1
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
2
|
Hao Z, Shi J, Wu H, Yan Y, Xing K, Zheng R, Shi J, Chen J. Phytosulfokine contributes to suspension culture of Cunninghamia lanceolata through its impact on redox homeostasis. BMC PLANT BIOLOGY 2023; 23:480. [PMID: 37814230 PMCID: PMC10561472 DOI: 10.1186/s12870-023-04496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Suspension culture is widely used in the establishment of efficient plant regeneration systems, as well as in the mass production of plant secondary metabolites. However, the establishment of a suspension culture system of Cunninghamia lanceolata is genotype-dependent given that proembryogenic masses (PEMs) are prone to browning during this process in recalcitrant genotypes. Previously, we reported that the plant peptide hormone phytosulfokine (PSK) can tremendously decrease the hydrogen peroxide (H2O2) level and help to initiate somatic embryogenesis (SE) in recalcitrant C. lanceolata genotypes. However, to date, no studies have revealed whether or how PSK may contribute to the establishment of a suspension culture system in these recalcitrant genotypes. RESULTS Here, we demonstrated that exogenous application of PSK effectively inhibited PEM browning during suspension culture in a recalcitrant genotype of C. lanceolata. Comparative time-series transcriptome profiling showed that redox homeostasis underwent drastic fluctuations when PEMs were cultured in liquid medium, while additional PSK treatment helped to maintain a relatively stable redox homeostasis. Interestingly, PSK seemed to have a dual effect on peroxidases (PRXs), with PSK simultaneously transcriptionally repressing ROS-producing PRXs and activating ROS-scavenging PRXs. Furthermore, determination of H2O2 and MDA content, as well as cell viability, showed that exogenous PSK treatment inhibited PEM browning and safeguarded PEM suspension culture by decreasing the H2O2 level and increasing PEM activity. CONCLUSIONS Collectively, these findings provide a valuable tool for the future establishment of large-scale C. lanceolata PEM suspension culture without genotype limitations.
Collapse
Affiliation(s)
- Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Hua Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqing Yan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Kaifei Xing
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Draga S, Gabelli G, Palumbo F, Barcaccia G. Genome-Wide Datasets of Chicories ( Cichorium intybus L.) for Marker-Assisted Crop Breeding Applications: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11663. [PMID: 37511422 PMCID: PMC10380310 DOI: 10.3390/ijms241411663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.
Collapse
Affiliation(s)
| | | | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| |
Collapse
|
4
|
Fraga HPDF, Moraes PEC, Vieira LDN, Guerra MP. Somatic Embryogenesis in Conifers: One Clade to Rule Them All? PLANTS (BASEL, SWITZERLAND) 2023; 12:2648. [PMID: 37514262 PMCID: PMC10385530 DOI: 10.3390/plants12142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Somatic embryogenesis (SE) in conifers is usually characterized as a multi-step process starting with the development of proembryogenic cell masses and followed by histodifferentiation, somatic embryo development, maturation, desiccation, and plant regeneration. Our current understanding of conifers' SE is mainly derived from studies using Pinaceae species as a model. However, the evolutionary relationships between conifers are not clear. Some hypotheses consider conifers as a paraphyletic group and Gnetales as a closely related clade. In this review, we used an integrated approach in order to cover the advances in knowledge on SE in conifers and Gnetales, discussing the state-of-the-art and shedding light on similarities and current bottlenecks. With this approach, we expect to be able to better understand the integration of these clades within current studies on SE. Finally, the points discussed raise an intriguing question: are non-Pinaceae conifers less prone to expressing embryogenic competence and generating somatic embryos as compared to Pinaceae species? The development of fundamental studies focused on this morphogenetic route in the coming years could be the key to finding a higher number of points in common between these species, allowing the success of the SE of one species to positively affect the success of another.
Collapse
Affiliation(s)
| | - Paula Eduarda Cardoso Moraes
- Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, Brazil
| | - Leila do Nascimento Vieira
- Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, Brazil
| | - Miguel Pedro Guerra
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis 88034-000, Brazil
- Graduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina, Curitibanos Campus, Ulysses Gaboardi Road, Km 3, Curitibanos 89520-000, Brazil
| |
Collapse
|
5
|
Xu X, Zhang C, Xu X, Cai R, Guan Q, Chen X, Chen Y, Zhang Z, XuHan X, Lin Y, Lai Z. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. PLANT PHYSIOLOGY 2023; 192:1799-1820. [PMID: 36930572 PMCID: PMC10315286 DOI: 10.1093/plphys/kiad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Roudi Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qingxu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Desnitskiy AG, Chetverikov PE, Ivanova LA, Kuzmin IV, Ozman-Sullivan SK, Sukhareva SI. Molecular Aspects of Gall Formation Induced by Mites and Insects. Life (Basel) 2023; 13:1347. [PMID: 37374129 DOI: 10.3390/life13061347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recent publications on gall formation induced on the leaves of dicotyledonous flowering plants by eriophyoid mites (Eriophyoidea) and representatives of four insect orders (Diptera, Hemiptera, Hymenoptera, Lepidoptera) are analyzed. Cellular and molecular level data on the stimuli that induce and sustain the development of both mite and insect galls, the expression of host plant genes during gallogenesis, and the effects of these galling arthropods on photosynthesis are considered. A hypothesis is proposed for the relationship between the size of galls and the volume of secretions injected by a parasite. Multistep, varying patterns of plant gene expression and accompanying histo-morphological changes in the transformed gall tissues are apparent. The main obstacle to better elucidating the nature of the induction of gallogenesis is the impossibility of collecting a sufficient amount of saliva for analysis, which is especially important in the case of microscopic eriophyoids. The use of modern omics technologies at the organismal level has revealed a spectrum of genetic mechanisms of gall formation at the molecular level but has not yet answered the questions regarding the nature of gall-inducing agents and the features of events occurring in plant cells at the very beginning of gall growth.
Collapse
Affiliation(s)
- Alexey G Desnitskiy
- Department of Embryology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Philipp E Chetverikov
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | | | - Igor V Kuzmin
- X-BIO Institute, Tyumen State University, 625003 Tyumen, Russia
| | - Sebahat K Ozman-Sullivan
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Sogdiana I Sukhareva
- Department of Invertebrate Zoology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Mira MM, Day S, Ibrahim S, Hill RD, Stasolla C. The Arabidopsis Phytoglobin 2 mediates phytochrome B (phyB) light signaling responses during somatic embryogenesis. PLANTA 2023; 257:88. [PMID: 36976396 DOI: 10.1007/s00425-023-04121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
During the light induction of somatic embryogenesis, phyB-Pfr suppresses Phytoglobin 2, known to elevate nitric oxide (NO). NO depresses Phytochrome Interacting Factor 4 (PIF4) relieving its inhibition on embryogenesis through auxin. An obligatory step of many in vitro embryogenic systems is the somatic-embryogenic transition culminating with the formation of the embryogenic tissue. In Arabidopsis, this transition requires light and is facilitated by high levels of nitric oxide (NO) generated by either suppression of the NO scavenger Phytoglobin 2 (Pgb2), or its removal from the nucleus. Using a previously characterized induction system regulating the cellular localization of Pgb2, we demonstrated the interplay between phytochrome B (phyB) and Pgb2 during the formation of embryogenic tissue. The deactivation of phyB in the dark coincides with the induction of Pgb2 known to reduce the level of NO; consequently, embryogenesis is inhibited. Under light conditions, the active form of phyB depresses the levels of Pgb2 transcripts, thus expecting an increase in cellular NO. Induction of Pgb2 increases Phytochrome Interacting Factor 4 (PIF4) suggesting that high levels of NO repress PIF4. The PIF4 inhibition is sufficient to induce several auxin biosynthetic (CYP79B2, AMI1, and YUCCA 1, 2, and 6) and response (ARF5, 8, and 16) genes, conducive to the formation of the embryonic tissue and production of somatic embryos. Auxin responses mediated by ARF10 and 17 appear to be regulated by Pgb2, possibly through NO, in a PIF4-independent fashion. Overall, this work provides a new and preliminary model integrating Pgb2 (and NO) with phyB in the light regulation of in vitro embryogenesis.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sam Day
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Bai Y, Liu M, Zhou R, Jiang F, Li P, Li M, Zhang M, Wei H, Wu Z. Construction of ceRNA Networks at Different Stages of Somatic Embryogenesis in Garlic. Int J Mol Sci 2023; 24:ijms24065311. [PMID: 36982386 PMCID: PMC10049443 DOI: 10.3390/ijms24065311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.
