1
|
Zhang P, Jackson E, Li X, Zhang Y. Salicylic acid and jasmonic acid in plant immunity. HORTICULTURE RESEARCH 2025; 12:uhaf082. [PMID: 40343347 PMCID: PMC12058309 DOI: 10.1093/hr/uhaf082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are the two most important phytohormones in plant immunity. While SA plays pivotal roles in local and systemic acquired resistance (SAR) against biotrophic pathogens, JA, on the other hand, contributes to defense against necrotrophic pathogens, herbivores, and induced systemic resistance (ISR). Over the past 30 years, extensive research has elucidated the biosynthesis, metabolism, physiological functions, and signaling of both SA and JA. Here, we present an overview of signaling pathways of SA and JA and how they interact with each other to fine-tune plant defense responses.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Ulrich L, Schmitz J, Thurow C, Gatz C. CORONATINE INSENSITIVE 1-mediated repression of immunity-related genes in Arabidopsis roots is lifted upon infection with Verticillium longisporum. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2356-2372. [PMID: 39945499 DOI: 10.1093/jxb/eraf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/10/2025] [Indexed: 05/29/2025]
Abstract
Verticillium longisporum is a soil-borne fungal pathogen that causes vascular disease predominantly in Brassicaceae. We have previously reported that the receptor of the plant defense hormone jasmonoyl-isoleucine (JA-Ile), CORONATINE INSENSITIVE 1 (COI1), is required in roots for the fungus to proliferate efficiently in the shoot, suggesting the presence of a mobile root-borne signal that influences the outcome of the disease in shoots. This function of COI1 in promoting susceptibility is independent of JA-Ile. To explore the underlying mechanisms, in this study we compared the root transcriptome of the Arabidopsis coi1 mutant with those of the susceptible JA-Ile-deficient allene oxide synthase (aos) mutant and the susceptible wild-type (WT). The biggest difference between the transcriptomes was due to 316 immunity-related genes that were constitutively higher expressed in coi1 as compared to the susceptible genotypes. Interfering with the expression of a sub-group of these genes partially suppressed the coi1-mediated tolerance phenotype. We therefore hypothesize that secreted defense compounds encoded by genes constitutively expressed in coi1 are transported to the shoot with the transpiration stream where they accumulate and interfere with fungal growth. In addition, we found that 149 of the 316 COI1-repressed genes were induced in the WT and aos upon infection, reaching similar expression levels as in mock-treated coi1. These were not further induced in coi1 upon infection. Thus, the repressive effect of COI1 is either lifted or overridden upon infection with V. longisporum.
Collapse
Affiliation(s)
- Louisa Ulrich
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Johanna Schmitz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Jiang X, Yang Y, Li Y, Wang Y, Rodamilans B, Ji W, Wu X, García JA, Wu X, Cheng X. Plant viruses convergently target NPR1 with various strategies to suppress salicylic acid-mediated antiviral immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1395-1412. [PMID: 39981868 PMCID: PMC12060747 DOI: 10.1111/jipb.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the receptor for salicylic acid (SA), plays a central role in the SA-mediated basal antiviral responses. Recent studies have shown that two different plant RNA viruses encode proteins that suppress such antiviral responses by inhibiting its SUMOylation and inducing its degradation, respectively. However, it is unclear whether targeting NPR1 is a general phenomenon in viruses and whether viruses have novel strategies to inhibit NPR1. In the present study, we report that two different positive-sense single-stranded RNA (+ssRNA) viruses, namely, alfalfa mosaic virus (AMV) and potato virus X (PVX); one negative-sense single-stranded RNA (-ssRNA) virus (calla lily chlorotic spot virus, CCSV); and one single-stranded DNA virus (beet severe curly-top virus, BSCTV) that also encode one or more proteins that interact with NPR1. In addition, we found that the AMV-encoded coat protein (CP) can induce NPR1 degradation by recruiting S-phase kinase-associated protein 1 (Skp1), a key component of the Skp1/cullin1/F-box (SCF) E3 ligase. In contrast, the BSCTV-encoded V2 protein inhibits NPR1 function, probably by affecting its nucleocytoplasmic distribution via the nuclear export factor ALY. Taken together, these data suggest that NPR1 is one of the central hubs in the molecular arms race between plants and viruses and that different viruses have independently evolved different strategies to target NPR1 and disrupt its function.
Collapse
Affiliation(s)
- Xue Jiang
- College of Plant Protection, Northeast Agricultural UniversityHarbin150030China
| | - Yingshuai Yang
- College of Plant Protection, Northeast Agricultural UniversityHarbin150030China
| | - Yong Li
- College of Life Science, Northeast Agricultural UniversityHarbin150030China
| | - Yongzhi Wang
- Institute of Plant Protection, Jilin Academy of Agricultural SciencesChangchun130033China
| | - Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadrid28049Spain
| | - Weiqin Ji
- College of Plant Protection, Northeast Agricultural UniversityHarbin150030China
| | - Xiaoxia Wu
- College of Life Science, Northeast Agricultural UniversityHarbin150030China
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadrid28049Spain
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural UniversityHarbin150030China
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural UniversityHarbin150030China
| |
Collapse
|
4
|
Shen Y, Cai X, Li W, Wu H, He Z, Meng Q, Jia B, Sun M, Sun X. Rice-specific miR1850.1 targets NPR3 to regulate cold stress response. PLANT COMMUNICATIONS 2025:101324. [PMID: 40156194 DOI: 10.1016/j.xplc.2025.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Cold stress in temperate rice-production regions is responsible for yield losses of up to 30%-40%, and improving cold tolerance is a practical strategy to safeguard rice production. Numerous genes and signaling networks for cold stress have been identified in rice. However, little is known about the roles of microRNAs in the cold-stress response. Here, we find that the rice-specific pri-miR1850 and its two mature products, miR1850.1 and miR1850.2, are downregulated by cold stress. Using gain- and loss-of-function genetic approaches in elite japonica cultivars, we show that pri-miR1850 and miR1850.1 negatively regulate cold tolerance at both the young-seedling and booting stages. miR1850.1 targets and suppresses the immune gene NPR3 by mediating transcript cleavage and translational repression. Upon cold treatment, NPR3 transcripts and proteins are upregulated owing to the alleviation of miR1850.1-mediated repression and the activation of NPR3 transcription. miR1850.1 functions genetically through NPR3 in the cold-stress response. The miR1850.1-NPR3 module also controls rice disease resistance and grain yields. Our findings reveal a cold-signaling network and provide targets for the engineering of cold-tolerant japonica varieties to endure fluctuating future climates.
