that was irradiated by an alpha-particle source. The etching efficiencies (defined as percentages of latent tracks created by alpha particles from the source that could develop to become visible tracks upon chemical etching) were computed through Monte Carlo simulations, which when multiplied by the experimentally counted number of visible tracks would also give the fluence at the target. We studied alpha particles with an energy of 5.486 MeV emitted from an 241Am source, and considered the alpha-particle tracks developed on polyallyldiglycol carbonate film, which is a common SSNTD. Our results showed that the etching efficiencies were equal to one for source-film distances of from 0.6 to 3.5 cm for a circular film of radius of 1 cm, and for source-film distances of from 1 to 3 cm for circular film of radius of 2 cm. For circular film with a radius of 3 cm, the etching efficiencies never reached 1. On the other hand, the hit probability decreased monotonically with increase in the source-target distance, and fell to zero when the source-target distance was larger than the particle range in air.
Collapse
Affiliation(s)
- Dragoslav Nikezic
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
27
|
Abstract
It is now apparent that the target for the biological effects of ionizing radiation (IR) is not solely the irradiated cell(s), but also includes the surrounding cells/tissue as well. Radiation-induced bystander effects (BSEs) are defined by the presence of the biological effects of radiation in cells that were not themselves in the field of irradiation. Decreased plating efficiency, increased sister chromatid exchanges, oncogenic transformation, among other endpoints have been used to describe the BSE. Two primary means have been established for the transmission of the bystander signal; one is mediated by gap-junction intracellular communication, and the other is initiated through the secretion of factors from irradiated cells. While the basis for these phenomena have been established in cell culture systems, there is also evidence for their presence in vivo. This in vivo effect may contribute to increased tumor cell killing, and may also play a role in the abscopal effects of radiation, where radiation responses are seen in areas separated from the irradiated tissue. Although the precise molecular components and mechanisms remain unknown, their discovery will shed new light on the role of the BSEs in radiation risk assessment, and clinical radiotherapy in the clinic.
Collapse
Affiliation(s)
- Andrew R Snyder
- Molecular and Cell Biology Graduate Program, Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
28
|
Shi X, Seymour C, Mothersill C. The effects of chronic, low doses of Ra-226 on cultured fish and human cells. ENVIRONMENTAL RESEARCH 2016; 148:303-309. [PMID: 27093471 DOI: 10.1016/j.envres.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE To determine the chronic low-dose radiation effects caused by α-particle radiation from (226)Ra over multiple cell generations in CHSE/F fish cells and HaCaT human cells. METHODS CHSE/F cells and HaCaT cells were cultured in medium containing (226)Ra to deliver the chronic low-dose α-particle radiation. Clonogenic assay was used to test the clonogenic survival fractions of cells with or without being exposed to radiation from (226)Ra. RESULTS The chronic low-dose radiation from (226)Ra does have effects on the clonogenic survival of CHSE/F cells and HaCaT cells. When CHSE/F cells were cultured in (226)Ra-medium over 9 passages for about 134 days, the clonogenic surviving fractions for cells irradiated at dose rates ranging from 0.00066 to 0.66mGy/d were significantly lower than that of cells sham irradiated. For HaCaT cells grown in medium containing the same range of (226)Ra activity, the clonogenic surviving fraction decreased at first and reached the lowest value at about 42 days (8 passages). After that, the clonogenic survival began to increase, and was significantly higher than that of control cells by the end of the experimental period. CONCLUSION The chronic, low-dose high LET radiation from (226)Ra can influence the clonogenic survival of irradiated cells. CHSE/F cells were sensitized by the radiation, and HaCaT cells were initially sensitized but later appeared to be adapted. The results could have implications for determining risk from chronic versus acute exposures to radium.
Collapse
Affiliation(s)
- Xiaopei Shi
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
29
|
Ojima M, Iwashita K, Kashino G, Kobashigawa S, Sasano N, Takeshita A, Ban N, Kai M. Early and Delayed Induction of DSBs by Nontargeted Effects in ICR Mouse Lymphocytes after In Vivo X Irradiation. Radiat Res 2016; 186:65-70. [PMID: 27351761 DOI: 10.1667/rr14053.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this study was to determine whether in vivo X irradiation induces nontargeted effects, such as delayed effects and bystander effects in ICR mouse lymphocytes. We first examined the generation of DNA double-strand breaks (DSBs) in lymphocytes, isolated from ICR mice exposed to 1 Gy X irradiation, by enumeration of p53 binding protein 1 (53BP1) foci, and observed that the number of 53BP1 foci reached their maximum 3 days postirradiation and decreased to background level 30 days postirradiation. However, the number of 53BP1 foci was significantly increased in lymphocytes isolated from ICR mice 90-365 days postirradiation. This result indicates that in vivo X irradiation induced delayed DSBs in ICR mouse lymphocytes. We next counted the number of 53BP1 foci in lymphocytes isolated from sham-irradiated ICR mice that had been co-cultured with lymphocytes isolated from 1 Gy X-irradiated ICR mice, and observed a significant increase in the number of 53BP1 foci 1-7 days postirradiation. This result indicates that in vivo X irradiation induced bystander effects in ICR mouse lymphocytes. These findings suggest that in vivo X irradiation induces early and delayed nontargeted effects in ICR mouse lymphocytes.