Collapse
Affiliation(s)
- Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Ping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Mengqian Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Meng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
9
|
Large-Scale Quantitative Proteomic Analysis during Different Stages of Somatic Embryogenesis in Larix olgensis. Curr Issues Mol Biol 2023; 45:2021-2034. [PMID: 36975500 PMCID: PMC10047913 DOI: 10.3390/cimb45030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Larix olgensis is an economically important tree species native to northeastern China. The use of somatic embryogenesis (SE) is efficient and enables the rapid production of varieties with desirable qualities. Here, isobaric labeling via tandem mass tags was used to conduct a large-scale quantitative proteomic analysis of proteins in three critically important stages of SE in L. olgensis: the primary embryogenic callus, the single embryo, and the cotyledon embryo. We identified 6269 proteins, including 176 shared differentially expressed proteins across the three groups. Many of these proteins are involved in glycolipid metabolism, hormone response/signal transduction, cell synthesis and differentiation, and water transport; proteins involved in stress resistance and secondary metabolism, as well as transcription factors, play key regulatory roles in SE. The results of this study provide new insights into the key pathways and proteins involved in SE in Larix. Our findings have implications for the expression of totipotency, the preparation of synthetic seeds, and genetic transformation.
Collapse
|
10
|
Hao Z, Wu H, Zheng R, Li R, Zhu Z, Chen Y, Lu Y, Cheng T, Shi J, Chen J. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:716-733. [PMID: 36575581 DOI: 10.1111/tpj.16077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) is widely used for studying the mechanisms of embryo development. However, little is known about the underlying mechanisms, especially in woody plants. Previous studies have established an SE system for Chinese fir (Cunninghamia lanceolata), but this system is genotype-dependent, which limits its application in practice. Here, we found that phytosulfokine (PSK), a plant peptide hormone, can not only increase SE efficiency, but also establish SE in recalcitrant genotypes of C. lanceolata. Proembryogenic mass (PEM) browning and determination of hydrogen peroxide (H2 O2 ) content by 2',7'-dichlorofluorescein staining indicated that a reactive oxygen species (ROS) burst occurred rapidly after PEMs were transferred to SE induction medium. Transcriptome analysis and quantitative reverse transcriptase-PCR validation showed that PSK treatment helped to maintain ROS homeostasis by decreasing the activity of peroxidases in early SE induction. This PSK-regulated redox microenvironment might be helpful to induce expression of SE-related genes like WOX2 in early SE induction. Further analyses suggested that PSK promotes SE induction in C. lanceolata partially through decreasing H2 O2 levels, which is necessary but not sufficient for SE induction in recalcitrant genotypes of C. lanceolata. Furthermore, heterologous overexpression of ClPSK in Arabidopsis led to enhanced SE induction and resistance to H2 O2 stress. Taken together, our study reveals a biological function for the plant peptide hormone PSK, extends our knowledge about SE in woody trees, and provides a valuable tool for establishing an efficient and genotype-independent SE system in C. lanceolata and other coniferous trees.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hua Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Rui Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zeli Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
11
|
Awada R, Lepelley M, Breton D, Charpagne A, Campa C, Berry V, Georget F, Breitler JC, Léran S, Djerrab D, Martinez-Seidel F, Descombes P, Crouzillat D, Bertrand B, Etienne H. Global transcriptome profiling reveals differential regulatory, metabolic and hormonal networks during somatic embryogenesis in Coffea arabica. BMC Genomics 2023; 24:41. [PMID: 36694132 PMCID: PMC9875526 DOI: 10.1186/s12864-022-09098-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency. RESULTS RNA-seq of 48 samples (12 developmental stages × 4 biological replicates) generated 90 million high quality reads per sample, approximately 74% of which were uniquely mapped to the Arabica genome. First, the statistical analysis of transcript data clearly grouped SE developmental stages into seven important phases (Leaf, Dedifferentiation, Primary callus, Embryogenic callus, Embryogenic cell clusters, Redifferentiation and Embryo) enabling the identification of six key developmental phase switches, which are strategic for the overall biological efficiency of embryo regeneration. Differential gene expression and functional analysis showed that genes encoding transcription factors, stress-related genes, metabolism-related genes and hormone signaling-related genes were significantly enriched. Second, the standard environmental drivers used to control SE, i.e. light, growth regulators and cell density, were clearly perceived at the molecular level at different developmental stages. Third, expression profiles of auxin-related genes, transcription factor-related genes and secondary metabolism-related genes were analyzed during SE. Gene co-expression networks were also inferred. Auxin-related genes were upregulated during dedifferentiation and redifferentiation while transcription factor-related genes were switched on from the embryogenic callus and onward. Secondary metabolism-related genes were switched off during dedifferentiation and switched back on at the onset of redifferentiation. Secondary metabolites and endogenous IAA content were tightly linked with their respective gene expression. Lastly, comparing Arabica embryogenic and non-embryogenic cell transcriptomes enabled the identification of biological processes involved in the acquisition of embryogenic capacity. CONCLUSIONS The present analysis showed that transcript fingerprints are discriminating signatures of cell fate and are under the direct influence of environmental drivers. A total of 23 molecular candidates were successfully identified overall the 12 developmental stages and can be tested in many plant species to optimize SE protocols in a rational way.
Collapse
Affiliation(s)
- Rayan Awada
- Nestlé Research - Plant Science Research Unit, Tours, France ,grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Maud Lepelley
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - David Breton
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - Aline Charpagne
- grid.419905.00000 0001 0066 4948Nestlé Research, Société Des Produits Nestlé SA, Lausanne, Switzerland ,grid.511382.c0000 0004 7595 5223Sophia Genetics, Genève, Switzerland
| | - Claudine Campa
- grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France ,grid.4399.70000000122879528UMR DIADE, IRD, Montpellier, France
| | - Victoria Berry
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - Frédéric Georget
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Jean-Christophe Breitler
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Sophie Léran
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Doâa Djerrab
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Federico Martinez-Seidel
- grid.418390.70000 0004 0491 976XMax Planck Institute for Molecular Plant Physiology, Golm, Germany ,grid.1008.90000 0001 2179 088XSchool of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Patrick Descombes
- grid.419905.00000 0001 0066 4948Nestlé Research, Société Des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Benoît Bertrand
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Hervé Etienne
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| |
Collapse
|
12
|
Debnath SC, Ghosh A. Phenotypic variation and epigenetic insight into tissue culture berry crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1042726. [PMID: 36600911 PMCID: PMC9806182 DOI: 10.3389/fpls.2022.1042726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Berry crops, a nutrient powerhouse for antioxidant properties, have long been enjoyed as a health-promoting delicious food. Significant progress has been achieved for the propagation of berry crops using tissue culture techniques. Although bioreactor micropropagation has been developed as a cost-effective propagation technology for berry crops, genetic stability can be a problem for commercial micropropagation that can be monitored at morphological, biochemical, and molecular levels. Somaclonal variations, both genetic and epigenetic, in tissue culture regenerants are influenced by different factors, such as donor genotype, explant type and origin, chimeral tissues, culture media type, concentration and combination of plant growth regulators, and culture conditions and period. Tissue culture regenerants in berry crops show increased vegetative growth, rhizome production, and berry yield, containing higher antioxidant activity in fruits and leaves that might be due to epigenetic variation. The present review provides an in-depth study on various aspects of phenotypic variation in micropropagated berry plants and the epigenetic effects on these variations along with the role of DNA methylation, to fill the existing gap in literature.
Collapse
Affiliation(s)
- Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Amrita Ghosh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
13
|
Oliveira FLR, Sant'anna-Santos BF, Fraga HPF, Degenhardt J, Quoirin M. Embryogenic cultures and somatic embryos development from mature seeds of jabuticaba (Plinia cauliflora (Mart.) Kausel). AN ACAD BRAS CIENC 2022; 94:e20201073. [PMID: 36477989 DOI: 10.1590/0001-3765202220201073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/16/2020] [Indexed: 12/10/2022] Open
Abstract
Plinia cauliflora is an important Brazilian species that produces highly appreciated fruits, with a great potential of commercialization. However, the high cost of seedlings is a bottleneck for the expansion of commercial orchards. The present study aimed to investigate somatic embryogenesis as a propagation method for P. cauliflora using seeds as explants. To induce embryogenic mass (EM) and somatic embryo (SE) development we evaluated the supplementation of culture medium with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), combined or not with activated charcoal (AC). For the embryo maturation, we investigated the effects of AC, polyethylene glycol (PEG), Gelzan®, 6-benzylaminopurine and gibberellin supplementation. For the EM induction, the best results were obtained in MS culture medium supplemented with 300 μM 2,4-D and 1 g L-1 AC. During the first maturation phase, the supplementation of 30 g L-1 PEG improved the somatic embryo formation at the torpedo and cotyledonary stages, whereas the maturation treatments did not result in the conversion of the embryos into plantlets. The anatomical analysis showed that the 2,4-D presence for 60 days may have been deleterious for embryonic development. These results represent the first report of P. cauliflora somatic embryogenesis and its feasibility for mass propagation.