Collapse
Affiliation(s)
- Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wanhong Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Wu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zitian He
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qiangrui Meng
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
5
|
Zhou M, Ye JY, Shi YJ, Jiang YJ, Zhuang Y, Zhu QY, Liu XX, Ding ZJ, Zheng SJ, Jin CW. Apoplastic pH is a chemical switch for extracellular H 2O 2 signaling in abscisic acid-mediated inhibition of cotyledon greening. THE NEW PHYTOLOGIST 2025; 245:2600-2615. [PMID: 39834016 DOI: 10.1111/nph.20400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The apoplastic pH (pHApo) in plants is susceptible to environmental stimuli. However, the biological implications of pHApo variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pHApo relate to plant behaviors in Arabidopsis. Variations in pHApo negatively regulated the cotyledon greening inhibition to the universal stress hormone ABA or environmental stimuli through the action of extracellular hydrogen peroxide (eH2O2). Further studies revealed that an increase in pHApo diminishes the chemical reactivity of eH2O2, effectively functioning as an 'off' switch for its action in oxidizing thiols of plasma membrane proteins. Consequently, this suppresses the eH2O2-mediated cotyledon greening inhibition to environmental stimuli and ABA, alongside inhibiting the eH2O2-mediated intracellular Ca2+ signaling. Conversely, a decrease in pHApo serves as an 'on' switch for the action of eH2O2. In summary, the pHApo is a crucial messenger and chemical switch for eH2O2 in signal transduction, notwithstanding the apparent simplicity of the underlying mechanism. Our findings provide a novel fundamental biological insight into the significance of pH.
Collapse
Affiliation(s)
- Miao Zhou
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Ju Shi
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Tian H, Xu L, Li X, Zhang Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:773-785. [PMID: 39714102 PMCID: PMC11951402 DOI: 10.1111/jipb.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| | - Lu Xu
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Xin Li
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Yuelin Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| |
Collapse
|
7
|
Zhang C, Zhang H, Lin W, Chai J, Shangguan X, Zhao T. ZmDREB1A controls plant immunity via regulating salicylic acid metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17226. [PMID: 39873897 DOI: 10.1111/tpj.17226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R. solani). The maize ZmDREB1A knock-out mutant exhibits increased disease resistance against the pathogen R. solani. Further investigation showed that ZmDREB1A regulates salicylic acid (SA) metabolism by inhibiting ZmSARD1 gene and activating ZmSAGT gene expression. Additionally, the SA level was increased while the SAG level was decreased in zmdreb1a mutant seedlings when the plants were infected with the pathogen R. solani. Furthermore, overexpression of ZmSAGT in Arabidopsis reduced plant resistance to Pst DC3000 by decreasing SA levels and increasing SAG levels. These data demonstrate that ZmDREB1A regulates the metabolism of SA and controls plant immune response in maize.
Collapse
Affiliation(s)
- Chunxia Zhang
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huanbo Zhang
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanping Lin
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiahao Chai
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Shangguan
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyong Zhao
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Zhou Y, Liu P, Tang Y, Liu J, Tang Y, Zhuang Y, Li X, Xu K, Zhou Z, Li J, He G, Deng XW, Yang L. NPR1 promotes blue light-induced plant photomorphogenesis by ubiquitinating and degrading PIF4. Proc Natl Acad Sci U S A 2024; 121:e2412755121. [PMID: 39700134 DOI: 10.1073/pnas.2412755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood. This study shows that SA promotes plant photomorphogenesis by regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Specifically, NPR1 promotes photomorphogenesis under blue light by facilitating the degradation of PIF4 through light-induced polyubiquitination. NPR1 acts as a substrate adaptor for the CULLIN3-based E3 ligase, which ubiquitinates PIF4 at Lys129, Lys252, and Lys428, and leading to PIF4 degradation via the 26S proteasome pathway. Genetically, PIF4 is epistatic to NPR1 in the regulation of blue light-induced photomorphogenesis, suggesting it acts downstream of NPR1. Furthermore, cryptochromes mediate the polyubiquitination of PIF4 by NPR1 in response to blue light by promoting the interaction and ubiquitination between NPR1 and PIF4. Transcriptome analysis revealed that under blue light, NPR1 and PIF4 coordinately regulate numerous downstream genes related to light and auxin signaling pathways. Overall, these findings unveil a role for NPR1 in photomorphogenesis, highlighting a mechanism for posttranslational regulation of PIF4 in response to blue light. This mechanism plays a pivotal role in the fine-tuning of plant development, enabling plants to adapt to complex environmental changes.
