1
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
2
|
Li T, Li Y, Sun Z, Xi X, Sha G, Ma C, Tian Y, Wang C, Zheng X. Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed. FRONTIERS IN PLANT SCIENCE 2021; 12:650485. [PMID: 34054896 PMCID: PMC8149799 DOI: 10.3389/fpls.2021.650485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress has never been reported. Herein we investigated the role of Res in KCl stress response of Malus hupehensis Rehd., a widely used apple rootstock in China which is sensitive to KCl stress. KCl-stressed apple seedlings showed significant wilting phenotype and decline in photosynthetic rate, and the application of 100 μmol Res alleviated KCl stress and maintained photosynthetic capacity. Exogenous Res can strengthen the activities of peroxidase and catalase, thus eliminating reactive oxygen species production induced by KCl stress. Moreover, exogenous Res can decrease the electrolyte leakage by accumulating proline for osmotic balance under KCl stress. Furthermore, exogenous Res application can affect K+/Na+ homeostasis in cytoplasm by enhancing K+ efflux outside the cells, inhibiting Na+ efflux and K+ absorption, and compartmentalizing K+ into vacuoles through regulating the expression of K+ and Na+ transporter genes. These findings provide a theoretical basis for the application of exogenous Res to relieve the KCl stress of apples.
Collapse
Affiliation(s)
- Tingting Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Guangli Sha
- Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| |
Collapse
|
3
|
Li L, Zhao Y, Han G, Guo J, Meng Z, Chen M. Progress in the Study and Use of Seawater Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5998-6006. [PMID: 32374599 DOI: 10.1021/acs.jafc.0c00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As global soil salinization increases, halophytes that can grow in saline soils are the primary choice for improving soil quality. Some halophytes can even be irrigated with seawater and used as vegetables. These so-called seawater vegetables include those that can be planted on saline and alkali soils and some edible halophytes and ordinary vegetables that are salt-tolerant. The cultivation of seawater vegetables on saline soil has become a matter of increasing interest. In this review, we focus on the salt-tolerance mechanisms and potential applications of some seawater vegetables. We also summarize their value to health, medicine, industry, and the economy as a whole. Further improvement and development to support the use of seawater vegetables will require in-depth research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
4
|
Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X. Effect of Overexpression of JERFs on Intracellular K +/Na + Balance in Transgenic Poplar ( Populus alba × P. berolinensis) Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1192. [PMID: 32922413 PMCID: PMC7456863 DOI: 10.3389/fpls.2020.01192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Salt stress is one of the main factors that affect both growth and development of plants. Maintaining K+/Na+ balance in the cytoplasm is important for metabolism as well as salt resistance in plants. In the present study, we monitored the growth (height and diameter) of transgenic Populus alba × P. berolinensis trees (ABJ01) carrying JERF36s gene (a tomato jasmonic/ethylene responsive factors gene) over 4 years, which showed faster growth and significant salt tolerance compared with non-transgenic poplar trees (9#). The expression of NHX1 and SOS1 genes that encode Na+/H+ antiporters in the vacuole and plasma membranes was measured in leaves under NaCl stress. Non-invasive micro-test techniques (NMT) were used to analyse ion flux of Na+, K+, and H+ in the root tip of seedlings under treatment with100 mM NaCl for 7, 15, and 30 days. Results showed that the expression of NHX1 and SOS1 was much higher in ABJ01 compared with 9#, and the Na+ efflux and H+ influx fluxes of root were remarkable higher in ABJ01 than in 9#, but K+ efflux exhibited lower level. All above suggest that salt stress induces NHX1 and SOS1 to a greater expression level in ABJ01, resulting in the accumulation of Na+/H+ antiporter to better maintain K+/Na+ balance in the cytoplasm of this enhanced salt resistant variety. This may help us to better understand the mechanism of transgenic poplars with improving salt tolerance by overexpressing JERF36s and could provide a basis for future breeding programs aimed at improving salt resistance in transgenic poplar.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Junlong Liu
- Industry of Timber and Bamboo, Anhui Academy of Forestry, Hefei, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| |
Collapse
|
5
|
Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J. The battle of two ions: Ca 2+ signalling against Na + stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:39-48. [PMID: 29411929 DOI: 10.1111/plb.12704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 05/22/2023]
Abstract
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance-mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration-dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.