Collapse
Affiliation(s)
- Fabrícia Lorrane R Oliveira
- Programa de Pós-Graduação em Agronomia-Produção Vegetal, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Cabral, 80035-050 Curitiba, PR, Brazil
| | - Bruno Francisco Sant'anna-Santos
- Programa de Pós-Graduação em Agronomia-Produção Vegetal, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Cabral, 80035-050 Curitiba, PR, Brazil
| | - Hugo P F Fraga
- Programa de Pós-Graduação em Botânica, Universidade Federal do Paraná, Rua Elétrica, 540, Jardim das Américas, 82590-300 Curitiba, PR, Brazil
| | - Juliana Degenhardt
- Embrapa Florestas, Estrada da Ribeira, Km 111, Parque Monte Castelo, 83411-000 Colombo, PR, Brazil
| | - Marguerite Quoirin
- Programa de Pós-Graduação em Agronomia-Produção Vegetal, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Cabral, 80035-050 Curitiba, PR, Brazil
| |
Collapse
|
14
|
Chen B, Li C, Chen Y, Chen S, Xiao Y, Wu Q, Zhong L, Huang K. Proteome profiles during early stage of somatic embryogenesis of two Eucalyptus species. BMC PLANT BIOLOGY 2022; 22:558. [PMID: 36460945 PMCID: PMC9716740 DOI: 10.1186/s12870-022-03956-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Somatic embryogenesis (SE) was recognized as an important tool for plants to propagate. However, our knowledge about the proteins involved in early SE including the callus dedifferentiation is still limited, especially in the economic woody tree - Eucalyptus. RESULTS We used the data-independent acquisition mass-spectrometry to study the different proteome profiles of early SE of two Eucalyptus species-E. camaldulensis (high regeneratively potential) and E. grandis x urophylla (low regenerative potential). Initially, 35,207 peptides and 7,077 proteins were identified in the stem and tissue-culture induced callus of the two Eucalyptus species. MSstat identified 2,078 and 2,807 differentially expressed proteins (DEPs) in early SE of E. camaldulensis and E. grandis x urophylla, respectively. They shared 760 upregulated and 420 downregulated proteins, including 4 transcription factors, 31 ribosomal proteins, 1 histone, 3 zinc finger proteins (ZFPs), 16 glutathione transferases, 10 glucosyltransferases, ARF19, WOX8 and PIN1. These proteins might be involved in the early SE of Eucalyptus. By combining the miRNA and RNA-Seq results, some miRNA ~ gene/protein regulatory networks were identified in early SE of Eucalyptus, such as miR160 ~ TPP2, miR164 ~ UXS2, miR169 ~ COX11 and miR535 ~ Eucgr.E01067. Further, we found SERK, WRKY, ZFP and ABC transporter might be related with high SE potential. CONCLUSIONS Overall, our study identified proteins involved in the early SE and related to the high regeneration potential of Eucalyptus. It greatly enhanced our understanding of the early SE and the SE capacity of Eucalyptus.
Collapse
Affiliation(s)
- Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Changrong Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Yingying Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Shengkan Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Qi Wu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Kaiyong Huang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China.
| |
Collapse
|
15
|
Mohaddab M, El Goumi Y, Gallo M, Montesano D, Zengin G, Bouyahya A, Fakiri M. Biotechnology and In Vitro Culture as an Alternative System for Secondary Metabolite Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228093. [PMID: 36432194 PMCID: PMC9697480 DOI: 10.3390/molecules27228093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Medicinal plants are rich sources of bioactive compounds widely used as medicaments, food additives, perfumes, and agrochemicals. These secondary compounds are produced under stress conditions to carry out physiological tasks in plants. Secondary metabolites have a complex chemical structure with pharmacological properties. The widespread use of these metabolites in a lot of industrial sectors has raised the need to increase the production of secondary metabolites. Biotechnological methods of cell culture allow the conservation of plants, as well as the improvement of metabolite biosynthesis and the possibility to modify the synthesis pathways. The objective of this review is to outline the applications of different in vitro culture systems with previously reported relevant examples for the optimal production of plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Marouane Mohaddab
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| | - Younes El Goumi
- Polyyvalent Team in R&D, Higher School of Technology of Fkih Ben Salah, Sultan Moulay Slimane University, USMS, Beni Mellal 23000, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (M.G.); (A.B.)
| | - Malika Fakiri
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| |
Collapse
|
16
|
In vitro propagation and secondary metabolite production in Gloriosa superba L. Appl Microbiol Biotechnol 2022; 106:5399-5414. [PMID: 35941253 DOI: 10.1007/s00253-022-12094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Gloriosa superba L., commonly known as "gloriosa lily," "glory lily," and "tiger claw," is a perennial climber in the Liliaceae family. This plant is used in African and Southeast Asian cultures as an ayurvedic medicinal herb to treat various health conditions. Its main bioactive component is colchicine, which is responsible for medicinal efficacies as well as poisonous properties of the plant. A high market demand, imprudent harvesting of G. superba from natural habitat, and low seed setting have led scientists to explore micropropagation techniques and in vitro optimization of its phytochemicals. Plant growth regulators have been used to induce callus, root, and shoot organogenesis, and somatic embryogenesis in vitro. This review is aimed at presenting information regarding the occurrence, taxonomic description, phytochemistry, micropropagation, in vitro secondary metabolite, and synthetic seed production. The data collected from the existing literature, along with an analysis of individual study details, outcomes, and variations in the reports, will contribute to the development of biotechnological strategies for conservation and mass propagation of G. superba. KEY POINTS: • Latest literature on micropropagation of Gloriosa superba. • Biotechnological production and optimization of colchicine. • Regeneration, somatic embryogenesis, and synthetic seed production.
Collapse
|
17
|
Uncovering a Phenomenon of Active Hormone Transcriptional Regulation during Early Somatic Embryogenesis in Medicago sativa. Int J Mol Sci 2022; 23:ijms23158633. [PMID: 35955760 PMCID: PMC9368939 DOI: 10.3390/ijms23158633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic embryogenesis (SE) is a developmental process in which somatic cells undergo dedifferentiation to become plant stem cells, and redifferentiation to become a whole embryo. SE is a prerequisite for molecular breeding and is an excellent platform to study cell development in the majority of plant species. However, the molecular mechanism involved in M. sativa somatic embryonic induction, embryonic and maturation is unclear. This study was designed to examine the differentially expressed genes (DEGs) and miRNA roles during somatic embryonic induction, embryonic and maturation. The cut cotyledon (ICE), non-embryogenic callus (NEC), embryogenic callus (EC) and cotyledon embryo (CE) were selected for transcriptome and small RNA sequencing. The results showed that 17,251 DEGs, and 177 known and 110 novel miRNAs families were involved in embryonic induction (ICE to NEC), embryonic (NEC to EC), and maturation (EC to CE). Expression patterns and functional classification analysis showed several novel genes and miRNAs involved in SE. Moreover, embryonic induction is an active process of molecular regulation, and hormonal signal transduction related to pathways involved in the whole SE. Finally, a miRNA–target interaction network was proposed during M. sativa SE. This study provides novel perspectives to comprehend the molecular mechanisms in M. sativa SE.
