1
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
3
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Front Neurosci 2020; 14:558532. [PMID: 33177975 PMCID: PMC7596695 DOI: 10.3389/fnins.2020.558532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Curative therapies or treatments reversing the progression of Parkinson’s disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms. Transplantation of DA cells into PD patients’ brains to replace degenerated DA has the potential to change the treatment paradigm. Herein, we provide updates on current progress in stem cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly highlight cell sources for transplantation and focus on cell assessment methods such as identification of genetic markers, single-cell sequencing, and imaging modalities used to access cell survival and function. More importantly, we summarize clinical reports of patients who have undergone cell-derived transplantation in PD to better perceive lessons that can be drawn from past and present clinical outcomes. Modifying factors include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4) stage of disease progression at the time of cell therapy, (5) surgical technique/practices, and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical trials around the world such as NYSTEM and CiRA to further guide us in the selection of the most suitable parameters for cell-based neurotransplantation in PD.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ling Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| |
Collapse
|
5
|
Abstract
Cells expressing suicide genes can be used as therapeutic vehicles for difficult-to-treat tumors, for example, if stem cells are used that are able to track infiltrating tumor cells. An alternative application of suicide gene expression is their use as a safety switch in regenerative medicine where the presence of a few pluripotent stem cells could potentially cause unwanted side effects like the formation of teratoma. One potential bottleneck of these applications is that information on the initiation of cell suicide is needed early on, for example, when therapeutic cells have reached infiltrating tumor cells or when teratomas are formed. Therefore, in vivo imaging methods are needed that provide information on target location, (stem) cell location, (stem) cell viability, pathology, and suicide gene expression. This requires multimodal imaging approaches that can provide this information longitudinally and in a noninvasive way. Here, we describe examples of how therapeutic cells can be modified so that they express a suicide gene and genes that can be used for in vivo visualization.
Collapse
|
6
|
Salabert AS, Vaysse L, Beaurain M, Alonso M, Arribarat G, Lotterie JA, Loubinoux I, Tafani M, Payoux P. Imaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model. PLoS One 2017; 12:e0184630. [PMID: 28926581 PMCID: PMC5604981 DOI: 10.1371/journal.pone.0184630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. METHODS A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. RESULTS Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. CONCLUSION The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
- University hospital, Radiopharmacy Unit, Toulouse, France
| | - Laurence Vaysse
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
| | - Marie Beaurain
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
| | - Mathieu Alonso
- University hospital, Radiopharmacy Unit, Toulouse, France
| | - Germain Arribarat
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
| | - Jean-Albert Lotterie
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
- University hospital, Nuclear medecine Unit, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
| | - Mathieu Tafani
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
- University hospital, Radiopharmacy Unit, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Centre UMR1214, Université de Toulouse, Inserm, UPS, France
- University hospital, Nuclear medecine Unit, Toulouse, France
| |
Collapse
|
7
|
Modification of Bone Marrow Stem Cells for Homing and Survival During Cerebral Ischemia. BONE MARROW STEM CELL THERAPY FOR STROKE 2017. [PMCID: PMC7121342 DOI: 10.1007/978-981-10-2929-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the last decade, major advances have been made in stem cell-based therapy for ischemic stroke, which is one of the leading causes of death and disability worldwide. Various stem cells from bone marrow, such as mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and endothelial progenitor cells (EPCs), have shown therapeutic potential for stroke. Concomitant with these exciting findings are some fundamental bottlenecks that must be overcome in order to accelerate their clinical translation, including the low survival and engraftment caused by the harsh microenvironment after transplantation. In this chapter, strategies such as gene modification, hypoxia/growth factor preconditioning, and biomaterial-based methods to improve cell survival and homing are summarized, and the potential strategies for their future application are also discussed.
Collapse
|
8
|
Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors. Stem Cells Int 2016; 2016:4095072. [PMID: 26880961 PMCID: PMC4736564 DOI: 10.1155/2016/4095072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.