Collapse
Affiliation(s)
- Mitsuaki Ojima
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Keiko Iwashita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Genro Kashino
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Shinko Kobashigawa
- b Advanced Molecular Center, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Noriko Sasano
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Akiko Takeshita
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| | - Nobuhiko Ban
- c Tokyo Healthcare University, Tokyo 152-8558, Japan
| | - Michiaki Kai
- a Department of Environmental Health Science, Oita University of Nursing and Health Sciences, Oita 840-1201, Japan
| |
Collapse
|
30
|
Turchan WT, Shapiro RH, Sevigny GV, Chin-Sinex H, Pruden B, Mendonca MS. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells. Int J Radiat Biol 2016; 92:427-33. [PMID: 27258472 DOI: 10.1080/09553002.2016.1186299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion studies demonstrated that the bystander killing induced in both A549 and MIA PaCa-2 cells was mediated by the cytokines TNF-α and TGF-β (p < 0.05). Conclusions These data provide evidence that irradiated hEPC can induce strong bystander killing in A549 and MIA PaCa-2 human cancer cells and that this bystander killing is mediated by the cytokines TNF-α and TGF-β.
Collapse
Affiliation(s)
- William T Turchan
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Ronald H Shapiro
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Garrett V Sevigny
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Helen Chin-Sinex
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Benjamin Pruden
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Marc S Mendonca
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA ;,b Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN 46202 , USA
| |
Collapse
|
31
|
Burtt JJ, Thompson PA, Lafrenie RM. Non-targeted effects and radiation-induced carcinogenesis: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:R23-R35. [PMID: 26910391 DOI: 10.1088/0952-4746/36/1/r23] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exposure to ionising radiation is clearly associated with an increased risk of developing some types of cancer. However, the contribution of non-targeted effects to cancer development after exposure to ionising radiation is far less clear. The currently used cancer risk model by the international radiation protection community states that any increase in radiation exposure proportionately increases the risk of developing cancer. However, this stochastic cancer risk model does not take into account any contribution from non-targeted effects. Nor does it consider the possibility of a bystander mechanism in the induction of genomic instability. This paper reviews the available evidence to date for a possible role for non-targeted effects to contribute to cancer development after exposure to ionising radiation. An evolution in the understanding of the mechanisms driving non-targeted effects after exposure to ionising radiation is critical to determine the true contribution of non-targeted effects on the risk of developing cancer. Such an evolution will likely only be achievable through coordinated multidisciplinary teams combining several fields of study including: genomics, proteomics, cell biology, molecular epidemiology, and traditional epidemiology.
Collapse
Affiliation(s)
- Julie J Burtt
- Canadian Nuclear Safety Commission, 280 Slater Street, Ottawa, Ontario, K1P 5S9, Canada
| | | | | |
Collapse
|
32
|
Tu W, Dong C, Konishi T, Kobayashi A, Furusawa Y, Uchihori Y, Xie Y, Dang B, Li W, Shao C. G(2)-M phase-correlative bystander effects are co-mediated by DNA-PKcs and ATM after carbon ion irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 795:1-6. [PMID: 26774662 DOI: 10.1016/j.mrgentox.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Accumulated evidence has shown that radiation-induced bystander effect (RIBE) may have significant implications to the efficiency of radiotherapy. Although cellular radiosensitivity relies on cell cycle status, it is largely unknown how about the relationship between RIBE and cell cycle distribution, much less the underlying mechanism. In the present study, the lung cancer A549 cells were synchronized into different cell cycle phases of G1, S and G2/M and irradiated with high linear energy transfer (LET) carbon ions. By treating nonirradiated cells with the conditioned medium from these irradiated cells, it was found that the G2-M phase cells had the largest contribution to RIBE. Meanwhile, the activity of DNA-PKcs but not ATM was increased in the synchronized G2-M phase cells in spite of both of them were activated in the asynchronous cells after carbon ion irradiation. When the G2-M phased cells were transferred with DNA-PKcs siRNA and ATM siRNA individually or treated with an inhibitor of either DNA-PKcs or ATM before carbon ion irradiation, the RIBE was effectively diminished. These results provide new evidence linking cell cycle to bystander responses and demonstrate that DNA-PKcs and ATM are two associated factors in co-regulating G2-M phase-related bystander effects.