Collapse
|
18
|
de Silva KK, Dunwell JM, Wickramasuriya AM. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int J Genomics 2022; 2022:7471063. [PMID: 35837132 PMCID: PMC9274236 DOI: 10.1155/2022/7471063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
Somatic embryogenesis (SE), which occurs naturally in many plant species, serves as a model to elucidate cellular and molecular mechanisms of embryo patterning in plants. Decoding the regulatory landscape of SE is essential for its further application. Hence, the present study was aimed at employing Weighted Gene Correlation Network Analysis (WGCNA) to construct a gene coexpression network (GCN) for Arabidopsis SE and then identifying highly correlated gene modules to uncover the hub genes associated with SE that may serve as potential molecular targets. A total of 17,059 genes were filtered from a microarray dataset comprising four stages of SE, i.e., stage I (zygotic embryos), stage II (proliferating tissues at 7 days of induction), stage III (proliferating tissues at 14 days of induction), and stage IV (mature somatic embryos). This included 1,711 transcription factors and 445 EMBRYO DEFECTIVE genes. GCN analysis identified a total of 26 gene modules with the module size ranging from 35 to 3,418 genes using a dynamic cut tree algorithm. The module-trait analysis revealed that four, four, seven, and four modules were associated with stages I, II, III, and IV, respectively. Further, we identified a total of 260 hub genes based on the degree of intramodular connectivity. Validation of the hub genes using publicly available expression datasets demonstrated that at least 78 hub genes are potentially associated with embryogenesis; of these, many genes remain functionally uncharacterized thus far. In silico promoter analysis of these genes revealed the presence of cis-acting regulatory elements, "soybean embryo factor 4 (SEF4) binding site," and "E-box" of the napA storage-protein gene of Brassica napus; this suggests that these genes may play important roles in plant embryo development. The present study successfully applied WGCNA to construct a GCN for SE in Arabidopsis and identified hub genes involved in the development of somatic embryos. These hub genes could be used as molecular targets to further elucidate the molecular mechanisms underlying SE in plants.
Collapse
Affiliation(s)
- Kithmee K. de Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | |
Collapse
|
19
|
Long Y, Yang Y, Pan G, Shen Y. New Insights Into Tissue Culture Plant-Regeneration Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:926752. [PMID: 35845646 PMCID: PMC9280033 DOI: 10.3389/fpls.2022.926752] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 05/08/2023]
Abstract
Plant regeneration occurs when plants repair or replace damaged structures based on the totipotency and pluripotency of their cells. Tissue culture is one of the most widely used regenerative technologies. Recently, a series of breakthroughs were made in the study of plant regeneration. This review summarizes two regenerative pathways in tissue culture: somatic embryogenesis and de novo organogenesis. Furthermore, we review the environmental factors influencing plant regeneration from explant sources, basal culture medium, plant growth regulators, and light/dark treatment. Additionally, we analyse the molecular mechanisms underlying two pathways. This knowledge will promote an understanding of the fundamental principles of plant regeneration from precursor cells and lay a solid foundation for applying plant micropropagation and genetic modification.
Collapse
Affiliation(s)
- Yun Long
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yun Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Fan Y, Tang Z, Wei J, Yu X, Guo H, Li T, Guo H, Zhang L, Fan Y, Zhang C, Zeng F. Dynamic Transcriptome Analysis Reveals Complex Regulatory Pathway Underlying Induction and Dose Effect by Different Exogenous Auxin IAA and 2,4-D During in vitro Embryogenic Redifferentiation in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:931105. [PMID: 35845676 PMCID: PMC9278894 DOI: 10.3389/fpls.2022.931105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant somatic cells can reprogram into differentiated embryos through somatic embryogenesis (SE) on the condition of plant growth regulators (PGRs). RNA sequencing analysis was performed to investigate transcriptional profiling on cotton redifferentiated callus that was induced by different auxin types (IAA and 2,4-D), different concentrations (0, 0.025, and 0.05 mg L-1), and different incubation times (0, 5, and 20 days). Under the 2,4-D induction effect, signal transduction pathways of plant hormones were significantly enriched in the embryogenic response stage (5 days). These results indicated that auxin signal transduction genes were necessary for the initial response of embryogenic differentiation. In the pre-embryonic initial period (20 days), the photosynthetic pathway was significantly enriched. Most differentially expressed genes (DEGs) were downregulated under the induction of 2,4-D. Upon the dose effect of IAA and 2,4-D, respectively, pathways were significantly enriched in phenylpropanoid biosynthesis, fatty acid metabolism, and carbon metabolic pathways. Therefore, primary and secondary metabolism pathways were critical in cotton SE. These results showed that complex synergistic mechanisms involving multiple cellular pathways were the causes of the induction and dose effect of auxin-induced SE. This study reveals a systematic molecular response to auxin signals and reveals the way that regulates embryogenic redifferentiation during cotton SE.
Collapse
Affiliation(s)
- Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Junmei Wei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiaoman Yu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
21
|
Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093040. [PMID: 35566390 PMCID: PMC9103073 DOI: 10.3390/molecules27093040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.
Collapse
|
22
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Vale EM, Santana DB, Reis RS, Sousa KR, de Souza Filho GA, Oliveira JGD, Santa-Catarina C, Silveira V. Mitochondrial proteomics reveals new insights into embryogenic competence acquisition in Carica papaya L. callus. J Proteomics 2022; 252:104434. [PMID: 34818586 DOI: 10.1016/j.jprot.2021.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms that endow a somatic cell with the ability to differentiate into a somatic embryo, which could result in numerous biotechnological applications, is still a challenge. The objective of this work was to identify some of the molecular and physiological mechanisms responsible for the acquisition of embryogenic competence during somatic embryogenesis in Carica papaya L. We performed a broad characterization of embryogenic (EC) and nonembryogenic calli (NEC) of using global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide (H2O2) contents. EC and NEC presented remarkable differences in anatomical and histochemical characteristics, with EC showing a higher reactivity for the presence of proteins and neutral polysaccharides. Our results demonstrate that mitochondrial metabolism affects the embryogenic competence of C. papaya callus. The EC presented higher participation of alternative oxidase (AOX) enzymes, higher total cell respiration and presented a stronger accumulation of mitochondrial stress response proteins. Differential accumulation of auxin-responsive Gretchen Hagen 3 (GH3) family proteins in EC was related to a decrease in the content of free 2,4-dichlorophenoxyacetic acid (2,4-D). EC also showed higher endogenous H2O2 contents. H2O2 is a promising molecule for further investigation in differentiation protocols for C. papaya somatic embryos. SIGNIFICANCE: To further advance the understanding of somatic embryogenesis, we performed a broad characterization of embryogenic and nonembryogenic callus, through global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide contents. Based on these results, we propose a working model for the competence of papaya callus. This model suggests that GH3 proteins play an important role in the regulation of auxins. In addition, embryogenic callus showed a greater abundance of stress response proteins and folding proteins. Embryogenic callus respiration occurs predominantly via AOX, and the inhibition of its activity is capable of inhibiting callus differentiation. Although the embryogenic callus presented greater total respiration and a greater abundance of oxidative phosphorylation proteins, they had less COX participation and less coupling efficiency, indicating less ATP production.
Collapse
Affiliation(s)
- Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil.
| | | | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil
| | | | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil
| | | | | | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil.
| |
Collapse
|
24
|
Zhang YC, Zhou YF, Cheng Y, Huang JH, Lian JP, Yang L, He RR, Lei MQ, Liu YW, Yuan C, Zhao WL, Xiao S, Chen YQ. Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Genome Biol 2022; 23:28. [PMID: 35045887 PMCID: PMC8772118 DOI: 10.1186/s13059-022-02608-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. RESULTS To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. CONCLUSIONS cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Li J, Li C, Chen S, Tang Q, Xiao Y, Zhong L, Chen Y, Chen B. Gene expression programs during callus development in tissue culture of two Eucalyptus species. BMC PLANT BIOLOGY 2022; 22:1. [PMID: 34979920 PMCID: PMC8722213 DOI: 10.1186/s12870-021-03391-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, however, our knowledge about the genes related to the callus maturation and shoot regeneration is still poor. RESULTS We set up an experiment to monitor the callus induction and callus development of two Eucalyptus species - E. camaldulensis (high embryogenic potential) and E. grandis x urophylla (low embryogenic potential). Then, we performed transcriptome sequencing for primary callus, mature callus, shoot regeneration stage callus and senescence callus. We identified 707 upregulated and 694 downregulated genes during the maturation process of the two Eucalyptus species and most of them were involved in the signaling pathways like plant hormone and MAPK. Next, we identified 135 and 142 genes that might play important roles during the callus development of E. camaldulensis and E. grandis x urophylla, respectively. Further, we found 15 DEGs shared by these two Eucalyptus species during the callus development, including Eucgr.D00640 (stem-specific protein TSJT1), Eucgr.B00171 (BTB/POZ and TAZ domain-containing protein 1), Eucgr.C00948 (zinc finger CCCH domain-containing protein 20), Eucgr.K01667 (stomatal closure-related actinbinding protein 3), Eucgr.C00663 (glutaredoxin-C10) and Eucgr.C00419 (UPF0481 protein At3g47200). Interestingly, the expression patterns of these genes displayed "N" shape in the samples. Further, we found 51 genes that were dysregulated during the callus development of E. camaldulensis but without changes in E. grandis x urophylla, such as Eucgr.B02127 (GRF1-interacting factor 1), Eucgr.C00947 (transcription factor MYB36), Eucgr.B02752 (laccase-7), Eucgr.B03985 (transcription factor MYB108), Eucgr.D00536 (GDSL esterase/lipase At5g45920) and Eucgr.B02347 (scarecrow-like protein 34). These 51 genes might be associated with the high propagation ability of Eucalyptus and 22 might be induced after the dedifferentiation. Last, we performed WGCNA to identify the co-expressed genes during the callus development of Eucalyptus and qRT-PCR experiment to validate the gene expression patterns. CONCLUSIONS This is the first time to globally study the gene profiles during the callus development of Eucalyptus. The results will improve our understanding of gene regulation and molecular mechanisms in the callus maturation and shoot regeneration.