Collapse
Affiliation(s)
- Yangyang Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengtao Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaqi Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaru Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yumeng Zhuang
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaiqi Xu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Guangming He
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Li Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Wang X, Yu W, Yuan Q, Chen X, He Y, Zhou J, Xun Q, Wang G, Li J, Meng X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae549. [PMID: 39412292 DOI: 10.1093/plphys/kiae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/19/2024] [Indexed: 12/24/2024]
Abstract
Secreted plant peptides that trigger cellular signaling are crucial for plant growth, development, and adaptive responses to environmental stresses. In Arabidopsis (Arabidopsis thaliana), the C-TERMINALLY ENCODED PEPTIDE (CEP) family is a class of secreted signaling peptides that is phylogenetically divided into 2 groups: group I (CEP1-CEP12) and group II (CEP13-CEP15). Several group I CEP peptides regulate root architecture and nitrogen starvation responses, whereas the biological activity and roles of group II CEPs remain unknown. Here, we report that a group II CEP peptide, CEP14, functions as a pathogen-induced elicitor of Arabidopsis immunity. In response to infection by the bacterial pathogen Pseudomonas syringae, CEP14 expression was highly induced via the salicylic acid pathway in Arabidopsis leaves and roots. In the absence of a pathogen attack, treatment of Arabidopsis plants with synthetic CEP14 peptides was sufficient to trigger immune responses. Genetic and biochemical analyses demonstrated that the receptor-like kinase CEP RECEPTOR 2 (CEPR2) perceives CEP14 to trigger plant immunity. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SERK4 also participated in CEP14 perception by forming CEP14-induced complexes with CEPR2. Overexpression of CEP14 largely enhanced Arabidopsis resistance to P. syringae, while CEP14 or CEPR2 mutation significantly attenuated Arabidopsis systemic resistance to P. syringae. Taken together, our data reveal that the pathogen-induced CEP14 peptide, which is perceived by the CEPR2-BAK1/SERK4 receptor complexes, acts as an endogenous elicitor to promote systemic disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenlong Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Yuan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyu Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
10
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Ochakovski R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. MOLECULAR PLANT 2024; 17:1558-1572. [PMID: 39180213 PMCID: PMC11540436 DOI: 10.1016/j.molp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Roni Ochakovski
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Fu X, Feng Y, Zhang Y, Bi H, Ai X. Salicylic acid improves chilling tolerance via CsNPR1-CsICE1 interaction in grafted cucumbers. HORTICULTURE RESEARCH 2024; 11:uhae231. [PMID: 39434831 PMCID: PMC11492142 DOI: 10.1093/hr/uhae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Salicylic acid (SA) plays a role in the regulation of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2 ·-) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1-CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1-CsICE1 transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yiqing Feng
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yanyan Zhang
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Institute of Peanut, Tai’an Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Huangai Bi
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xizhen Ai
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
12
|
Naz M, Zhang D, Liao K, Chen X, Ahmed N, Wang D, Zhou J, Chen Z. The Past, Present, and Future of Plant Activators Targeting the Salicylic Acid Signaling Pathway. Genes (Basel) 2024; 15:1237. [PMID: 39336828 PMCID: PMC11431604 DOI: 10.3390/genes15091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant activators have emerged as promising alternatives to conventional crop protection chemicals for managing crop diseases due to their unique mode of action. By priming the plant's innate immune system, these compounds can induce disease resistance against a broad spectrum of pathogens without directly inhibiting their proliferation. Key advantages of plant activators include prolonged defense activity, lower effective dosages, and negligible risk of pathogen resistance development. Among the various defensive pathways targeted, the salicylic acid (SA) signaling cascade has been extensively explored, leading to the successful development of commercial activators of systemic acquired resistance, such as benzothiadiazole, for widespread application in crop protection. While the action sites of many SA-targeting activators have been preliminarily mapped to different steps along the pathway, a comprehensive understanding of their precise mechanisms remains elusive. This review provides a historical perspective on plant activator development and outlines diverse screening strategies employed, from whole-plant bioassays to molecular and transgenic approaches. We elaborate on the various components, biological significance, and regulatory circuits governing the SA pathway while critically examining the structural features, bioactivities, and proposed modes of action of classical activators such as benzothiadiazole derivatives, salicylic acid analogs, and other small molecules. Insights from field trials assessing the practical applicability of such activators are also discussed. Furthermore, we highlight the current status, challenges, and future prospects in the realm of SA-targeting activator development globally, with a focus on recent endeavors in China. Collectively, this comprehensive review aims to describe existing knowledge and provide a roadmap for future research toward developing more potent plant activators that enhance crop health.
Collapse
Affiliation(s)
- Misbah Naz
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Dongqin Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Kangcen Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Xulong Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Nazeer Ahmed
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Jingjiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (M.N.); (K.L.); (X.C.); (J.Z.)
| |
Collapse
|
13
|
Raghuraman P, Park S. Molecular simulation reveals that pathogenic mutations in BTB/ANK domains of Arabidopsis thaliana NPR1 circumscribe the EDS1-mediated immune regulation. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154345. [PMID: 39353309 DOI: 10.1016/j.jplph.2024.154345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) is a key regulator of the salicylic-acid-mediated immune response caused by pathogens in Arabidopsis thaliana. Mutations C150Y and H334Y in the BTB/ANK domains of NPR1 inhibit the defense response, and transcriptional co-activity with enhanced disease susceptibility 1 (EDS1) has been revealed experimentally. This study examined the conformational changes and reduced NPR1-EDS1 interaction upon mutation using a molecular dynamics simulation. Initially, BTBC150YNPR1 and ANKH334YNPR1 were categorized as pathological mutations rather than others based on sequence conservation. A distant ortholog was used to map the common residues shared among the wild-type because the mutations were highly conserved. Overall, 179 of 373 residues were determining the secondary structures and fold versatility of conformations. In addition, the mutational hotspots Cys150, Asp152, Glu153, Cys155, His157, Cys160, His334, Arg339 and Lys370 were crucial for oligomer-to-monomer exchange. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural displacements engaging in the N-termini α5133-178α7 linker connecting the central ANK regions (α13260-290α14 and α18320-390α22), where prominent long helices (α516) and short helices (α310) replaced with β-turns and loops disrupting hydrogen bonds and salt bridges in both mutants implicating functional regulation and activation. Furthermore, the mutation repositions the intact stability of multiple regions (L13C149-N356α20BTB/ANK-α17W301-E357α21N-ter/coiled-coil) compromising a dynamic interaction of NPR1-EDS1. By unveiling the transitions between the distinct functions of mutational perception, this study paves the way for future investigation to orchestrate additive host-adapted transcriptional reprogramming that controls defense-related regulatory mechanisms of NPR1s in plants.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
14
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
15
|
Jeon HW, Iwakawa H, Naramoto S, Herrfurth C, Gutsche N, Schlüter T, Kyozuka J, Miyauchi S, Feussner I, Zachgo S, Nakagami H. Contrasting and conserved roles of NPR pathways in diverged land plant lineages. THE NEW PHYTOLOGIST 2024; 243:2295-2310. [PMID: 39056290 DOI: 10.1111/nph.19981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The NPR proteins function as salicylic acid (SA) receptors in Arabidopsis thaliana. AtNPR1 plays a central role in SA-induced transcriptional reprogramming whereby positively regulates SA-mediated defense. NPRs are found in the genomes of nearly all land plants. However, we know little about the molecular functions and physiological roles of NPRs in most plant species. We conducted phylogenetic and alignment analyses of NPRs from 68 species covering the significant lineages of land plants. To investigate NPR functions in bryophyte lineages, we generated and characterized NPR loss-of-function mutants in the liverwort Marchantia polymorpha. Brassicaceae NPR1-like proteins have characteristically gained or lost functional residues identified in AtNPRs, pointing to the possibility of a unique evolutionary trajectory for the Brassicaceae NPR1-like proteins. We find that the only NPR in M. polymorpha, MpNPR, is not the master regulator of SA-induced transcriptional reprogramming and negatively regulates bacterial resistance in this species. The Mpnpr transcriptome suggested roles of MpNPR in heat and far-red light responses. We identify both Mpnpr and Atnpr1-1 display enhanced thermomorphogenesis. Interspecies complementation analysis indicated that the molecular properties of AtNPR1 and MpNPR are partially conserved. We further show that MpNPR has SA-binding activity. NPRs and NPR-associated pathways have evolved distinctively in diverged land plant lineages to cope with different terrestrial environments.