Collapse
Affiliation(s)
- Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Alisa Kobayashi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China; Central Laboratory of Renji Hospital, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
33
|
Cartwright IM, Kato TA. Role of various DNA repair pathways in chromosomal inversion formation in CHO mutants. Int J Radiat Biol 2015; 91:925-33. [PMID: 26513271 DOI: 10.3109/09553002.2015.1101499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE In an effort to better understand the formation of chromosomal inversions, we investigated the role of various DNA repair pathways, including the non-homologous end joining (NHEJ), homologous recombination (HR), and Fanconi Anemia (FA) repair pathways for the formation of radiation induced chromosomal inversions. MATERIALS AND METHODS CHO10B2 wild type, CHO DNA repair-deficient, and CHO DNA repair-deficient corrected mutant cells were synchronized into G1 phase and exposed to gamma-rays. First post-irradiation metaphase cells were analyzed for chromosomal inversions by a differential chromatid staining technique involving a single cycle pre-irradiation ethynyl-uridine treatment and statistic calculations. RESULTS It was observed that inhibition of the NHEJ pathway resulted in an overall decrease in the number of radiation-induced inversions, roughly a 50% decrease when compared to the CHO wild type. Interestingly, inhibition of the FA pathway resulted in an increase in both the number of spontaneous inversions and the number of radiation-induced inversions observed after exposure to 2 Gy of ionizing radiation. It was observed that FA-deficient cells contained roughly 330% (1.24 inversions per cell) more spontaneous inversions and 20% (0.4 inversions per cell) more radiation-induced inversions than the wild-type CHO cell lines. The HR mutants, defective in Rad51 foci, showed similar number of spontaneous and radiation-induced inversion as the wild-type cells. Gene complementation resulted in both spontaneous and radiation-induced inversions resembling the CHO wild-type cells. CONCLUSIONS We have concluded that the NHEJ repair pathway contributes to the formation of radiation-induced inversions. Additionally, through an unknown molecular mechanism it appears that the FA signal pathway prevents the formation of both spontaneous and radiation induced inversions.
Collapse
Affiliation(s)
- Ian M Cartwright
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , USA
| | - Takamitsu A Kato
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , USA
| |
Collapse
|
34
|
Yakovlev VA. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol 2015; 6:396-400. [PMID: 26355395 PMCID: PMC4572387 DOI: 10.1016/j.redox.2015.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022] Open
Abstract
Cells that are not irradiated but are affected by “stress signal factors” released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. Ionizing radiation stimulates generation of nitric oxide (NO). NO stimulates genomic instability by inhibiting BRCA1 protein expression. NO can diffuse and stimulate genomic instability in the bystander cells. Propagation of NO from cell-to-cell creates a “mutator fields”. Definition of the “mutator filed” is proposed.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, VA, USA.
| |
Collapse
|
35
|
Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci 2014; 1:24. [PMID: 25988165 PMCID: PMC4429645 DOI: 10.3389/fmolb.2014.00024] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made toward the understanding of proposed hallmarks of cancer development, care, and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET), total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals) damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE). In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.
Collapse
Affiliation(s)
- Rajamanickam Baskar
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Jiawen Dai
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Nei Wenlong
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Richard Yeo
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Kheng-Wei Yeoh
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
36
|
Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol 2014; 91:13-27. [DOI: 10.3109/09553002.2014.937510] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Mukherjee D, Coates PJ, Lorimore SA, Wright EG. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol 2014; 232:289-99. [PMID: 24254983 DOI: 10.1002/path.4299] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/20/2023]
Abstract
Since the early years of the twentieth century, the biological consequences of exposure to ionizing radiation have been attributed solely to mutational DNA damage or cell death induced in irradiated cells at the time of exposure. However, numerous observations have been at variance with this dogma. In the 1950s, attention was drawn to abscopal effects in areas of the body not directly irradiated. In the 1960s reports began appearing that plasma factors induced by irradiation could affect unirradiated cells, and since 1990 a growing literature has documented an increased rate of DNA damage in the progeny of irradiated cells many cell generations after the initial exposure (radiation-induced genomic instability) and responses in non-irradiated cells neighbouring irradiated cells (radiation-induced bystander effects). All these studies have in common the induction of effects not in directly irradiated cells but in unirradiated cells as a consequence of intercellular signalling. Recently, it has become clear that all the various effects demonstrated in vivo may reflect an ongoing inflammatory response to the initial radiation-induced injury that, in a genotype-dependent manner, has the potential to contribute primary and/or ongoing damage displaced in time and/or space from the initial insult. Importantly, there is direct evidence that non-steroidal anti-inflammatory drug treatment reduces such damage in vivo. These new findings highlight the importance of tissue responses and indicate additional mechanisms of radiation action, including the likelihood that radiation effects are not restricted to the initiation stage of neoplastic diseases, but may also contribute to tumour promotion and progression. The various developments in understanding the responses to radiation exposures have implications not only for radiation pathology but also for therapeutic interventions.