Collapse
Affiliation(s)
- Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Changrong Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Shengkan Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Qinglan Tang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Yingying Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| |
Collapse
|
26
|
Trabelsi EB, Jedidi E. Somatic Embryogenesis from Immature Olive Zygotic Embryos. Methods Mol Biol 2022; 2527:133-141. [PMID: 35951189 DOI: 10.1007/978-1-0716-2485-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effects of plant growth regulators (PGRs) and the explant type on the embryogenesis and plant regeneration of olive (Olea europaea L. ssp europaea var. sativa) cv. "Chetoui" were studied using immature zygotic embryos. Embryogenic callus induction was achieved on OMc medium supplemented with different concentrations of BAP and NAA at low levels. Immature zygotic embryos as juvenile tissues are competent for somatic embryogenesis independently of PGRs supplementation. Repetitive somatic embryogenesis was obtained on PGRs-free media or at low concentrations in the dark.
Collapse
Affiliation(s)
| | - Emna Jedidi
- National Agricultural Research Institute of Tunisia Laboratory of Horticulture, University of Carthage, Tunis, Tunisia
| |
Collapse
|
27
|
Yang E, Zheng M, Zou X, Huang X, Yang H, Chen X, Zhang J. Global Transcriptomic Analysis Reveals Differentially Expressed Genes Involved in Embryogenic Callus Induction in Drumstick ( Moringa oleifera Lam.). Int J Mol Sci 2021; 22:ijms222212130. [PMID: 34830008 PMCID: PMC8619801 DOI: 10.3390/ijms222212130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022] Open
Abstract
The plant embryogenic callus (EC) is an irregular embryogenic cell mass with strong regenerative ability that can be used for propagation and genetic transformation. However, difficulties with EC induction have hindered the breeding of drumstick, a tree with diverse potential commercial uses. In this study, three drumstick EC cDNA libraries were sequenced using an Illumina NovaSeq 6000 system. A total of 7191 differentially expressed genes (DEGs) for embryogenic callus development were identified, of which 2325 were mapped to the KEGG database, with the categories of plant hormone signal transduction and Plant-pathogen interaction being well-represented. The results obtained suggest that auxin and cytokinin metabolism and several embryogenesis-labeled genes are involved in embryogenic callus induction. Additionally, 589 transcription factors from 20 different families were differentially expressed during EC formation. The differential expression of 16 unigenes related to auxin signaling pathways was validated experimentally by quantitative real time PCR (qRT-PCR) using samples representing three sequential developmental stages of drumstick EC, supporting their apparent involvement in drumstick EC formation. Our study provides valuable information about the molecular mechanism of EC formation and has revealed new genes involved in this process.
Collapse
Affiliation(s)
- Endian Yang
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China
| | - Mingyang Zheng
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China
| | - Xuan Zou
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China
| | - Xiaoling Huang
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Heyue Yang
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Xiaoyang Chen
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.C.); (J.Z.)
| | - Junjie Zhang
- Department of Forestry, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (E.Y.); (M.Z.); (X.Z.); (X.H.); (H.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, China
- Correspondence: (X.C.); (J.Z.)
| |
Collapse
|
28
|
Current Proteomic and Metabolomic Knowledge of Zygotic and Somatic Embryogenesis in Plants. Int J Mol Sci 2021; 22:ijms222111807. [PMID: 34769239 PMCID: PMC8583726 DOI: 10.3390/ijms222111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Embryogenesis is the primary developmental program in plants. The mechanisms that underlie the regulation of embryogenesis are an essential research subject given its potential contribution to mass in vitro propagation of profitable plant species. Somatic embryogenesis (SE) refers to the use of in vitro techniques to mimic the sexual reproduction program known as zygotic embryogenesis (ZE). In this review, we synthesize the current state of research on proteomic and metabolomic studies of SE and ZE in angiosperms (monocots and dicots) and gymnosperms. The most striking finding was the small number of studies addressing ZE. Meanwhile, the research effort focused on SE has been substantial but disjointed. Together, these research gaps may explain why the embryogenic induction stage and the maturation of the somatic embryo continue to be bottlenecks for efficient and large-scale regeneration of plants. Comprehensive and integrative studies of both SE and ZE are needed to provide the molecular foundation of plant embryogenesis, information which is needed to rationally guide experimental strategies to solve SE drawbacks in each species.
Collapse
|
29
|
Qin Z, Li J, Zhang Y, Xiao Y, Zhang X, Zhong L, Liu H, Chen B. Genome-wide identification of microRNAs involved in the somatic embryogenesis of Eucalyptus. G3-GENES GENOMES GENETICS 2021; 11:6163290. [PMID: 33693674 PMCID: PMC8049409 DOI: 10.1093/g3journal/jkab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (18-24 nt) and function in many biological processes in plants. Although Eucalyptus trees are widely planted across the world, our understanding of the miRNA regulation in the somatic embryogenesis (SE) of Eucalyptus is still poor. Here we reported, for the first time, the miRNA profiles of differentiated and dedifferentiated tissues of two Eucalyptus species and identified miRNAs involved in SE of Eucalyptus. Stem and tissue culture-induced callus were obtained from the subculture seedlings of E. camaldulensis and E. grandis x urophylla and were used as differentiated and dedifferentiated samples, respectively. Small RNA sequencing generated 304.2 million clean reads for the Eucalyptus samples (n = 3) and identified 888 miRNA precursors (197 known and 691 novel) for Eucalyptus. These miRNAs were mainly distributed in chromosomes Chr03, Chr05, and Chr08 and can produce 46 miRNA clusters. Then, we identified 327 and 343 differentially expressed miRNAs (DEmiRs) in the dedifferentiation process of E. camaldulensis and E. grandis x urophylla, respectively. DEmiRs shared by the two Eucalyptus species might be involved in the development of embryonic callus, such as MIR156, MIR159, MIR160, MIR164, MIR166, MIR169, MIR171, MIR399, and MIR482. Notably, we identified 81 upregulated and 67 downregulated miRNAs specific to E. camaldulensis, which might be associated with the high embryogenic potential. Target prediction and functional analysis showed that they might be involved in longevity regulating and plant hormone signal transduction pathways. Further, using the gene expression profiles, we observed the negative regulation of miRNA-target pairs, such as MIR160~ARF18, MIR396~GRF6, MIR166~ATHB15/HD-ZIP, and MIR156/MIR157~SPL1. Interestingly, transcription factors such as WRKY, MYB, GAMYB, TCP4, and PIL1 were found to be regulated by the DEmiRs. The genes encoding PIL1 and RPS21C, regulated by upregulated miRNAs (e.g., egd-N-miR63-5p, egd-N-miR63-5p, and MIR169,) were downregulated exclusively in the dedifferentiation of E. camaldulensis. This is the first time to study the miRNA regulation in the dedifferentiation process of Eucalyptus and it will provide a valuable resource for future studies. More importantly, it will improve our understanding of miRNA regulation during the somatic embryogenesis of Eucalyptus and benefit the Eucalyptus breeding program.