Collapse
|
9
|
Leten C, Trekker J, Struys T, Dresselaers T, Gijsbers R, Vande Velde G, Lambrichts I, Van Der Linden A, Verfaillie CM, Himmelreich U. Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach. Stem Cell Res Ther 2015; 6:163. [PMID: 26345383 PMCID: PMC4562202 DOI: 10.1186/s13287-015-0157-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/04/2014] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction In this study, we planned to assess if adult stem cell-based suicide gene therapy can efficiently eliminate glioblastoma cells in vivo. We investigated the therapeutic potential of mouse Oct4− bone marrow multipotent adult progenitor cells (mOct4− BM-MAPCs) in a mouse glioblastoma model, guided by multimodal in vivo imaging methods to identify therapeutic windows. Methods Magnetic resonance imaging (MRI) of animals, wherein 5 × 105 syngeneic enhanced green fluorescent protein-firefly luciferase-herpes simplex virus thymidine kinase (eGFP-fLuc-HSV-TK) expressing and superparamagnetic iron oxide nanoparticle labeled (1 % or 10 %) mOct4− BM-MAPCs were grafted in glioblastoma (GL261)-bearing animals, showed that labeled mOct4− BM-MAPCs were located in and in close proximity to the tumor. Subsequently, ganciclovir (GCV) treatment was commenced and the fate of both the MAPCs and the tumor were followed by multimodal imaging (MRI and bioluminescence imaging). Results In the majority of GCV-treated, but not phosphate-buffered saline-treated animals, a significant difference was found in mOct4− BM-MAPC viability and tumor size at the end of treatment. Noteworthy, in some phosphate-buffered saline-treated animals (33 %), a significant decrease in tumor size was seen compared to sham-operated animals, which could potentially also be caused by a synergistic effect of the immune-modulatory stem cells. Conclusions Suicide gene therapy using mOct4− BM-MAPCs as cellular carriers was effective in reducing the tumor size in the majority of the GCV-treated animals leading to a longer progression-free survival compared to sham-operated animals. This treatment could be followed and guided noninvasively in vivo by MRI and bioluminescence imaging. Noninvasive imaging is of particular interest for a rapid and efficient validation of stem cell-based therapeutic approaches for glioblastoma and hereby contributes to a better understanding and optimization of a promising therapeutic approach for glioblastoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cindy Leten
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Jesse Trekker
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Imec, Department of Life Science Technology, 3001, Leuven, Belgium.
| | - Tom Struys
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Tom Dresselaers
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene therapy, KU Leuven, 3000, Leuven, Belgium. .,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Ivo Lambrichts
- Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Annemie Van Der Linden
- BioImaging Laboratory, University of Antwerp, Campus Drie Eiken, 2610, Antwerpen, Belgium.
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Gavins FNE, Smith HK. Cell tracking technologies for acute ischemic brain injury. J Cereb Blood Flow Metab 2015; 35:1090-9. [PMID: 25966948 PMCID: PMC4640284 DOI: 10.1038/jcbfm.2015.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging.