Collapse
Affiliation(s)
- Hyung-Woo Jeon
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidekazu Iwakawa
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Cornelia Herrfurth
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Titus Schlüter
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shingo Miyauchi
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ivo Feussner
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Hirofumi Nakagami
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
16
|
Shi Q, Fu J, Zhou Y, Ji Y, Zhao Z, Yang Y, Xiao Y, Qian X, Xu Y. Fluorinated plant activators induced dual-pathway signal transduction and long-lasting ROS burst in chloroplast. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106071. [PMID: 39277416 DOI: 10.1016/j.pestbp.2024.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non‑fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.
Collapse
Affiliation(s)
- Qinjie Shi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianmian Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanyuan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
17
|
Li ZY, Ma N, Sun P, Zhang FJ, Li L, Li H, Zhang S, Wang XF, You CX, Zhang Z. Fungal invasion-induced accumulation of salicylic acid promotes anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1859-1879. [PMID: 38923625 DOI: 10.1111/tpj.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ning Ma
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ping Sun
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Lianzhen Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haojian Li
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shuai Zhang
- College of Chemistry and Material Science, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
18
|
Heckmann A, Perochon A, Doohan FM. Genome-wide analysis of salicylic acid and jasmonic acid signalling marker gene families in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:691-704. [PMID: 38864777 DOI: 10.1111/plb.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) phytohormone pathways are important regulators of stress tolerance. Knowledge regarding the diversity, phylogeny and functionality of wheat genes involved in JA and SA response is limited. Using Arabidopsis, rice and wheat genomic and wheat disease transcriptomic data, we deduced the size, phylogenetic diversity and pathogen-responsiveness of seven hormone-responsive gene families, and thus selected 14 candidates as potential hormone responsive gene markers. Gene-specific expression studies assessed the impact of exogenous JA and SA on their transcriptional activation in leaves of two distinct wheat cultivars. RNAseq data were interrogated to assess their disease responsiveness and tissue-specific expression. This study elucidated the number, phylogeny and pathogen-responsiveness of wheat genes from seven families, including 12 TaAOS, 6 TaJAMyb, 256 TaWRKY group III, 85 TaPR1, 205 TaPR2, 76 TaPR3 and 124 TaPR5. This included the first description of the wheat AOS, JAMyb, PR2, PR3 and PR5 gene families. Gene expression studies delineated TaAOS1-5B and TaJAMyb-4A as JA-responsive in leaves, but not significantly responsive to SA treatment, while TaWRKY45-B was a SA- but not a JA-responsive marker. Other candidate genes were either unresponsive or non-specific to SA or JA. Our findings highlight that all seven gene families are greatly expanded in wheat as compared to other plants (up to 7.6-fold expansion), and demonstrate disparity in the response to biotic stress between some homoeologous and paralogous sequences within these families. The SA- and JA-responsive marker genes identified herein will prove useful tools to monitor these signalling pathways in wheat.
Collapse
Affiliation(s)
- A Heckmann
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - A Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - F M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Geng R, Li X, Huang J, Zhou W. The chloroplast singlet oxygen-triggered biosynthesis of salicylic acid and jasmonic acid is mediated by EX1 and GUN1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:2852-2864. [PMID: 38600785 DOI: 10.1111/pce.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
21
|
Li S, He L, Yang Y, Zhang Y, Han X, Hu Y, Jiang Y. INDUCER OF CBF EXPRESSION 1 promotes cold-enhanced immunity by directly activating salicylic acid signaling. THE PLANT CELL 2024; 36:2587-2606. [PMID: 38536743 PMCID: PMC11218786 DOI: 10.1093/plcell/koae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
22
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
23
|
Lonjon F, Lai Y, Askari N, Aiyar N, Bundalovic-Torma C, Laflamme B, Wang PW, Desveaux D, Guttman DS. The effector-triggered immunity landscape of tomato against Pseudomonas syringae. Nat Commun 2024; 15:5102. [PMID: 38877009 PMCID: PMC11178782 DOI: 10.1038/s41467-024-49425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.
Collapse
Affiliation(s)
- Fabien Lonjon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Yan Lai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasrin Askari
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Niharikaa Aiyar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Pauline W Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Hong C, Lee HG, Shim S, Park OS, Kim JH, Lee K, Oh E, Kim J, Jung YJ, Seo PJ. Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:1068-1083. [PMID: 38406998 DOI: 10.1111/nph.19637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.
Collapse
Affiliation(s)
- Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Ok-Sun Park
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Kyounghee Lee
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 08826, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
25
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
26
|
Yun SH, Khan IU, Noh B, Noh YS. Genomic overview of INA-induced NPR1 targeting and transcriptional cascades in Arabidopsis. Nucleic Acids Res 2024; 52:3572-3588. [PMID: 38261978 DOI: 10.1093/nar/gkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.
Collapse
Affiliation(s)
- Se-Hun Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Irfan Ullah Khan
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Wang H, Chen Q, Feng W. The Emerging Role of 2OGDs as Candidate Targets for Engineering Crops with Broad-Spectrum Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1129. [PMID: 38674537 PMCID: PMC11054871 DOI: 10.3390/plants13081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
Collapse
Affiliation(s)
- Han Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| |
Collapse
|
28
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
29
|
Ghosh D, Chakraborty S. Targeting NPR1: a strategy went viral. TRENDS IN PLANT SCIENCE 2024; 29:385-387. [PMID: 38135603 DOI: 10.1016/j.tplants.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Non-expressor of pathogenesis-related 1 (NPR1) acts as master regulator of plant immunity by promoting salicylic acid (SA) signalling. Some bacterial and fungal pathogens target NPR1 to inhibit SA-mediated immunity. Recently, Zhang et al. and Liu et al. demonstrated that a diverse spectrum of plant-infecting viruses have evolved distinct counter-defence strategies to weaken NPR1-mediated antiviral defence.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
30
|
Yadav U, Anand V, Kumar S, Verma I, Anshu A, Pandey IA, Kumar M, Behera SK, Srivastava S, Singh PC. Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. J Appl Microbiol 2024; 135:lxae013. [PMID: 38268411 DOI: 10.1093/jambio/lxae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
AIMS The study aimed to determine the pathogenicity of Fusarium species currently prevalent in tomato fields having history of chemical fungicide applications and determine the bio-efficacy of Bacillus subtilis NBRI-W9 as a potent biological control agent. METHODS AND RESULTS Fusarium was isolated from surface-sterilized infected tomato plants collected from fields. Pathogenicity of 30 Fusarium isolates was determined by in vitro and in vivo assays. Following Koch's postulates, F. chlamydosporum (FOL7) was identified as a virulent pathogen. The biological control of FOL 7 by B. subtilis NBRI-W9 (W9) and the colonization potential of W9 were established using spontaneous rifampicin-resistant mutants. W9 showed 82% inhibition of FOL7 on a dual-culture plate and colonization levels in tomato plants of ∼5.5, ∼3.3, and ∼2.2 log10 CFU/g in root, stem, and leaf tissue, respectively. Antagonistic activity was shown by scanning electron microscopy (SEM) and cell-wall-degradative enzymes. W9 reduced FOL7 infection in net-house and field experiments by 60% and 41%, respectively. Biochemical investigation, defence enzymes, defence gene expression analysis, SEM, and field studies provide evidence of hyperparasitism and induced resistance as the mode of biological control. The study also demonstrates that the potent biocontrol agent W9, isolated from Piper, can colonize tomato plants, control fungal disease by inducing induced systemic resistance (ISR) and systemic acquired resistance (SAR) simultaneously, and increase crop yield by 21.58% under field conditions. CONCLUSIONS This study concludes that F. chlamydosporum (NBRI-FOL7) is a potent, fungicide-resistant pathogen causing wilt in tomatoes. NBRI-W9 controlled FOL7 through mycoparasitism and simultaneously activated ISR and SAR in plants, providing an attractive tool for disease control that acts at multiple levels.
