1
|
Robert A. Building references for nature conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14202. [PMID: 37811723 DOI: 10.1111/cobi.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Conservation references have long been used in conservation biology to compare current biodiversity processes and states with past conditions. However, beyond the paucity of data for the construction of ancient, even prehuman, references, the relevance of these ancient references for studying ecosystems radically modified by human activities is questionable, particularly when the notions of conservation references and conservation objectives are confused and when several conservation ethics coexist that require distinct references. Because of this implicit heterogeneity in the nature of the references and their temporal baseline, conservation references not only have different meanings, but also deliver different messages. I propose establishing a common framework for conservation references to approach past biological systems and build comparable references between studies and projects. The selection of these references (distinct from conservation objectives) should be an early, explicit, standardized, and transparent milestone in any conservation process and these references should be based on state, pressure, or process dynamics, rather than fixed states. Finally, the importance of the diversity of temporal baselines used to build conservation references and to measure anthropogenic impacts should be recognized to understand the biodiversity crisis in its entirety.
Collapse
Affiliation(s)
- Alexandre Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Selva N, Hobson KA, Zalewski A, Cortés-Avizanda A, Donázar JA. Mammal communities of primeval forests as sentinels of global change. GLOBAL CHANGE BIOLOGY 2024; 30:e17045. [PMID: 38014477 DOI: 10.1111/gcb.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Understanding the drivers and consequences of global environmental change is crucial to inform predictions of effects on ecosystems. We used the mammal community of Białowieża Forest, the last lowland near-primeval forest in temperate Europe, as a sentinel of global change. We analyzed changes in stable carbon (δ13 C) and nitrogen (δ15 N) isotope values of hair in 687 specimens from 50 mammal species across seven decades (1946-2011). We classified mammals into four taxonomic-dietary groups (herbivores, carnivores, insectivores, and bats). We found a significant negative trend in hair δ15 N for the mammal community, particularly strong for herbivores. This trend is consistent with temporal patterns in nitrogen deposition from (15 N depleted) industrial fertilizers and fossil fuel emissions. It is also in line with global-scale declines in δ15 N reported in forests and other unfertilized, non-urban terrestrial ecosystems and with local decreases in N foliar concentrations. The global depletion of 13 C content in atmospheric CO2 due to fossil fuel burning (Suess effect) was detected in all groups. After correcting for this effect, the hair δ13 C trend became non-significant for both community and groups, except for bats, which showed a strong decline in δ13 C. This could be related to an increase in the relative abundance of freshwater insects taken by bats or increased use of methane-derived carbon in food webs used by bats. This work is the first broad-scale and long-term mammal isotope ecology study in a near-primeval forest in temperate Europe. Mammal communities from natural forests represent a unique benchmark in global change research; investigating their isotopic temporal variation can help identify patterns and early detections of ecosystem changes and provide more comprehensive and integrative assessments than single species approaches.
Collapse
Affiliation(s)
- Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva, Spain
| | - Keith A Hobson
- University of Western Ontario, London, Ontario, Canada
- Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Ainara Cortés-Avizanda
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Sevilla, Spain
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José Antonio Donázar
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
3
|
Zhong S, Zhou S, Liu S, Wang J, Dang C, Chen Q, Hu J, Yang S, Deng C, Li W, Liu J, Borthwick AGL, Ni J. May microbial ecological baseline exist in continental groundwater? MICROBIOME 2023; 11:152. [PMID: 37468948 PMCID: PMC10355068 DOI: 10.1186/s40168-023-01572-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Microbes constitute almost the entire biological community in subsurface groundwater and play an important role in ecological evolution and global biogeochemical cycles. Ecological baseline as a fundamental reference with less human interference has been investigated in surface ecosystems such as soils, rivers, and ocean, but the existence of groundwater microbial ecological baseline (GMEB) is still an open question so far. RESULTS Based on high-throughput sequencing information derived from national monitoring of 733 newly constructed wells, we find that bacterial communities in pristine groundwater exhibit a significant lateral diversity gradient and gradually approach the topsoil microbial latitudinal diversity gradient with decreasing burial depth of phreatic water. Among 74 phyla dominated by Proteobacteria in groundwater, Patescibacteria act as keystone taxa that harmonize microbes in shallower aquifers and accelerate decline in bacterial diversity with increasing well-depth. Decreasing habitat niche breadth with increasing well-depth suggests a general change in the relationship among key microbes from closer cooperation in shallow to stronger competition in deep groundwater. Unlike surface-water microbes, microbial communities in pristine groundwater are predominantly shaped by deterministic processes, potentially associated with nutrient sequestration under dark and anoxic environments in aquifers. CONCLUSIONS By unveiling the biogeographic patterns and mechanisms controlling the community assembly of microbes in pristine groundwater throughout China, we firstly confirm the existence of GMEB in shallower aquifers and propose Groundwater Microbial Community Index (GMCI) to evaluate anthropogenic impact, which highlights the importance of GMEB in groundwater water security and health diagnosis. Video Abstract.