Collapse
Affiliation(s)
- Debayan Mukherjee
- Centre for Oncology and Molecular Medicine, University of Dundee Medical School, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
38
|
Lacombe J, Azria D, Mange A, Solassol J. Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes. Expert Rev Proteomics 2014; 10:33-42. [DOI: 10.1586/epr.12.68] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 2013; 356:34-42. [PMID: 24333869 DOI: 10.1016/j.canlet.2013.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022]
Abstract
Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed. The experimental evidence on RIBE, indicate that a more analytical and mechanistic in depth approach is needed to secure an answer to one of the most intriguing questions in radiobiology.
Collapse
|
40
|
Kam WWY, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013; 65:607-619. [PMID: 23892359 DOI: 10.1016/j.freeradbiomed.2013.07.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023]
Abstract
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.
Collapse
Affiliation(s)
- Winnie Wai-Ying Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia.
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia; National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
41
|
Maeda M, Kobayashi K, Matsumoto H, Usami N, Tomita M. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells. JOURNAL OF RADIATION RESEARCH 2013; 54:1043-9. [PMID: 23660275 PMCID: PMC3823787 DOI: 10.1093/jrr/rrt068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm(2) 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10(-)(5) (background level), and the frequency decreased to 5.3 × 10(-)(6) with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations.
Collapse
Affiliation(s)
- Munetoshi Maeda
- Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| | | | | | | | | |
Collapse
|
42
|
Choi VWY, Yu KN. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation. Cancer Lett 2013; 356:91-104. [PMID: 24176822 DOI: 10.1016/j.canlet.2013.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023]
Abstract
The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
43
|
Li J, He M, Shen B, Yuan D, Shao C. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells. Int J Radiat Biol 2013; 89:1028-34. [PMID: 23786650 DOI: 10.3109/09553002.2013.817706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The radiation-induced bystander effect (RIBE) has important implications for the efficiency of radiotherapy but the underlying role of cellular metabolism is widely unknown. The roles of synthesis of cytochrome c oxidase 2 (SCO2), a key effector for respiratory chain, and related signaling factors in α-particle-induced bystander damage were currently investigated in a liver cell co-culture system. MATERIALS AND METHODS Human hepatoma cells of HepG2 with wild-type p53 (wtp53) and Hep3B (p53 null) were irradiated with 0.4 Gy of α-particles and co-cultured with non-irradiated normal liver cells HL-7702 for 6 h, then the incidence of micronucleus (MN) in the bystander HL-7702 cells was analyzed. The expressions of total P53, phospho-P53 (p-P53), SCO2, and reactive oxygen species (ROS) in the irradiated hepatoma cells were detected. In some experiments, the hepatoma cells were respectively treated with p53 siRNA, SCO2 siRNA, or dimethyl sulfoxide (DMSO) before irradiation. RESULTS Bystander damage in HL-7702 cells was induced by α-irradiated HepG2 cells but not by α-irradiated Hep3B cells, and this bystander effect was diminished when the irradiated HepG2 cells were pretreated with p53 siRNA, SCO2 siRNA, or DMSO. Meanwhile, the expressions of p-P53 protein and SCO2 mRNA, the activity of SCO2 protein, and intracellular ROS were all increased in the irradiated HepG2 cells but not Hep3B cells and these expressions were eliminated by p53 siRNA treatment. Moreover, the radiation-enhanced expressions of SCO2 and ROS were inhibited by SCO2 siRNA. CONCLUSION α-particle-induced bystander effect was regulated by p53 and its downstream SCO2 in the irradiated hepatoma cells, and ROS generation could be an early event for triggering this bystander response.