Collapse
Affiliation(s)
- Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| |
Collapse
|
30
|
Valledor L, Guerrero S, García-Campa L, Meijón M. Proteometabolomic characterization of apical bud maturation in Pinus pinaster. TREE PHYSIOLOGY 2021; 41:508-521. [PMID: 32870277 DOI: 10.1093/treephys/tpaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 05/03/2023]
Abstract
Bud maturation is a physiological process that implies a set of morphophysiological changes that lead to the transition of growth patterns from young to mature. This transition defines tree growth and architecture, and in consequence traits such as biomass production and wood quality. In Pinus pinaster Aiton, a conifer of great timber value, bud maturation is closely related to polycyclism (multiple growth periods per year). This process causes a lack of apical dominance, and consequently increased branching that reduces its timber quality and value. However, despite its importance, little is known about bud maturation. In this work, proteomics and metabolomics were employed to study apical and basal sections of young and mature buds in P. pinaster. Proteins and metabolites in samples were described and quantified using (n)UPLC-LTQ-Orbitrap. The datasets were analyzed employing an integrative statistical approach, which allowed the determination of the interactions between proteins and metabolites and the different bud sections and ages. Specific dynamics of proteins and metabolites such as histones H3 and H4, ribosomal proteins L15 and L12, chaperonin TCP1, 14-3-3 protein gamma, gibberellins A1, A3 and A8, strigolactones and abscisic acid, involved in epigenetic regulation, proteome remodeling, hormonal signaling and abiotic stress pathways showed their potential role during bud maturation. Candidates and pathways were validated employing interaction databases and targeted transcriptomics. These results increase our understanding of the molecular processes behind bud maturation, a key step towards improving timber production and natural pine forests management in a future scenario of climate change. However, further studies are necessary using different P. pinaster populations that show contrasting wood quality and stress tolerance in order to generalize the results.
Collapse
Affiliation(s)
- Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Sara Guerrero
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, C/Catedrático Rodrigo Uría, University of Oviedo, Oviedo 33071, Asturias, Spain
| |
Collapse
|
31
|
Li T, Yuan W, Qiu S, Shi J. Selection of reference genes for gene expression analysis in Liriodendron hybrids' somatic embryogenesis and germinative tissues. Sci Rep 2021; 11:4957. [PMID: 33654231 PMCID: PMC7925589 DOI: 10.1038/s41598-021-84518-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
The differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.
Collapse
Affiliation(s)
- Tingting Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| | - Weigao Yuan
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Shuai Qiu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,Research and Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
32
|
Kępczyńska E, Orłowska A. Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during induction phase in relation to somatic embryo formation. PLANTA 2021; 253:67. [PMID: 33586054 PMCID: PMC7882586 DOI: 10.1007/s00425-021-03582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/30/2021] [Indexed: 05/02/2023]
Abstract
During the 3-week-long induction phase, when M. truncatula cells leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, biosynthesis and degradation of ABA, Gas and IAA proceeded at different levels. Induction of embryo formation is related to a lower ABA content, compared to the content of IAA and that of total bioactive GAs. Endogenous phytohormones are involved in the regulation of zygotic embryogenesis, but their role, especially of ABA, a plant growth inhibitor, in inducing somatic embryogenesis (SE) in angiosperms is still incompletely known. To arrive a better understanding of the ABA role in the process, we analyzed simultaneously and in detail changes in the contents of both ABA and five bioactive GAs (GA4, GA7, GA1, GA3, GA6) and IAA in M. truncatula non-embryogenic M9 (NE) and embryogenic M9-10a (E) genotypes. The initial leaf explants of both genotypes, and particularly NE, contained many times more ABA compared to the total bioactive GAs or IAA. In tissues during the entire 21-day induction all the hormones mentioned and their metabolites or conjugates were present; however, their contents were found to differ between the lines tested. The ABA level in primary explants of NE genotype was more than two times higher than that in E genotype. An even larger difference in the ABA content was found on the last day (day 21) of the induction phase (IP); the ABA content in E callus was over six times lower than in NE callus. In contrast, the IAA and GAs contents in primary explants of both genotypes in relation to ABA were low, but the contents of IAA and GAs exceeded that of ABA in the M9-10a tissues on the last day of IP. It is shown for the first time that endogenous ABA together with endogenous bioactive GAs and IAA is involved in acquisition of embryogenic competence in Medicago truncatula leaf somatic cells. These findings have a strong functional implication as they allow to improve the SE induction protocol.
Collapse
Affiliation(s)
- Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| | - Anna Orłowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| |
Collapse
|
33
|
Gulzar B, Mujib A, Rajam MV, Zafar N, Mamgain J, Malik M, Syeed R, Ejaz B. Shotgun label-free proteomic and biochemical study of somatic embryos (cotyledonary and maturation stage) in Catharanthus roseus (L.) G. Don. 3 Biotech 2021; 11:86. [PMID: 33505840 PMCID: PMC7817727 DOI: 10.1007/s13205-021-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
Somatic embryogenesis is an important and wonderful biotechnological tool used to develop whole plant from a single or a group of somatic cells. The differentiated somatic cells become totipotent stem cells by drastic reprogramming of a wide range of cellular activities, leading to the acquisition of embryogenic competence. After acquiring competence, the cells pass through globular, heart, torpedo and cotyledonary stages of embryo; however, all advanced embryos do not convert into full plant, produce adventive embryos or callus instead, thus reverses the programming. This is a big limitation in propagation of many plants. Understanding and unraveling the proteins at this 'embryo to plantlet' transition stage will help to get more numbers of plants. Thus, our study was aimed at an identification of differentially abundant proteins between two important advanced stages, i.e. cotyledonary-(T1) and maturation stage (T2) of somatic embryos in Catharanthus roseus. A total of 2949 and 3030 proteins were identified in cotyledonary and maturation stage, respectively. Of these, 1129 proteins were common to both. Several proteins were found to be differentially accumulated in two different embryo stages in which over 60 proteins were most accumulated during somatic embryo maturation time. More chlorophyll accumulation was noted at this time under the influence of gibberellic acid (GA3). Proteins like Mg-protoporphyrin IX chelatase, chlorophyll a-b-binding protein, photosystem I iron-sulfur center, photosystem II Psb, photosystem II subunit P-1, P-II domain-containing protein, RuBisCO large chain, RuBisCO small chain, RuBisCO activase, RuBisCO large subunit-binding proteins were synthesized. Some of the identified proteins are linked to chlorophyll synthesis, carbohydrate metabolism and stress. The identified proteins are categorized into different groups on the basis of their cellular location, role and other metabolic processes. Biochemical attributes like protein, sugar, proline, antioxidant enzyme (APX, SOD and CAT) activities were high in T2 as compared to T1. The proteins like peroxidases, pathogenesis-related proteins, the late-embryogenesis abundant proteins, argonaute, germin and others have been discussed in C. roseus somatic embryo maturation process.
Collapse
Affiliation(s)
- Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Nadia Zafar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
34
|
Subban P, Kutsher Y, Evenor D, Belausov E, Zemach H, Faigenboim A, Bocobza S, Timko MP, Reuveni M. Shoot Regeneration Is Not a Single Cell Event. PLANTS 2020; 10:plants10010058. [PMID: 33383798 PMCID: PMC7823732 DOI: 10.3390/plants10010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Abstract
Shoot regeneration is a key tool of modern plant biotechnology. While many researchers use this process empirically, very little is known about the early molecular genetic factors and signaling events that lead to shoot regeneration. Using tobacco as a model system, we found that the inductive events required for shoot regeneration occur in the first 4–5 days following incubation on regeneration medium. Leaf segments placed on regeneration medium did not produce shoots if removed from the medium before four days indicating this time frame is crucial for the induction of shoot regeneration. Leaf segments placed on regeneration medium for longer than five days maintain the capacity to produce shoots when removed from the regeneration medium. Analysis of gene expression during the early days of incubation on regeneration medium revealed many changes occurring with no single expression pattern evident among major gene families previously implicated in developmental processes. For example, expression of Knotted gene family members increased during the induction period, whereas transcription factors from the Wuschel gene family were unaltered during shoot induction. Expression levels of genes involved in cell cycle regulation increased steadily on regeneration medium while expression of NAC genes varied. No obvious possible candidate genes or developmental processes could be identified as a target for the early events (first few days) in the induction of shoot regeneration. On the other hand, observations during the early stages of regeneration pointed out that regeneration does not occur from a single cell but a group of cells. We observed that while cell division starts just as leaf segments are placed on regeneration medium, only a group of cells could become shoot primordia. Still, these primordia are not identifiable during the first days.