Collapse
Affiliation(s)
- P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - L Wallrad
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - K H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - M Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| |
Collapse
|
6
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
7
|
Zheng Y, Xie G, Zhang X, Chen Z, Cai Y, Yu W, Liu H, Shan J, Li R, Liu Y, Lei B. Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS OMEGA 2017; 2:3958-3965. [PMID: 30023709 PMCID: PMC6044574 DOI: 10.1021/acsomega.7b00657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Abstract
Carbon dots (CDs) obtained from rapeseed pollen with a high production yield, good biocompatibility, good water solubility, low cost, and simple synthesis are systematically characterized. They can be directly added to Hoagland nutrient solution for planting hydroponically cultivated Lactuca sativa L. to explore their influence on the plants at different concentrations. By measuring lettuce indices of growth, morphology, nutrition quality, gas exchange, and content of photosynthetic pigment, amazing growth-promotion effects of CDs were discovered, and the mechanism was analyzed. Moreover, the in vivo transport route of CDs in lettuce was evaluated by macroscopic and microscopic observations under UV light excitation. The results demonstrate that pollen-derived CDs can be potentially used as a miraculous fertilizer for agricultural applications and as a great in vivo plant bioimaging probe.
Collapse
Affiliation(s)
- Yinjian Zheng
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Gancheng Xie
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xuejie Zhang
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Zhijie Chen
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yijin Cai
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wen Yu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Hechou Liu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Junyang Shan
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Ruimin Li
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yingliang Liu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Bingfu Lei
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
8
|
Selective Transport Capacity for K + and Ca 2+ over Na + of Leaf Sheath is Correlated with Salt Tolerance of Energy Plant Sweet Sorghum. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.772.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two sweet sorghum varieties (salt tolerant Jitianza 2 and salt sensitive Lvneng 1) were used to investigate their adaptation to NaCl stress under different cultivation conditions of potted cultivation and field cultivation, and selective transport capacity for K+ over Na+, and Ca2+ over Na+ of leaf sheath. NaCl stress decreased Pn, Fv/Fm, fresh weight of leaf sheath and leaf blade, field yield in both varieties. NaCl stress induced Na+ accumulation while it decreased K+ and Ca2+ levels in leaf sheath and leaf blade of both varieties. The increase in Na+ of leaf blade and the decrease in K+ and Ca2+ of leaf blade were greater in Lvneng 1 than those in Jitianza 2. Furthermore, the Na+, K+ contents in leaf sheath of Jitianza 2 were significantly higher than those of Lvneng 1 under NaCl stress. The selective transport capacity for K+ over Na+, and Ca2+ over Na+ of leaf sheath in Jitianza 2 was significantly greater than that in Lvneng 1. Pn, Fv/Fm, stem stalk field, ear field, juice yield, stalk Brix, sugar content of Jitianza 2 were significantly higher than those of Lvneng 1, which was correlated with stronger selective transport capacity for K+ over Na+, Ca2+ over Na+ of Leaf Sheath of Jitianza 2.
Collapse
|
9
|
Rangan L, Rout A, Sudarshan M, Gregorio G. Molecular cloning, expression and mapping of the translational initiation factor eIF1 gene in Oryza sativa. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:442-452. [PMID: 32688658 DOI: 10.1071/fp08276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/09/2009] [Indexed: 06/11/2023]
Abstract
Protein translation is very sensitive to salt stress and the proteins involved in this process may be an important determinant of salt tolerance. We isolated a rice cDNA clone (OseIF1) from a salt-tolerant indica cultivar (Pokkali) subjected to 150 mm NaCl, the deduced amino acid sequence of which had homology with the Sui1 suppressor locus in Saccharomyces cerevisiaei Hansen. The sequence contains 753 bp with an open-reading frame of 345 bp and shares similarity with the sequences of Sui1 and eIF1 in plants and mammals. Southern analysis indicates that the gene is present in more than a single copy per haploid genome and mapped to chromosome 1 of rice. Expression of the gene was increased by salt stress and also upregulated after exogenous ABA and mannitol treatments, suggesting that its induction is related to the water-deficit effect of high salt.