Collapse
Affiliation(s)
- Sining Zhong
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, People's Republic of China
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou, 350002, People's Republic of China
| | - Shungui Zhou
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou, 350002, People's Republic of China
| | - Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Chenyuan Dang
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China
| | - Jinyun Hu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, People's Republic of China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Alistair G L Borthwick
- School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth, PL8 4AA, UK
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, People's Republic of China.
| |
Collapse
|
4
|
Devlin AL, Frair JL, Crawshaw PG, Hunter LTB, Tortato FR, Hoogesteijn R, Robinson N, Robinson HS, Quigley HB. Drivers of large carnivore density in non‐hunted, multi‐use landscapes. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Allison L. Devlin
- Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry New York New York USA
- Panthera New York New York USA
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana USA
| | - Jacqueline L. Frair
- Department of Environmental and Forest Biology SUNY College of Environmental Science and Forestry New York New York USA
| | - Peter G. Crawshaw
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros/Instituto Chico Mendes de Conservação da Biodiversidade Atibaia Brazil
| | | | | | | | - Nathaniel Robinson
- Panthera New York New York USA
- The Nature Conservancy Arlington Virginia USA
| | - Hugh S. Robinson
- Panthera New York New York USA
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana USA
| | | |
Collapse
|
5
|
Edwards M, Lisgo K, Leroux S, Krawchuk M, Cumming S, Schmiegelow F. Conservation planning integrating natural disturbances: Estimating minimum reserve sizes for an insect disturbance in the boreal forest of eastern Canada. PLoS One 2022; 17:e0268236. [PMID: 35533149 PMCID: PMC9084528 DOI: 10.1371/journal.pone.0268236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Large natural disturbances such as insect outbreaks and fire are important processes for biodiversity in forest landscapes. However, few methods exist for incorporating natural disturbances into conservation planning. Intact forest landscapes, such as in the North American boreal forest, can produce large natural disturbance footprints. They also have the potential to support large reserves but size estimates based on natural disturbance are needed to guide reserve design. Historical fire data have been used to estimate minimum dynamic reserves, reserve size estimates based on maintaining natural disturbance dynamics and ensuring resilience to large natural disturbance events. While this has been a significant step towards incorporating natural disturbance into reserve design, managers currently lack guidance on how to apply these concepts in areas where fire is not the dominant natural disturbance. We generalize the minimum dynamic reserve framework to accommodate insect outbreaks and demonstrate the framework in a case study for eastern spruce budworm (Choristoneura fumiferana) in the Canadian boreal forest. Our methods use geospatial analysis to identify minimum dynamic reserves based on a set of spatially explicit initial conditions, and simulation models to test for the maintenance of a set of dynamic conditions over time. We found considerable variability in minimum dynamic reserve size depending on the size of historic budworm disturbance events and the spatial patterns of disturbance-prone vegetation types. The minimum dynamic reserve framework provides an approach for incorporating wide-ranging natural disturbances into biodiversity conservation plans for both pro-active planning in intact landscapes, and reactive planning in more developed regions.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| | - Kim Lisgo
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Meg Krawchuk
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States of America
| | - Steve Cumming
- Département des sciences du bois et de la forêt, Université Laval, QC, Canada
| | - Fiona Schmiegelow
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Western D, Mose VN. The changing role of natural and human agencies shaping the ecology of an African savanna ecosystem. Ecosphere 2021. [DOI: 10.1002/ecs2.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Wood BM, Millar RS, Wright N, Baumgartner J, Holmquist H, Kiffner C. Hunter-Gatherers in context: Mammal community composition in a northern Tanzania landscape used by Hadza foragers and Datoga pastoralists. PLoS One 2021; 16:e0251076. [PMID: 33989291 PMCID: PMC8121365 DOI: 10.1371/journal.pone.0251076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