Collapse
Affiliation(s)
- Felicity NE Gavins
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Helen K Smith
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
11
|
Sanches PG, Peters S, Rossin R, Kaijzel EL, Que I, Löwik CWGM, Grüll H. Bone metastasis imaging with SPECT/CT/MRI: a preclinical toolbox for therapy studies. Bone 2015; 75:62-71. [PMID: 25680341 DOI: 10.1016/j.bone.2015.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/31/2015] [Accepted: 02/03/2015] [Indexed: 12/27/2022]
Abstract
Bone is one of the most common metastatic target sites in breast cancer, with more than 200 thousand new cases of invasive cancer diagnosed in the US alone in 2011. We set out to establish a multimodality imaging platform for bone metastases in small animals as a tool to non-invasively quantify metastasis growth, imaging the ensuing bone lesions and possibly the response to treatment. To this end, a mouse model of osteolytic metastatic bone tumors was characterized with SPECT/CT and MRI over time. A cell line capable of forming bone metastases, MDA-MB-231, was genetically modified to stably express the reporter gene herpes simplex virus-1 thymidine kinase (hsv-1 tk). The intracellular accumulation of the radiolabeled tracer [(123)I]FIAU promoted by HSV-1 TK specifically pinpoints the location of tumor cells which can be imaged in vivo by SPECT. First, a study using tumors implanted subcutaneously was performed. The SPECT/MRI overlays and the ex vivo γ-counting showed a linear correlation in terms of %ID/cm(3) (R(2)=0.93) and %ID/g (R(2)=0.77), respectively. Then, bone metastasis growth was imaged weekly by SPECT/CT and T2-weighted MRI over a maximum of 40 days post-intracardiac injection of tumor cells. The first activity spots detectable with SPECT, around day 20 post-cell injection, were smaller than 2mm(3) and not yet visible by MRI and increased in volume and in %ID over the weeks. Osteolytic bone lesions were visible by CT (in vivo) and μCT (ex vivo). The SPECT/MRI overlays also showed a linear correlation in terms of %ID/cm(3) (R(2)=0.86). In conclusion, a new multimodality imaging platform has been established that non-invasively combines images of active tumor areas (SPECT), tumor volume (MRI) and the corresponding bone lesions (CT and μCT). To our knowledge this is the first report where the combination of soft tissue information from MRI, bone lesions by CT, and reporter gene imaging by SPECT is used to non-invasively follow metastatic bone lesions.
Collapse
Affiliation(s)
- Pedro Gomes Sanches
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steffie Peters
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Raffaella Rossin
- Department of Oncology Solutions, Philips Research Eindhoven, The Netherlands
| | - Eric L Kaijzel
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clemens W G M Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Holger Grüll
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Oncology Solutions, Philips Research Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
13
|
Bernau K, Lewis CM, Petelinsek AM, Benink HA, Zimprich CA, Meyerand ME, Suzuki M, Svendsen CN. In vivo tracking of human neural progenitor cells in the rat brain using bioluminescence imaging. J Neurosci Methods 2014; 228:67-78. [PMID: 24675049 DOI: 10.1016/j.jneumeth.2014.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Stem cell therapies appear promising for treating certain neurodegenerative disorders and molecular imaging methods that track these cells in vivo could answer some key questions regarding their survival and migration. Bioluminescence imaging (BLI), which relies on luciferase expression in these cells, has been used for this purpose due to its high sensitivity. NEW METHOD In this study, we employ BLI to track luciferase-expressing human neural progenitor cells (hNPC(Luc2)) in the rat striatum long-term. RESULTS We show that hNPC(Luc2) are detectable in the rat striatum. Furthermore, we demonstrate that using this tracking method, surviving grafts can be detected in vivo for up to 12 weeks, while those that were rejected do not produce bioluminescence signal. We also demonstrate the ability to discern hNPC(Luc2) contralateral migration. COMPARISON WITH EXISTING METHODS Some of the advantages of BLI compared to other imaging methods used to track progenitor/stem cells include its sensitivity and specificity, low background signal and ability to distinguish surviving grafts from rejected ones over the long term while the blood-brain barrier remains intact. CONCLUSIONS These new findings may be useful in future preclinical applications developing cell-based treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ksenija Bernau
- University of Wisconsin-Madison, 4325a Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Christina M Lewis
- University of Wisconsin-Madison, 1005 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| | - Anna M Petelinsek
- University of Wisconsin-Madison, 4325a Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Hélène A Benink
- Promega Corporation, 2800 Woods Hollow Rd., Fitchburg, WI 53711, USA.
| | - Chad A Zimprich
- Promega Corporation, 2800 Woods Hollow Rd., Fitchburg, WI 53711, USA.
| | - M Elizabeth Meyerand
- University of Wisconsin-Madison, 1129 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| | - Masatoshi Suzuki
- University of Wisconsin-Madison, 4124 Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Clive N Svendsen
- University of Wisconsin-Madison, 5009 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
14
|
New researches and application progress of commonly used optical molecular imaging technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:429198. [PMID: 24696850 PMCID: PMC3947735 DOI: 10.1155/2014/429198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging.