Collapse
Affiliation(s)
- Latha Rangan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781 039, India
| | - Anusuya Rout
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781 039, India
| | - Medhavi Sudarshan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781 039, India
| | - Glenn Gregorio
- Plant Breeding, Genetics and Biochemistry Laboratory, International Rice Research Institute, DAPO BOX 7777, Metro Manila, The Philippines
| |
Collapse
|
10
|
Qi Z, Spalding EP. Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. PLANT PHYSIOLOGY 2004; 136:2548-55. [PMID: 15347782 PMCID: PMC523321 DOI: 10.1104/pp.104.049213] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 05/18/2023]
Abstract
Physicochemical similarities between K(+) and Na(+) result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K(+) nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K(+) transport mutants akt1 (Arabidopsis K(+) transporter) and skor (shaker-like K(+) outward-rectifying channel). The K(+)-uptake ability (membrane permeability) of the sos mutant root cells measured electrophysiologically was normal in control conditions. Also, growth rates of these mutants in Na(+)-free media displayed wild-type K(+) dependence. However, mild salt stress (50 mm NaCl) strongly inhibited root-cell K(+) permeability and growth rate in K(+)-limiting conditions of sos1 but not wild-type plants. Increasing K(+) availability partially rescued the sos1 growth phenotype. Therefore, it appears that in the presence of Na(+), the SOS1 Na(+)-H(+) antiporter is necessary for protecting the K(+) permeability on which growth depends. The hypothesis that the elevated cytoplasmic Na(+) levels predicted to result from loss of SOS1 function impaired the K(+) permeability was tested by introducing 10 mm NaCl into the cytoplasm of a patch-clamped wild-type root cell. Complete loss of AKT1 K(+) channel activity ensued. AKT1 is apparently a target of salt stress in sos1 plants, resulting in poor growth due to impaired K(+) uptake. Complementary studies showed that akt1 seedlings were salt sensitive during early seedling development, but skor seedlings were normal. Thus, the effect of Na(+) on K(+) transport is probably more important at the uptake stage than at the xylem loading stage.
Collapse
Affiliation(s)
- Zhi Qi
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Lee EK, Kwon M, Ko JH, Yi H, Hwang MG, Chang S, Cho MH. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. PLANT PHYSIOLOGY 2004; 134:528-38. [PMID: 14684837 PMCID: PMC316332 DOI: 10.1104/pp.103.027045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/09/2003] [Accepted: 08/21/2003] [Indexed: 05/20/2023]
Abstract
Recently, a new member of the ABC transporter superfamily of Arabidopsis, AtMRP5, was identified and characterized. In the present work, we found that AtMRP5 can bind specifically to sulfonurea when it is expressed in HEK293 cells. We also present evidence for a new role of AtMRP5 in the salt stress response of Arabidopsis. We used reverse genetics to identify an Arabidopsis mutant (atmrp5-2) in which the AtMRP5 gene was disrupted by transferred DNA insertion. In root-bending assays using Murashige and Skoog medium supplemented with 100 mm NaCl, root growth of atmrp5-2 was substantially inhibited in contrast to the almost normal growth of wild-type seedlings. This hypersensitive response of the atmrp5-2 mutant was not observed during mannitol treatment. The root growth of the wild-type plant grown in Murashige and Skoog medium supplemented with the MRP inhibitor glibenclamide and NaCl was inhibited to a very similar extent as the root growth of atmrp5-2 grown in NaCl alone. The Na(+)-dependent reduction of root growth of the wild-type plant in the presence of glibenclamide was partially restored by diazoxide, a known K+ channel opener that reverses the inhibitory effects of sulfonylureas in animal cells. Moreover, the atmrp5-2 mutant was defective in 86Rb+ uptake. When seedlings were treated with 100 mm NaCl, atmrp5-2 seedlings accumulated less K+ and more Na+ than those of the wild type. These observations suggest that AtMRP5 is a putative sulfonylurea receptor that is involved in K+ homeostasis and, thus, also participates in the NaCl stress response.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|