Collapse
Affiliation(s)
- Udit Yadav
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vandana Anand
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanjeev Kumar
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Isha Verma
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Anshu
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Department of Botany, University of Lucknow, Hasanganj, Lucknow 226007, India
| | - Ishan Alok Pandey
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Manoj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| | - Sandip Kumar Behera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Plant Systematics and Herbarium, CSIR-NBRI, Lucknow 226001, India
| | - Suchi Srivastava
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| | - Poonam C Singh
- Division of Microbial Technologies, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Division of Molecular Biology and Biotechnology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
31
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
32
|
Zavaliev R, Dong X. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol Cell 2024; 84:131-141. [PMID: 38103555 PMCID: PMC10929286 DOI: 10.1016/j.molcel.2023.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
33
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
34
|
Qu D, Yan F, Zhang Y, Huang L. A 4D Proteome Investigation of the Potential Mechanisms of SA in Triggering Resistance in Kiwifruit to Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2023; 24:17448. [PMID: 38139278 PMCID: PMC10744097 DOI: 10.3390/ijms242417448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kiwifruit bacterial cankers caused by Pseudomonas syringae pv. actinidiae (Psa) are a serious threat to the kiwifruit industry. Salicylic acid (SA) regulates plant defense responses and was previously found to enhance kiwifruit's resistance to Psa. However, the underlying mechanisms of this process remain unclear. In this study, we used 4D proteomics to investigate how SA enhances kiwifruit's resistance to Psa and found that both SA treatment and Psa infection induced dramatic changes in the proteomic pattern of kiwifruit. Psa infection triggered the activation of numerous resistance events, including the MAPK cascade, phenylpropanoid biosynthesis, and hormone signaling transduction. In most cases, the differential expression of a number of genes involved in the SA signaling pathway played a significant role in kiwifruit's responses to Psa. Moreover, SA treatment upregulated numerous resistance-related proteins, which functioned in defense responses to Psa, including phenylpropanoid biosynthesis, the MAPK cascade, and the upregulation of pathogenesis-related proteins. We also found that SA treatment could facilitate timely defense responses to Psa infection and enhance the activation of defense responses that were downregulated in kiwifruit during infection with Psa. Thus, our research deciphered the potential mechanisms of SA in promoting Psa resistance in kiwifruit and can provide a basis for the use of SA to enhance kiwifruit resistance and effectively control the occurrence of kiwifruit bacterial cankers.
Collapse
Affiliation(s)
- Dong Qu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
| | - Yu Zhang
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (Y.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
35
|
Song S, Morales Moreira Z, Briggs AL, Zhang XC, Diener AC, Haney CH. PSKR1 balances the plant growth-defence trade-off in the rhizosphere microbiome. NATURE PLANTS 2023; 9:2071-2084. [PMID: 37973937 DOI: 10.1038/s41477-023-01539-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
Microbiota benefit their hosts by improving nutrient uptake and pathogen protection. How host immunity restricts microbiota while avoiding autoimmunity is poorly understood. Here we show that the Arabidopsis phytosulfokine receptor 1 (pskr1) mutant displays autoimmunity (plant stunting, defence-gene expression and reduced rhizosphere bacterial growth) in response to growth-promoting Pseudomonas fluorescens. Microbiome profiling and microbiota colonization showed that PSKR1-mediated reduction in bacterial growth and stunting is largely specific to Pseudomonas. Transcriptional profiling demonstrated that PSKR1 regulates the growth-defence trade-off during Pseudomonas colonization: PSKR1 upregulates plant photosynthesis and root growth but suppresses salicylic-acid-mediated defences. Genetic epistasis experiments showed that pskr1 stunting and restriction of bacterial growth are salicylic acid dependent. Finally, we showed that Pseudomonas, but not other bacteria, induces PSKR1 expression in roots, suggesting that Pseudomonas might manipulate plant signalling to promote its colonization. Our data demonstrate a genetic mechanism to coordinate beneficial functions of the microbiome while preventing autoimmunity.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zayda Morales Moreira
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika L Briggs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue-Cheng Zhang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew C Diener
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biological Sciences, The University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
37
|
Backer R, Naidoo S, van den Berg N. The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC PLANT BIOLOGY 2023; 23:548. [PMID: 37936068 PMCID: PMC10631175 DOI: 10.1186/s12870-023-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
A plant's defense against pathogens involves an extensive set of phytohormone regulated defense signaling pathways. The salicylic acid (SA)-signaling pathway is one of the most well-studied in plant defense. The bulk of SA-related defense gene expression and the subsequent establishment of systemic acquired resistance (SAR) is dependent on the nonexpressor of pathogenesis-related genes 1 (NPR1). Therefore, understanding the NPR1 pathway and all its associations has the potential to provide valuable insights into defense against pathogens. The causal agent of Phytophthora root rot (PRR), Phytophthora cinnamomi, is of particular importance to the avocado (Persea americana) industry, which encounters considerable economic losses on account of this pathogen each year. Furthermore, P. cinnamomi is a hemibiotrophic pathogen, suggesting that the SA-signaling pathway plays an essential role in the initial defense response. Therefore, the NPR1 pathway which regulates downstream SA-induced gene expression would be instrumental in defense against P. cinnamomi. Thus, we identified 92 NPR1 pathway-associated orthologs from the P. americana West Indian pure accession genome and interrogated their expression following P. cinnamomi inoculation, using RNA-sequencing data. In total, 64 and 51 NPR1 pathway-associated genes were temporally regulated in the partially resistant (Dusa®) and susceptible (R0.12) P. americana rootstocks, respectively. Furthermore, 42 NPR1 pathway-associated genes were differentially regulated when comparing Dusa® to R0.12. Although this study suggests that SAR was established successfully in both rootstocks, the evidence presented indicated that Dusa® suppressed SA-signaling more effectively following the induction of SAR. Additionally, contrary to Dusa®, data from R0.12 suggested a substantial lack of SA- and NPR1-related defense gene expression during some of the earliest time-points following P. cinnamomi inoculation. This study represents the most comprehensive investigation of the SA-induced, NPR1-dependent pathway in P. americana to date. Lastly, this work provides novel insights into the likely mechanisms governing P. cinnamomi resistance in P. americana.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
38
|
Incarbone M, Bradamante G, Pruckner F, Wegscheider T, Rozhon W, Nguyen V, Gutzat R, Mérai Z, Lendl T, MacFarlane S, Nodine M, Scheid OM. Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells. Proc Natl Acad Sci U S A 2023; 120:e2302069120. [PMID: 37824524 PMCID: PMC10589665 DOI: 10.1073/pnas.2302069120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.