Collapse
|
15
|
Daadi MM, Hu S, Klausner J, Li Z, Sofilos M, Sun G, Wu JC, Steinberg GK. Imaging neural stem cell graft-induced structural repair in stroke. Cell Transplant 2013; 22:881-92. [PMID: 23044338 DOI: 10.3727/096368912x656144] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stem cell therapy ameliorates motor deficits in experimental stroke model. Multimodal molecular imaging enables real-time longitudinal monitoring of infarct location, size, and transplant survival. In the present study, we used magnetic resonance imaging (MRI) and positron emission tomography (PET) to track the infarct evolution,tissue repair, and the fate of grafted cells. We genetically engineered embryonic stem cell-derived neural stem cells (NSCs) with a triple fusion reporter gene to express monomeric red fluorescence protein and herpes simplex virus-truncated thymidine kinase for multimodal molecular imaging and SPIO labeled for MRI. The infarct size as well as fate and function of grafted cells were tracked in real time for 3 months using MRI and PET. We report that grafted NSCs reduced the infarct size in animals with less than 0.1 cm(3) initial infarct in a dose-dependent manner, while larger stroke was not amenable to such beneficial effects. PET imaging revealed increased metabolic activity in grafted animals and visualized functioning grafted cells in vivo. Immunohistopathological analysis demonstrated that, after a 3-month survival period, grafted NSCs dispersed in the stroke-lesioned parenchyma and differentiated into neurons, astrocytes, and oligodendrocytes. Longitudinal multimodal imaging provides insights into time course dose-dependent interactions between NSC grafts and structural changes in infarcted tissue.
Collapse
Affiliation(s)
- Marcel M Daadi
- Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovationand Translational Neurosciences, Stanford, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18:1052-66. [DOI: 10.1016/j.drudis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022]
|
17
|
Multimodality molecular imaging of stem cells therapy for stroke. BIOMED RESEARCH INTERNATIONAL 2013; 2013:849819. [PMID: 24222920 PMCID: PMC3816035 DOI: 10.1155/2013/849819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/21/2013] [Indexed: 12/03/2022]
Abstract
Stem cells have been proposed as a promising therapy for treating stroke. While several studies have demonstrated the therapeutic benefits of stem cells, the exact mechanism remains elusive. Molecular imaging provides the possibility of the visual representation of biological processes at the cellular and molecular level. In order to facilitate research efforts to understand the stem cells therapeutic mechanisms, we need to further develop means of monitoring these cells noninvasively, longitudinally and repeatedly. Because of tissue depth and the blood-brain barrier (BBB), in vivo imaging of stem cells therapy for stroke has unique challenges. In this review, we describe existing methods of tracking transplanted stem cells in vivo, including magnetic resonance imaging (MRI), nuclear medicine imaging, and optical imaging (OI). Each of the imaging techniques has advantages and drawbacks. Finally, we describe multimodality imaging strategies as a more comprehensive and potential method to monitor transplanted stem cells for stroke.
Collapse
|
18
|
Chan KW, Liu G, Song X, Kim H, Yu T, Arifin DR, Gilad AA, Hanes J, Walczak P, van Zijl PC, Bulte JW, McMahon MT. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. NATURE MATERIALS 2013; 12:268-75. [PMID: 23353626 PMCID: PMC3578129 DOI: 10.1038/nmat3525] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 11/22/2012] [Indexed: 05/08/2023]
Abstract
Biocompatible nanomaterials and hydrogels have become an important tool for improving cell-based therapies by promoting cell survival and protecting cell transplants from immune rejection. Although their potential benefit has been widely evaluated, at present it is not possible to determine, in vivo, if and how long cells remain viable following their administration without the use of a reporter gene. Here, we report a pH-nanosensor-based magnetic resonance imaging (MRI) technique that can monitor cell death in vivo non-invasively. We demonstrate that specific MRI parameters that change on cell death of microencapsulated hepatocytes are associated with the measured bioluminescence imaging radiance. Moreover, the readout from this pH-sensitive nanosensor can be directly co-registered with high-resolution anatomical images. All of the components of these nanosensors are clinical grade and hence this approach should be a translatable and universal modification of hydrogels.