In many regions of sub Saharan Africa large mammals occur in human-dominated areas, yet their community composition and abundance have rarely been described in areas occupied by traditional hunter-gatherers and pastoralists. Surveys of mammal populations in such areas provide important measures of biodiversity and provide ecological context for understanding hunting practices. Using a sampling grid centered on a Hadza hunter-gatherer camp and covering 36 km2 of semi-arid savannah in northern Tanzania, we assessed mammals using camera traps (n = 19 stations) for c. 5 months (2,182 trap nights). In the study area (Tli’ika in the Hadza language), we recorded 36 wild mammal species. Rarefaction curves suggest that sampling effort was sufficient to capture mammal species richness, yet some species known to occur at low densities in the wider area (e.g. African lions, wildebeest) were not detected. Relative abundance indices of wildlife species varied by c. three orders of magnitude, from a mean of 0.04 (African wild dog) to 20.34 capture events per 100 trap-nights (Kirk’s dik dik). To contextualize the relative abundance of wildlife in the study area, we compared our study’s data to comparable camera trap data collected in a fully protected area of northern Tanzania with similar rainfall (Lake Manyara National Park). Raw data and negative binomial regression analyses show that wild herbivores and wild carnivores were generally detected in the national park at higher rates than in the Hadza-occupied region. Livestock were notably absent from the national park, but were detected at high levels in Tli’ika, and cattle was the second most frequently detected species in the Hadza-used area. We discuss how these data inform current conservation efforts, studies of Hadza hunting, and models of hunter-gatherer foraging ecology and diet.
Collapse
Affiliation(s)
- Brian M. Wood
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (BMW); (CK)
| | | | | | | | | | - Christian Kiffner
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center For Wildlife Management Studies, The School For Field Studies, Karatu, Tanzania
- * E-mail: (BMW); (CK)
| |
Collapse
|
8
|
Berger J, Wangchuk T, Briceño C, Vila A, Lambert JE. Disassembled Food Webs and Messy Projections: Modern Ungulate Communities in the Face of Unabating Human Population Growth. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Kiffner C, Thomas S, Speaker T, O'Connor V, Schwarz P, Kioko J, Kissui B. Community-based wildlife management area supports similar mammal species richness and densities compared to a national park. Ecol Evol 2020; 10:480-492. [PMID: 31993122 PMCID: PMC6972838 DOI: 10.1002/ece3.5916] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023] Open
Abstract
Community-based conservation models have been widely implemented across Africa to improve wildlife conservation and livelihoods of rural communities. In Tanzania, communities can set aside land and formally register it as Wildlife Management Area (WMA), which allows them to generate revenue via consumptive or nonconsumptive utilization of wildlife. The key, yet often untested, assumption of this model is that economic benefits accrued from wildlife motivate sustainable management of wildlife. To test the ecological effectiveness (here defined as persistence of wildlife populations) of Burunge Wildlife Management Area (BWMA), we employed a participatory monitoring approach involving WMA personnel. At intermittent intervals between 2011 and 2018, we estimated mammal species richness and population densities of ten mammal species (African elephant, giraffe, buffalo, zebra, wildebeest, waterbuck, warthog, impala, Kirk's dik-dik, and vervet monkey) along line transects. We compared mammal species accumulation curves and density estimates with those of time-matched road transect surveys conducted in adjacent Tarangire National Park (TNP). Mammal species richness estimates were similar in both areas, yet observed species richness per transect was greater in TNP compared to BWMA. Species-specific density estimates of time-matched surveys were mostly not significantly different between BWMA and TNP, but elephants occasionally reached greater densities in TNP compared to BWMA. In BWMA, elephant, wildebeest, and impala populations showed significant increases from 2011 to 2018. These results suggest that community-based conservation models can support mammal communities and densities that are similar to national park baselines. In light of the ecological success of this case study, we emphasize the need for continued efforts to ensure that the BWMA is effective. This will require adaptive management to counteract potential negative repercussions of wildlife populations on peoples' livelihoods. This study can be used as a model to evaluate the effectiveness of wildlife management areas across Tanzania.