Collapse
Affiliation(s)
- Marco Incarbone
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam14476, Germany
| | - Gabriele Bradamante
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Florian Pruckner
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Tobias Wegscheider
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Bernburg06406, Germany
| | - Vu Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Stuart MacFarlane
- The James Hutton Institute, Invergowrie, ScotlandDD25DA, United Kingdom
| | - Michael Nodine
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research, Wageningen6700 AP, The Netherlands
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| |
Collapse
|
39
|
Shi H, Xiong Q, Zhao Z, Zhou L, Yin J, Lu X, Chen X, Wang J. Disruption of the Novel Small Protein RBR7 Leads to Enhanced Plant Resistance to Blast Disease. RICE (NEW YORK, N.Y.) 2023; 16:42. [PMID: 37733139 PMCID: PMC10513991 DOI: 10.1186/s12284-023-00660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Plant disease is a threat to global food security. Breeding crops carrying broad-spectrum resistance loci is an effective way to control infectious disease. Disease-resistant mutants are valuable resources for deciphering the underlying mechanisms of plant immunity and could provide genetic loci to generate disease-resistant crops. Here, we identified a rice mutant, rbr7 (rice blast resistance 7), that confers resistance against different strains of Magnaporthe oryzae. Disease-mimicking necrotic lesions started to appear on the leaves of rbr7 four weeks after sowing. Histochemical analysis revealed reactive oxygen species accumulation and cell death accompanied by spontaneous lesion formation in rbr7. Map-based cloning and bulk segregation analysis showed a 2855 bp fragment deletion on chromosome 5, leading to the disruption of the LOC_Os05g28480-coding protein. Transgenic rbr7 complementation plants showed compromised resistance to rice blast, indicating that LOC_Os05g28480, or Rbr7, regulates the rice immune response. Rbr7 encodes a small protein of unknown function with 85 amino acids. Transcriptomic analysis revealed that disruption of RBR7 led to the upregulation of genes responding to salicylic acid, systemic acquired resistance and pathogenesis-related genes. Taken together, our findings reveal insights into a novel small protein involved in regulating plant resistance to rice blast and provide a potential target for crop breeding.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhangjie Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lian Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
40
|
Zhang S, Miao W, Liu Y, Jiang J, Chen S, Chen F, Guan Z. Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum. BMC Genomics 2023; 24:553. [PMID: 37723458 PMCID: PMC10507968 DOI: 10.1186/s12864-023-09671-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Black spot disease caused by the necrotrophic fungus Alternaria spp. is one of the most devastating diseases affecting Chrysanthemum morifolium. There is currently no effective way to prevent chrysanthemum black spot. RESULTS We revealed that pre-treatment of chrysanthemum leaves with the methy jasmonate (MeJA) significantly reduces their susceptibility to Alternaria alternata. To understand how MeJA treatment induces resistance, we monitored the dynamics of metabolites and the transcriptome in leaves after MeJA treatment following A. alternata infection. JA signaling affected the resistance of plants to pathogens through cell wall modification, Ca2+ regulation, reactive oxygen species (ROS) regulation, mitogen-activated protein kinase cascade and hormonal signaling processes, and the accumulation of anti-fungal and anti-oxidant metabolites. Furthermore, the expression of genes associated with these functions was verified by reverse transcription quantitative PCR and transgenic assays. CONCLUSION Our findings indicate that MeJA pre-treatment could be a potential orchestrator of a broad-spectrum defense response that may help establish an ecologically friendly pest control strategy and offer a promising way of priming plants to induce defense responses against A. alternata.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weihao Miao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
41
|
Chang PE, Wu YH, Tai CY, Lin IH, Wang WD, Tseng TS, Chuang HW. Examining the Transcriptomic and Biochemical Signatures of Bacillus subtilis Strains: Impacts on Plant Growth and Abiotic Stress Tolerance. Int J Mol Sci 2023; 24:13720. [PMID: 37762026 PMCID: PMC10531026 DOI: 10.3390/ijms241813720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Rhizobacteria from various ecological niches display variations in physiological characteristics. This study investigates the transcriptome profiling of two Bacillus subtilis strains, BsCP1 and BsPG1, each isolated from distinct environments. Gene expression linked to the synthesis of seven types of antibiotic compounds was detected in both BsCP1 and BsPG1 cultures. Among these, the genes associated with plipastatin synthesis were predominantly expressed in both bacterial strains. However, genes responsible for the synthesis of polyketide, subtilosin, and surfactin showed distinct transcriptional patterns. Additionally, genes involved in producing exopolysaccharides (EPS) showed higher expression levels in BsPG1 than in BsCP1. Consistently with this, a greater quantity of EPS was found in the BsPG1 culture compared to BsCP1. Both bacterial strains exhibited similar effects on Arabidopsis seedlings, promoting root branching and increasing seedling fresh weight. However, BsPG1 was a more potent enhancer of drought, heat, and copper stress tolerance than BsCP1. Treatment with BsPG1 had a greater impact on improving survival rates, increasing starch accumulation, and stabilizing chlorophyll content during the post-stress stage. qPCR analysis was used to measure transcriptional changes in Arabidopsis seedlings in response to BsCP1 and BsPG1 treatment. The results show that both bacterial strains had a similar impact on the expression of genes involved in the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Likewise, genes associated with stress response, root development, and disease resistance showed comparable responses to both bacterial strains. However, treatment with BsCP1 and BsPG1 induced distinct activation of genes associated with the ABA signaling pathway. The results of this study demonstrate that bacterial strains from different ecological environments have varying abilities to produce beneficial metabolites for plant growth. Apart from the SA and JA signaling pathways, ABA signaling triggered by PGPR bacterial strains could play a crucial role in building an effective resistance to various abiotic stresses in the plants they colonize.