Collapse
Affiliation(s)
- Patharajan Subban
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Yaarit Kutsher
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Dalia Evenor
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Eduard Belausov
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Hanita Zemach
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Samuel Bocobza
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Moshe Reuveni
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
- Correspondence:
| |
Collapse
|
35
|
Chen X, Huang S, Jiang M, Chen Y, XuHan X, Zhang Z, Lin Y, Lai Z. Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus longan Lour.). PLoS One 2020; 15:e0238032. [PMID: 32841304 PMCID: PMC7447046 DOI: 10.1371/journal.pone.0238032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein–protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Huang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengqi Jiang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zihao Zhang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| | - Zhongxiong Lai
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| |
Collapse
|
36
|
Song S, Wang Z, Ren Y, Sun H. Full-Length Transcriptome Analysis of the ABCB, PIN/PIN-LIKES, and AUX/LAX Families Involved in Somatic Embryogenesis of Lilium pumilum DC. Fisch. Int J Mol Sci 2020; 21:E453. [PMID: 31936841 PMCID: PMC7014436 DOI: 10.3390/ijms21020453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Plant cell totipotency is one of the 25 major topics in current scientific research, and somatic embryos are good experimental material for studying cell totipotency. Polar auxin transport plays an important regulatory role in somatic embryogenesis (SE). However, little is known about the auxin transport genes and their regulatory mechanisms in Lilium SE. In this study, we applied single-molecule real-time (SMRT) sequencing to Lilium pumilum DC. Fisch. for the first time and obtained a total of 119,649 transcripts, of which 14 encoded auxin transport genes. Correlation analyses between somatic embryo induction and gene expression under different treatments revealed that auxin transport genes, especially ATP-binding cassette (ABC) transporter B family member 21 (ABCB21) and PIN-FORMED (PIN) LIKES 7 (PILS7), may be key players in SE, and the necessary duration of picloram (PIC) treatment to induce SE is as short as 3 days. Our research provides valuable genetic information on Lilium pumilum, elucidating the candidate auxin transport genes involved in SE and their influencing factors. This study lays a foundation for elucidating the regulatory mechanism of auxin transport in SE.
Collapse
Affiliation(s)
- Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Zhiping Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Yamin Ren
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (Z.W.); (Y.R.)
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Horticulture Department, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
37
|
Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Dose IBA-Induced Embryogenic Redifferentiation in Cotton. Int J Mol Sci 2020; 21:ijms21020426. [PMID: 31936561 PMCID: PMC7013799 DOI: 10.3390/ijms21020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022] Open
Abstract
The somatic embryogenesis (SE) process of plants is regulated by exogenous hormones. During the SE, different genes sensitively respond to hormone signals through complex regulatory networks to exhibit plant totipotency. When cultured in indole-3-butyric acid (IBA) concentration gradient medium supplemented with 0 mg dm-3, 0.025 mg dm-3, and 0.05 mg dm-3 IBA, the callus differentiation rate first increased then decreased in cotton. To characterize the molecular basis of IBA-induced regulating SE, transcriptome analysis was conducted on embryogenic redifferentiation. Upon the examination of the IBA's embryogenic inductive effect, it was revealed that pathways related to plant hormone signal transduction and alcohol degradation were significantly enriched in the embryogenic responsive stage (5 days). The photosynthesis, alcohol metabolism and cell cycle pathways were specifically regulated in the pre-embryonic initial period (20 days). Upon the effect of the IBA dose, in the embryogenic responsive stage (5 days), the metabolism of xenobiotics by the cytochrome P450 pathway and secondary metabolism pathways of steroid, flavonoid, and anthocyanin biosynthesis were significantly enriched. The phenylpropanoid, brassinosteroid, and anthocyanin biosynthesis pathways were specifically associated in the pre-embryonic initial period (20 days). At different developmental stages of embryogenic induction, photosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, xenobiotics metabolism by cytochrome P450, and brassinosteroid biosynthesis pathways were enriched at low a IBA concentration. Meanwhile, at high IBA concentration, the carbon metabolism, alcohol degradation, circadian rhythm and biosynthesis of amino acids pathways were significantly enriched. The results reveal that complex regulating pathways participate in the process of IBA-induced redifferentiation in cotton somatic embryogenesis. In addition, collections of potential essential signaling and regulatory genes responsible for dose IBA-induced efficient embryogenic redifferentiation were identified. Quantitative real-time PCR (qRT-PCR) was performed on the candidate genes with different expression patterns, and the results are basically consistent with the RNA-seq data. The results suggest that the complicated and concerted IBA-induced mechanisms involving multiple cellular pathways are responsible for dose-dependent plant growth regulator-induced SE. This report represents a systematic study and provides new insight into molecular signaling and regulatory basis underlying the process of dose IBA-induced embryogenic redifferentiation during SE.
Collapse
|
38
|
Chen Y, Xu X, Liu Z, Zhang Z, XuHan X, Lin Y, Lai Z. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics 2020; 21:4. [PMID: 31898486 PMCID: PMC6941269 DOI: 10.1186/s12864-019-6393-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is a process of somatic cells that dedifferentiate to totipotent embryonic stem cells and generate embryos in vitro. Longan SE has been established and wildly used as model system for studying embryogenesis in woody plants, SE-related genes had been characterized. In spite of that, a comprehensive overview of SE at a molecular level is still absent. To understand the molecular mechanisms during longan SE, we examined the transcriptome changes by using Illumina HiSeq from the four distinct developmental stages, including non-embryogenic callus (NEC), embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC), globular embryos (GE). RESULTS RNA-seq of the four samples generated a total of 243.78 million high quality reads, approximately 81.5% of the data were mapped to longan genome. The cDNA libraries of NEC, EC, ICpEC and GE, generated 22,743, 19,745, 21,144, 21,102 expressed transcripts, 1935, 1710, 1816, 1732 novel transcripts, 2645, 366, 505, 588 unique genes, respectively. Comparative transcriptome analysis showed that a total of 10,642, 4180, 5846 and 1785 genes were differentially expressed in the pairwise comparisons of NEC_vs_EC, EC_vs_ICpEC, EC_vs_GE, ICpEC_vs_GE, respectively. Among them, plant hormones signalling related genes were significantly enriched, especially the auxin and cytokinin signalling components. The transcripts of flavonoid biosynthesis related genes were mainly expressed in NEC, while fatty acid biosynthesis related genes mainly accumulated in early SE. In addition, the extracelluar protein encoding genes LTP, CHI, GLP, AGP, EP1 were related to longan SE. Combined with the FPKM value of longan nine tissues transcription, 27 SE specific or preferential genes (LEC1, LEC1-like, PDF1.3, GH3.6, AGL80, PIN1, BBM, WOX9, WOX2, ABI3, et al.) and 28 NEC preferential genes (LEA5, CNOT3, DC2.15, PR1-1, NsLTP2, DIR1, PIP1, PIP2.1, TIP2-1, POD-P7 and POD5 et al.) were characterized as molecular markers for longan early SE. qRT-PCR validation of SE-related genes showed a high correlation between RNA-seq and qRT-PCR data. CONCLUSION This study provides new insights into the role of the transcriptome during early SE in longan. Differentially expressed genes reveal that plant hormones signalling, flavonoid and fatty acid biosynthesis, and extracelluar protein related genes were involved in longan early SE. It could serve as a valuable platform resource for further functional studies addressing embryogenesis in woody plants.