Collapse
Affiliation(s)
- Christian Kiffner
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Seth Thomas
- Department of Integrative Biology & The Department of Environmental SciencesOregon State UniversityCorvallisORUSA
| | - Talia Speaker
- Human Dimensions of Natural ResourcesColorado State UniversityFort CollinsCOUSA
| | | | - Paige Schwarz
- Warner College of Natural ResourcesColorado State UniversityFort CollinsCOUSA
| | - John Kioko
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Bernard Kissui
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| |
Collapse
|
10
|
Bowyer RT, Boyce MS, Goheen JR, Rachlow JL. Conservation of the world’s mammals: status, protected areas, community efforts, and hunting. J Mammal 2019. [DOI: 10.1093/jmammal/gyy180] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- R Terry Bowyer
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Mark S Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob R Goheen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Janet L Rachlow
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
11
|
Crombie M, Germain R, Arcese P. Nest-site preference and reproductive performance of Song Sparrows (Melospiza melodia) in historically extant and colonist shrub species. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies report mixed results on the influence of invasive plants on native animals, partly due to uncertainties about habitat preference and reproductive performance in native animals before and after plant invasion. We used vegetation surveys 20 years apart and 18 years of breeding data from Song Sparrows (Melospiza melodia (A. Wilson, 1810)) to compare nest-site preference and reproductive performance during the colonization of Mandarte Island, British Columbia, by one shrub species native to the region but historically absent from the island (red elderberry, Sambucus racemosa L.) and another species that is exotic to North America (Himalayan blackberry, Rubus armeniacus Focke = Rubus bifrons Vest). Nest-site preference declined where red elderberry increased but was unrelated to change in the cover of Himalayan blackberry. Song Sparrows nested in trailing blackberry (Rubus ursinus Cham. and Schltdl.) and its exotic congener Himalayan blackberry in preference to two common shrubs native to Mandarte Island (Nootka rose, Rosa nutkana C. Presl; snowberry, Symphoricarpos albus (L.) S.F. Blake) and built just 1 of 1051 nests in red elderberry. In contrast, reproductive performance was similar in all shrub species used regularly as nest substrates. Our results show that Song Sparrow nest-site preference and reproductive performance were independent of plant species origin.
Collapse
Affiliation(s)
- M.D. Crombie
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - R.R. Germain
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - P. Arcese
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
H. Massie M, Wilson TM, Morzillo AT, Henderson EB. Natural areas as a basis for assessing ecosystem vulnerability to climate change. Ecosphere 2016. [DOI: 10.1002/ecs2.1563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Margaret H. Massie
- Department of Forest Ecosystems and SocietyOregon State University 321 Richardson Hall Corvallis Oregon 97331 USA
| | - Todd M. Wilson
- Forestry Sciences LaboratoryUSDA Forest Service, Pacific Northwest Research Station 3200 SW Jefferson Way Corvallis Oregon 97331 USA
| | - Anita T. Morzillo
- Department of Natural Resources and the EnvironmentUniversity of Connecticut Storrs Connecticut 06269 USA
| | | |
Collapse
|
13
|
Goheen JR. Serengeti IV: Sustaining Biodiversity in a Coupled Human-Natural System. J Mammal 2016. [DOI: 10.1093/jmammal/gyv217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Arcese P, Schuster R, Campbell L, Barber A, Martin TG. Deer density and plant palatability predict shrub cover, richness, diversity and aboriginal food value in a North American archipelago. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- P. Arcese
- Department of Forest and Conservation Science; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - R. Schuster
- Department of Forest and Conservation Science; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - L. Campbell
- Department of Forest and Conservation Science; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - A. Barber
- Department of Forest and Conservation Science; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - T. G. Martin
- Department of Forest and Conservation Science; University of British Columbia; 2424 Main Mall Vancouver BC V6T 1Z4 Canada
- CSIRO Ecosystem Sciences; GPO Box 2583 Brisbane Qld 4001 Australia
| |
Collapse
|
15
|
Leroux SJ, Rayfield B. Methods and tools for addressing natural disturbance dynamics in conservation planning for wilderness areas. DIVERS DISTRIB 2013. [DOI: 10.1111/ddi.12155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Shawn J. Leroux
- Department of Biology; Memorial University of Newfoundland; 232 Elizabeth Ave St John's NL A1B 3X9 Canada
| | - Bronwyn Rayfield
- Department of Biology; McGill University; 1205 Docteur Penfield Montreal QC H3A 1B1 Canada
| |
Collapse
|
16
|
Serrouya R, McLellan BN, Boutin S, Seip DR, Nielsen SE. Developing a population target for an overabundant ungulate for ecosystem restoration. J Appl Ecol 2011. [DOI: 10.1111/j.1365-2664.2011.01998.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Endangered species and a threatened discipline: behavioural ecology. Trends Ecol Evol 2011; 26:111-8. [DOI: 10.1016/j.tree.2010.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
|
18
|