Collapse
Affiliation(s)
| | | | | | | | | | - Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| |
Collapse
|
42
|
Widyawan A, Al-Saleh MA, El Komy MH, Al Dhafer HM, Ibrahim YE. Potential of resistance inducers for citrus huanglongbing management via soil application and assessment of induction of pathogenesis-related protein genes. Heliyon 2023; 9:e19715. [PMID: 37809984 PMCID: PMC10558989 DOI: 10.1016/j.heliyon.2023.e19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Huanglongbing (HLB) or citrus greening currently is the most devastating citrus disease worldwide. Unfortunately, no practical cure has been available up to now. This makes the control of HLB as early as possible very important to be conducted. The objective of this study was to investigate the efficacy of the application of salicylic acid (SA) and Phenylacetic acid (PAA) on one-year-old seedlings of different citrus species (Citrus reticulata, C. sinensis, C. aurantifolii) growing on C. volkameriana and C. aurantium by soil drench methods. Factorial analysis of variance showed the percent change in "Candidatus Liberibacter asiaticus" titer and disease severity on a different combination of citrus species growing on the two rootstocks treated with inducers and Oxytetracycline (OTC) were significantly different compared to the untreated plants. SA alone or in combination with OTC provided excellent (P-value < 0.05) control of HLB based on all parameters. The interaction between both factors (Rootstocks x Citrus species) significantly influenced the Ct value (P-value = 0.0001). "Candidatus Liberibacter asiaticus" titer in plants treated with OTC was reduced significantly with a range of -18.75 up to -78.42. Overall, the highest reduction was observed in the application of OTC on sweet orange growing on C. volkameriana (-78.42), while the lowest reduction was observed in the same cultivar which was treated with a combination of SA and OTC (-3.36). Induction of pathogenesis-related (PR) genes, i.e., PR1, PR2, and PR15, biosynthesis of Jasmonic acid and ethylene which are also important pathways to defense activity were also significantly increased in treated plants compared to untreated plants. This study suggests that the application of inducer alone is acceptable for HLB management. We proposed the application of SA and PAA as a soil drench on the citrus seedlings as promising, easy, and environmentally safe for HLB disease control on citrus seedlings.
Collapse
Affiliation(s)
- Arya Widyawan
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mohammed A. Al-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mahmoud H. El Komy
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Hathal M. Al Dhafer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Yasser E. Ibrahim
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
43
|
Rossi CAM, Marchetta EJR, Kim JH, Castroverde CDM. Molecular regulation of the salicylic acid hormone pathway in plants under changing environmental conditions. Trends Biochem Sci 2023; 48:699-712. [PMID: 37258325 DOI: 10.1016/j.tibs.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein-protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified GBPL3 biomolecular condensates. Together, these nodes form a biochemical paradigm for how the external environment impinges on the SA pathway.
Collapse
Affiliation(s)
- Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eric J R Marchetta
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Jong Hum Kim
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
44
|
Yang BX, Li ZX, Liu SS, Yang J, Wang PY, Liu HW, Zhou X, Liu LW, Wu ZB, Yang S. Novel cinnamic acid derivatives as a versatile tool for developing agrochemicals for controlling plant virus and bacterial diseases by enhancing plant defense responses. PEST MANAGEMENT SCIENCE 2023; 79:2556-2570. [PMID: 36864774 DOI: 10.1002/ps.7433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Plant pathogens have led to large yield and quality losses in crops worldwide. The discovery and study of novel agrochemical alternatives based on the chemical modification of bioactive natural products is a highly efficient approach. Here, two series of novel cinnamic acid derivatives incorporating diverse building blocks with alternative linking patterns were designed and synthesized to identify their antiviral capacity and antibacterial activity. RESULTS The bioassay results demonstrated that most cinnamic acid derivatives had excellent antiviral competence toward tobacco mosaic virus (TMV) in vivo, especially compound A5 (median effective concentration [EC50 ] = 287.7 μg mL-1 ), which had a notable protective effect against TMV when compared with the commercial virucide ribavirin (EC50 = 622.0 μg mL-1 ). In addition, compound A17 had a protective efficiency of 84.3% at 200 μg mL-1 against Xac in plants. Given these outstanding results, the engineered title compounds could be regarded as promising leads for controlling plant virus and bacterial diseases. Preliminary mechanistic studies suggest that compound A5 could enhance the host's defense responses by increasing the activity of defense enzymes and upregulating defense genes, thereby suppressing phytopathogen invasion. CONCLUSION This research lays a foundation for the practical application of cinnamic acid derivatives containing diverse building blocks with alternative linking patterns in pesticide exploration. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin-Xin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
45
|
Liu J, Wu X, Fang Y, Liu Y, Bello EO, Li Y, Xiong R, Li Y, Fu ZQ, Wang A, Cheng X. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nat Commun 2023; 14:3580. [PMID: 37328517 PMCID: PMC10275998 DOI: 10.1038/s41467-023-39254-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is the master regulator of salicylic acid-mediated basal and systemic acquired resistance in plants. Here, we report that NPR1 plays a pivotal role in restricting compatible infection by turnip mosaic virus, a member of the largest plant RNA virus genus Potyvirus, and that such resistance is counteracted by NUCLEAR INCLUSION B (NIb), the viral RNA-dependent RNA polymerase. We demonstrate that NIb binds to the SUMO-interacting motif 3 (SIM3) of NPR1 to prevent SUMO3 interaction and sumoylation, while sumoylation of NIb by SUMO3 is not essential but can intensify the NIb-NPR1 interaction. We discover that the interaction also impedes the phosphorylation of NPR1 at Ser11/Ser15. Moreover, we show that targeting NPR1 SIM3 is a conserved ability of NIb from diverse potyviruses. These data reveal a molecular "arms race" by which potyviruses deploy NIb to suppress NPR1-mediated resistance through disrupting NPR1 sumoylation.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yue Fang
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ye Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Esther Oreofe Bello
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
- A&L Canada Laboratories Lnc., London, N5V 3P5, ON, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
| |
Collapse
|
46
|