Collapse
Affiliation(s)
- Jitao Li
- Institute of Radiation Medicine, Fudan University , Shanghai , P. R. China
| | | | | | | | | |
Collapse
|
44
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
45
|
Lacombe J, Mange A, Azria D, Solassol J. Identification de marqueurs prédictifs de la réponse à la radiothérapie par approche protéomique. Cancer Radiother 2013; 17:62-9; quiz 70, 72. [DOI: 10.1016/j.canrad.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
|
46
|
Hu B, Zhu J, Zhou H, Hei TK. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblast after alpha particle irradiation. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2013; 51:450-457. [PMID: 23503090 PMCID: PMC3596834 DOI: 10.1016/j.asr.2012.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.
Collapse
Affiliation(s)
- Burong Hu
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. of China
| | - Jiayun Zhu
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. of China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Hongning Zhou
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Tom K. Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
47
|
Dose response of micronuclei induced by combination radiation of α-particles and γ-rays in human lymphoblast cells. Mutat Res 2013; 741-742:51-6. [PMID: 23313503 DOI: 10.1016/j.mrfmmm.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/11/2012] [Accepted: 12/28/2012] [Indexed: 11/24/2022]
Abstract
Combination radiation is a real situation of both nuclear accident exposure and space radiation environment, but its biological dosimetry is still not established. This study investigated the dose-response of micronuclei (MN) induction in lymphocyte by irradiating HMy2.CIR lymphoblast cells with α-particles, γ-rays, and their combinations. Results showed that the dose-response of MN induced by γ-rays was well-fitted with the linear-quadratic model. But for α-particle irradiation, the MN induction had a biphasic phenomenon containing a low dose hypersensitivity characteristic and its dose response could be well-stimulated with a state vector model where radiation-induced bystander effect (RIBE) was involved. For the combination exposure, the dose response of MN was similar to that of α-irradiation. However, the yield of MN was closely related to the sequence of irradiations. When the cells were irradiated with α-particles at first and then γ-rays, a synergistic effect of MN induction was observed. But when the cells were irradiated with γ-rays followed by α-particles, an antagonistic effect of MN was observed in the low dose range although this combination radiation also yielded a synergistic effect at high doses. When the interval between two irradiations was extended to 4h, a cross-adaptive response against the other irradiation was induced by a low dose of γ-rays but not α-particles.
Collapse
|
48
|
Jella KK, Garcia A, McClean B, Byrne HJ, Lyng FM. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 2012; 89:182-90. [DOI: 10.3109/09553002.2013.734942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Mamlouk O, Balagurumoorthy P, Wang K, Adelstein SJ, Kassis AI. Bystander effect in tumor cells produced by Iodine-125 labeled human lymphocytes. Int J Radiat Biol 2012; 88:1019-27. [PMID: 22712702 DOI: 10.3109/09553002.2012.702297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the ability of human lymphocytes labeled with DNA-incorporated (125)I to exert an inhibitory (antiproliferative) bystander effect on co-cultured human colon adenocarcinoma LS174T cells in vitro. MATERIALS AND METHODS Human peripheral blood lymphocytes were stimulated to synthesize DNA in the presence of phytohemagglutinin (PHA) and labeled with 5-[(125)I]iodo-2'-deoxyuridine. Human colon adenocarcinoma LS174T cells were co-cultured with the (125)I-labeled lymphocytes in various ratios for 5 days and the proliferation of the LS174T cells was assessed. Further, the supernatant media from these co-cultures were: (i) Transferred to LS174T cells and their proliferation measured after 5 days, (ii) used to assess the clonogenic survival of LS174T cells, and (iii) screened for factors that suppress growth. RESULTS A significant reduction in the proliferation of LS174T cells was observed when co-cultured either with (125)I-labeled lymphocytes (56 ± 3.5%) or the supernatant media (52.5 ± 1.3%) obtained from these co-cultures. Clonogenic survival of LS174T cells grown in the supernatant media corroborated the decrease in tumor cell growth. CONCLUSION The observed reduction in the proliferation of LS174T cells in presence of (125)I-labeled lymphocytes or media obtained from such co-cultures can be attributed to an inhibitory (antiproliferative) bystander effect, probably mediated by factor(s) released from the dying (125)I-labeled lymphocytes.
Collapse
Affiliation(s)
- Omar Mamlouk
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Faria FP, Dickman R, Moreira CHC. Models of the radiation-induced bystander effect. Int J Radiat Biol 2012; 88:592-9. [DOI: 10.3109/09553002.2012.692568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|