Collapse
Affiliation(s)
- Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuanxia Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxion Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
39
|
Rodrigues AS, Chaves I, Costa BV, Lin YC, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM. Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 2019; 9:11327. [PMID: 31383905 PMCID: PMC6683148 DOI: 10.1038/s41598-019-47789-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of seed development by small non-coding RNAs (sRNAs) is an important mechanism controlling a crucial phase of the life cycle of seed plants. In this work, sRNAs from seed tissues (zygotic embryos and megagametophytes) and from somatic embryos of Pinus pinaster were analysed to identify putative regulators of seed/embryo development in conifers. In total, sixteen sRNA libraries covering several developmental stages were sequenced. We show that embryos and megagametophytes express a large population of 21-nt sRNAs and that substantial amounts of 24-nt sRNAs were also detected, especially in somatic embryos. A total of 215 conserved miRNAs, one third of which are conifer-specific, and 212 high-confidence novel miRNAs were annotated. MIR159, MIR171 and MIR394 families were found in embryos, but were greatly reduced in megagametophytes. Other families, like MIR397 and MIR408, predominated in somatic embryos and megagametophytes, suggesting their expression in somatic embryos is associated with in vitro conditions. Analysis of the predicted miRNA targets suggests that miRNA functions are relevant in several processes including transporter activity at the cotyledon-forming stage, and sulfur metabolism across several developmental stages. An important resource for studying conifer embryogenesis is made available here, which may also provide insightful clues for improving clonal propagation via somatic embryogenesis.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Bruno Vasques Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan and Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Susana Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Ana Milhinhos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Célia M Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
40
|
Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:186-205. [PMID: 30824051 DOI: 10.1016/j.plantsci.2019.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 05/21/2023]
Abstract
The combination of advanced genomics, genome editing and plant transformation biology presents a powerful platform for basic plant research and crop improvement. Together these advances provide the tools to identify genes as targets for direct editing as single base pair changes, deletions, insertions and site specific homologous recombination. Recent breakthrough technologies using morphogenic regulators in plant transformation creates the ability to introduce reagents specific toward their identified targets and recover stably transformed and/or edited plants which are genotype independent. These technologies enable the possibility to alter a trait in any variety, without genetic disruption which would require subsequent extensive breeding, but rather to deliver the same variety with one trait changed. Regulatory issues regarding this technology will predicate how broadly these technologies will be implemented. In addition, education will play a crucial role for positive public acceptance. Taken together these technologies comprise a platform for advanced breeding which is an imperative for future world food security.
Collapse
Affiliation(s)
- Albert P Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA.
| | | | - Joel Hague
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA
| | - Muruganantham Mookkan
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Stephen Dellaporta
- Yale University, New Haven, CT 06520, USA; Verinomics Inc., New Haven, CT 06520, USA
| | | | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
|
42
|
GOUVEA DRIELLYS, CHAGAS KRISTHIANO, CIPRIANO JAMILEL, LOPES JOSÉCARLOS, SCHMILDT EDILSONR, OTONI WAGNERC, SCHMILDT OMAR, ARAUJO CAROLINEPDE, ALEXANDRE RODRIGOS. Somatic embryogenesis in the commercial papaya hybrid UENF/Caliman 01 relying on plantlet production from sexed adult hermaphrodite donor plants. AN ACAD BRAS CIENC 2019; 91:e20180504. [DOI: 10.1590/0001-3765201920180504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 11/22/2022] Open
|
43
|
Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Dev Biol 2018; 442:13-27. [DOI: 10.1016/j.ydbio.2018.04.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|
44
|
Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc Natl Acad Sci U S A 2018; 115:E9145-E9152. [PMID: 30201727 PMCID: PMC6166847 DOI: 10.1073/pnas.1805371115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While clonally propagated individuals should share identical genomes, there is often substantial phenotypic variation among them. Both genetic and epigenetic modifications induced during regeneration have been associated with this phenomenon. Here we investigated the fate of the epigenome after asexual propagation by generating clonal individuals from differentiated somatic cells through the manipulation of a zygotic transcription factor. We found that phenotypic novelty in clonal progeny was linked to epigenetic imprints that reflect the organ used for regeneration. Some of these organ-specific imprints can be maintained during the cloning process and subsequent rounds of meiosis. Our findings are fundamental for understanding the significance of epigenetic variability arising from asexual reproduction and have significant implications for future biotechnological applications. Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear. Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced. The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue. Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms. Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation.
Collapse
|
45
|
Zhong L, Liu E, Yang C, Jin S, Diao Y, Hu Z. High embryogenic ability and regeneration from floral axis of Amorphophallus konjac (Araceae). Open Life Sci 2017. [DOI: 10.1515/biol-2017-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAmorphophallus konjac (Araceae) a perennial herb, it has high medicinal and industrial value. In this study, a simple and efficient system for direct somatic embryogenesis and plantlet regeneration of Amorphophallus konjac was developed. The floral axis was used as the experimental material. The primary callus, developed from the floral axis grown on Murashige and Skoog (MS) medium supplemented with different hormone combination at different concentrations. The highest rate of embryogenic callus formation was observed on the MS medium containing 9.04 µM 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 5.37 µM naphthalene acetic acid (NAA). The maximum induction rate was 79.8%, and the embryogenic calli were able to subculture on a medium containing similar hormone combination for over 1 year. The calli were also placed on different media for regeneration and it produced complete plants with shoots and root systems simultaneously. The highest differentiation rate of the embryogenic calli grown on differentiation medium supplemented with 8.88 µM 6-benzylaminopurine (6-BA) and 5.37 µM NAA was 95.6%. Flow cytometry analysis showed no ploidy variation in all the regenerate plantlets.
Collapse
Affiliation(s)
- Lin Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, PR China
| | - Erxi Liu
- Institute of Konjac, Enshi Academy of Agricultural Sciences, Enshi, P. R. China
| | - Chaozhu Yang
- Institute of Konjac, Enshi Academy of Agricultural Sciences, Enshi, P. R. China
| | - Surong Jin
- Institute of Chemical and Life Science, Wuhan University of Technology, Wuhan, P. R. China
| | - Ying Diao
- Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, PR China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, PR China
| |
Collapse
|
46
|
Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton. Mol Cell Proteomics 2016; 15:2108-24. [PMID: 27073181 PMCID: PMC5083107 DOI: 10.1074/mcp.m115.049338] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/02/2022] Open
Abstract
Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling.
Collapse
Affiliation(s)
- Ting Zhou
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiyan Yang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Kai Guo
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jinwu Deng
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jiao Xu
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenhui Gao
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- §Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Xianlong Zhang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China;
| |
Collapse
|
47
|
Indoliya Y, Tiwari P, Chauhan AS, Goel R, Shri M, Bag SK, Chakrabarty D. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci Rep 2016; 6:23050. [PMID: 26973288 PMCID: PMC4789791 DOI: 10.1038/srep23050] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.
Collapse
Affiliation(s)
- Yuvraj Indoliya
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Poonam Tiwari
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Abhisekh Singh Chauhan
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Ridhi Goel
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Manju Shri
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Sumit Kumar Bag
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| |
Collapse
|
48
|
Guzmán-García E, Sánchez-Romero C, Panis B, Carpentier SC. The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado. Proteomics 2014; 13:3498-507. [PMID: 24174206 DOI: 10.1002/pmic.201300148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/04/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
Avocado embryogenic cell cultures can be classified into two groups based on their morphology when cultured on a medium containing auxin: somatic embryo (SE) and proembryonic masses (PEM) type cultures. The calli of SE-type cell lines are able to go through the maturation process, whereas the calli of PEM cell lines rarely mature. We have investigated four independent avocado cell cultures (two SE and two PEM). The aim of this study was to link the differential regeneration capacity of the four cell cultures to a proteomic pattern and to gain insight into the regeneration capacity. A 2D-DIGE analysis followed by a blind multivariate analysis was able to separate the two SE lines from the PEM lines indicating that the protein profiles of SE and PEM calli are different. Based on the variable importance, that is, the differential protein pattern, we hypothesize that the regeneration capacity in avocado is correlated to the ability to overcome the physicochemical stress stimuli associated with the in vitro culture. Our identical culture conditions do not seem to trigger an appropriate response in PEM lines.
Collapse
|
49
|
Identification of a PTC-containing DlRan transcript and its differential expression during somatic embryogenesis in Dimocarpus longan. Gene 2013; 529:37-44. [DOI: 10.1016/j.gene.2013.07.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022]
|
50
|
Soriano M, Li H, Boutilier K. Microspore embryogenesis: establishment of embryo identity and pattern in culture. PLANT REPRODUCTION 2013; 26:181-96. [PMID: 23852380 PMCID: PMC3747321 DOI: 10.1007/s00497-013-0226-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/25/2013] [Indexed: 05/19/2023]
Abstract
The developmental plasticity of plants is beautifully illustrated by the competence of the immature male gametophyte to change its developmental fate from pollen to embryo development when exposed to stress treatments in culture. This process, referred to as microspore embryogenesis, is widely exploited in plant breeding, but also provides a unique system to understand totipotency and early cell fate decisions. We summarize the major concepts that have arisen from decades of cell and molecular studies on microspore embryogenesis and put these in the context of recent experiments, as well as results obtained from the study of pollen and zygotic embryo development.
Collapse
Affiliation(s)
- Mercedes Soriano
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Hui Li
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| |
Collapse
|