Kolowski JM, Holekamp KE. Ecological and anthropogenic influences on space use by spotted hyaenas. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.2008.00505.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Undetected species losses, food webs, and ecological baselines: a cautionary tale from the Greater Yellowstone Ecosystem, USA. ORYX 2008. [DOI: 10.1017/s0030605308001051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Abstract
1. Ecosystems have higher-order emerging properties that can affect the conservation of species. We identify some of these properties in order to facilitate a better understanding of them. 2. Nonlinear, indirect effects of food web interactions among species can produce counterintuitive changes in populations. 3. Species differ in their roles and linkages with other species in the system. These roles are a property of the system. Such differences in roles influence how we conserve individual species. 4. Ecosystems operate at a multitude of interacting spatial and temporal scales, which together structure the system and affect the dynamics of individual populations. 5. Disturbance also structures an ecosystem, producing both long-term slow changes and sudden shifts in ecosystem dynamics. 6. Ecosystems therefore can have multiple states, determined both by disturbance regimes and biotic interactions. Conservation should recognize a possible multiplicity of natural states while avoiding aberrant (human-induced) states. 7. Ecosystem processes are influenced by the composition of the biota they contain. Disturbances to the biota can distort processes and functions, which in turn can endanger individual species. 8. The goal of ecosystem conservation is the long-term persistence of the biota in the system. There are two paradigms: community-based conservation (CBC) and protected area conservation. Both have their advantages but neither is sufficient to protect the biota on its own. 9. CBC is required to conserve the majority of the world's biota not included in protected areas. However, current CBC methods favour a few idiosyncratic species, distort the species complex, and ignore the majority. More comprehensive methods are required for this approach to meet the goal of ecosystem conservation. 10. Protected areas are essential to conserve species unable to coexist with humans. They also function as ecological baselines to monitor the effects of humans on their own ecosystems. 11. However, protected areas suffer from loss of habitat through attrition of critical areas. Thus, renewal (addition) of habitat is required in order to achieve the long-term persistence of biota in functioning ecosystems. Identification of minimum habitat areas and restoration of ecosystems become two major priorities for future research.
Collapse
Affiliation(s)
- A R E Sinclair
- Centre for Biodiversity Research, 6270 University Boulevard, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| | | |
Collapse
|
21
|
Hansen AJ, DeFries R. Ecological mechanisms linking protected areas to surrounding lands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2007; 17:974-88. [PMID: 17555212 DOI: 10.1890/05-1098] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.
Collapse
Affiliation(s)
- Andrew J Hansen
- Ecology Department, Montana State University, Bozeman, Montana 59717-3460, USA.
| | | |
Collapse
|
22
|
Pitcher TJ. Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems. Philos Trans R Soc Lond B Biol Sci 2005; 360:107-21. [PMID: 15713591 PMCID: PMC1636101 DOI: 10.1098/rstb.2004.1575] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
'Back-to-the-future' (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today's ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented.
Collapse
Affiliation(s)
- Tony J Pitcher
- Fisheries Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
23
|
|
24
|
Sinclair ARE, Mduma SAR, Arcese P. Protected areas as biodiversity benchmarks for human impact: agriculture and the Serengeti avifauna. Proc Biol Sci 2002; 269:2401-5. [PMID: 12495481 PMCID: PMC1691175 DOI: 10.1098/rspb.2002.2116] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protected areas as biodiversity benchmarks allow a separation of the direct effects of human impact on biodiversity loss from those of other environmental changes. We illustrate the use of ecological baselines with a case from the Serengeti ecosystem, Tanzania. We document a substantial but previously unnoted loss of bird diversity in agriculture detected by reference to the immediately adjacent native vegetation in Serengeti. The abundance of species found in agriculture was only 28% of that for the same species in native savannah. Insectivorous species feeding in the grass layer or in trees were the most reduced. Some 50% of both insectivorous and granivorous species were not recorded in agriculture, with ground-feeding and tree species most affected. Grass-layer insect abundance and diversity was much reduced in agriculture, consistent with the loss of insectivorous birds. These results indicate that many species of birds will become confined to protected areas over time. We need to determine whether existing protected areas are sufficiently large to maintain viable populations of insectivorous birds likely to become confined to them. This study highlights the essential nature of baseline areas for assessing causes of change in human-dominated systems and for developing innovative strategies to restore biodiversity.
Collapse
Affiliation(s)
- A R E Sinclair
- Centre for Biodiversity Research, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
25
|
|
26
|
Frank DA, McNaughton SJ, Tracy BF. The Ecology of the Earth's Grazing Ecosystems. Bioscience 1998. [DOI: 10.2307/1313313] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|