Zhou P, Zavaliev R, Xiang Y, Dong X. Seeing is believing: Understanding functions of NPR1 and its paralogs in plant immunity through cellular and structural analyses. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102352. [PMID: 36934653 PMCID: PMC10257749 DOI: 10.1016/j.pbi.2023.102352] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/10/2023]
Abstract
In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA
| | - Yezi Xiang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
47
|
He F, Kong D, Feng Z, Xu Y, Yuan Q, Liu D, Wang X, Feng X, Li F. Genome-Wide Identification of the NPR1-like Gene Family in Solanum tuberosum and Functional Characterization of StNPR1 in Resistance to Ralstonia solanacearum. Genes (Basel) 2023; 14:1170. [PMID: 37372350 DOI: 10.3390/genes14061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) gene is an activator of the systemic acquisition of resistance (SAR) in plants and is one of the central factors in their response to pathogenic bacterial infestation, playing an important role in plant disease resistance. Potato (Solanum tuberosum) is a crucial non-grain crop that has been extensively studied. However, the identification and analysis of the NPR1-like gene within potato have not been understood well. In this study, a total of six NPR1-like proteins were identified in potato, and phylogenetic analysis showed that the six NPR1-like proteins in Solanum tuberosum could be divided into three major groups with NPR1-related proteins from Arabidopsis thaliana and other plants. Analysis of the exon-intron patterns and protein domains of the six NPR1-like genes from potato showed that the exon-intron patterns and protein domains of the NPR1-like genes belonging to the same Arabidopsis thaliana subfamily were similar. By performing quantitative real-time PCR (qRT-PCR) analysis, we found that six NPR1-like proteins have different expression patterns in different potato tissues. In addition, the expression of three StNPR1 genes was significantly downregulated after being infected by Ralstonia solanacearum (RS), while the difference in the expression of StNPR2/3 was insignificant. We also established potato StNPR1 overexpression lines that showed a significantly increased resistance to R. solanacearum and elevated activities of chitinase, β-1,3-glucanase, and phenylalanine deaminase. Increased peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities, as well as decreased hydrogen peroxide, regulated the dynamic balance of reactive oxygen species (ROS) in the StNPR1 overexpression lines. The transgenic plants activated the expression of the genes associated with the Salicylic acid (SA) defense response but suppressed the expression of the genes associated with Jasmonic acid (JA) signaling. This resulted in resistance to Ralstonia solanacearum.
Collapse
Affiliation(s)
- Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dexing Kong
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Feng
- Pharmacology & Toxicology Department, Saint Joseph's University Philadelphia College of Pharmacy, Philadelphia, PA 19104, USA
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yuan
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
48
|
Zhang H, Wang F, Song W, Yang Z, Li L, Ma Q, Tan X, Wei Z, Li Y, Li J, Yan F, Chen J, Sun Z. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nat Commun 2023; 14:3011. [PMID: 37230965 PMCID: PMC10213043 DOI: 10.1038/s41467-023-38805-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are plant hormones that typically act antagonistically in dicotyledonous plants and SA and JA signaling is often manipulated by pathogens. However, in monocotyledonous plants, the detailed SA-JA interplay in response to pathogen invasion remains elusive. Here, we show that different types of viral pathogen can disrupt synergistic antiviral immunity mediated by SA and JA via OsNPR1 in the monocot rice. The P2 protein of rice stripe virus, a negative-stranded RNA virus in the genus Tenuivirus, promotes OsNPR1 degradation by enhancing the association of OsNPR1 and OsCUL3a. OsNPR1 activates JA signaling by disrupting the OsJAZ-OsMYC complex and boosting the transcriptional activation activity of OsMYC2 to cooperatively modulate rice antiviral immunity. Unrelated viral proteins from different rice viruses also interfere with the OsNPR1-mediated SA-JA interplay to facilitate viral pathogenicity, suggesting that this may be a more general strategy in monocot plants. Overall, our findings highlight that distinct viral proteins convergently obstruct JA-SA crosstalk to facilitate viral infection in monocot rice.
Collapse
Affiliation(s)
- Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fengmin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Weiqi Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qiang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
49
|
Annan EN, Huang L. Molecular Mechanisms of the Co-Evolution of Wheat and Rust Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091809. [PMID: 37176866 PMCID: PMC10180972 DOI: 10.3390/plants12091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Wheat (Triticum spp.) is a cereal crop domesticated >8000 years ago and the second-most-consumed food crop nowadays. Ever since mankind has written records, cereal rust diseases have been a painful awareness in antiquity documented in the Old Testament (about 750 B.C.). The pathogen causing the wheat stem rust disease is among the first identified plant pathogens in the 1700s, suggesting that wheat and rust pathogens have co-existed for thousands of years. With advanced molecular technologies, wheat and rust genomes have been sequenced, and interactions between the host and the rust pathogens have been extensively studied at molecular levels. In this review, we summarized the research at the molecular level and organized the findings based on the pathogenesis steps of germination, penetration, haustorial formation, and colonization of the rusts to present the molecular mechanisms of the co-evolution of wheat and rust pathogens.
Collapse
Affiliation(s)
- Emmanuel N Annan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| |
Collapse
|
50
|
Ninck S, Halder V, Krahn JH, Beisser D, Resch S, Dodds I, Scholtysik R, Bormann J, Sewald L, Gupta MD, Heilmann G, Bhandari DD, Morimoto K, Buscaill P, Hause B, van der Hoorn RAL, Kaschani F, Kaiser M. Chemoproteomics Reveals the Pan-HER Kinase Inhibitor Neratinib To Target an Arabidopsis Epoxide Hydrolase Related to Phytohormone Signaling. ACS Chem Biol 2023; 18:1076-1088. [PMID: 37115018 DOI: 10.1021/acschembio.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Collapse
Affiliation(s)
- Sabrina Ninck
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Vivek Halder
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
- Chemical Biology Laboratory, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jan H Krahn
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Sarah Resch
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - René Scholtysik
- Genomics and Transcriptomics Facility, Institute for Cell Biology (Tumour Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Mainak D Gupta
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Bettina Hause
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|