Collapse
Affiliation(s)
- Kannie W.Y. Chan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heechul Kim
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Yu
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine
| | - Dian R. Arifin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Hanes
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine
| | - Piotr Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C.M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Jeff W.M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| |
Collapse
|
19
|
Newton IG, Plaisted WC, Messina-Graham S, Abrahamsson Schairer AE, Shih AY, Snyder EY, Jamieson CHM, Mattrey RF. Optical imaging of progenitor cell homing to patient-derived tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:525-36. [PMID: 22991319 DOI: 10.1002/cmmi.1485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capitalizing on cellular homing to cancer is a promising strategy for targeting malignant cells for diagnostic, monitoring and therapeutic purposes. Murine C17.2 neural progenitor cells (NPC) demonstrate a tropism for cell line-derived tumors, but their affinity for patient-derived tumors is unknown. We tested the hypothesis that NPC accumulate in patient-derived tumors at levels detectable by optical imaging. Mice bearing solid tumors after transplantation with patient-derived leukemia cells and untransplanted controls received 10(6) fluorescent DiR-labeled NPC daily for 1-4 days, were imaged, then sacrificed. Tissues were analyzed by immunofluorescence and flow cytometry to detect tumor cell engraftment (CD45) and NPC (FITC-β galactosidase or DiR). Tumors consisted primarily of CD45-positive cells and demonstrated mild fluorescence, corresponding to frequent clusters of FITC-β gal-positive cells. Both transplanted and control mice demonstrated the highest fluorescent signal in the spleens and other tissues of the reticuloendothelial activating system. However, only rare FITC-β gal-positive cells were detected in the mildly engrafted transplanted spleens and none in the control spleens, suggesting that their high DiR signal reflects the sequestration of DiR-positive debris. The mildly engrafted transplanted kidneys demonstrated low fluorescent signal and rare FITC-β gal-positive cells whereas control kidneys were negative. Results indicate that NPC accumulate in tissues containing patient-derived tumor cells in a manner that is detectable by ex vivo optical imaging and proportional to the level of tumor engraftment, suggesting a capacity to home to micrometastatic disease. As such, NPC could have significant clinical applications for the targeted diagnosis and treatment of cancer.
Collapse
|
20
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
21
|
Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64:739-48. [PMID: 21740940 DOI: 10.1016/j.addr.2011.06.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/22/2022]
Abstract
Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation.
Collapse
|
22
|
Hwang JY, Park J, Kang BJ, Lubow DJ, Chu D, Farkas DL, Shung KK, Medina-Kauwe LK. Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles. PLoS One 2012; 7:e34463. [PMID: 22509306 PMCID: PMC3317981 DOI: 10.1371/journal.pone.0034463] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 01/24/2023] Open
Abstract
This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic.
Collapse
Affiliation(s)
- Jae Youn Hwang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Badr CE, Tannous BA. Bioluminescence imaging: progress and applications. Trends Biotechnol 2011; 29:624-33. [PMID: 21788092 DOI: 10.1016/j.tibtech.2011.06.010] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 01/14/2023]
Abstract
Application of bioluminescence imaging has increased tremendously in the past decade and has significantly contributed to core conceptual advances in biomedical research. This technology provides valuable means for monitoring of different biological processes in immunology, oncology, virology and neuroscience. In this review, we discuss current trends in bioluminescence and its application in different fields with an emphasis on cancer research.
Collapse
Affiliation(s)
- Christian E Badr
- Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
24
|
PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 2011; 38:1926-38. [DOI: 10.1007/s00259-011-1860-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
|
25
|
Huang R, Vider J, Serganova I, Blasberg RG. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging. Mol Imaging 2011. [DOI: 10.2310/7290.2010.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ruimin Huang
- From the Departments of Neurology and Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jelena Vider
- From the Departments of Neurology and Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Inna Serganova
- From the Departments of Neurology and Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald G. Blasberg
- From the Departments of Neurology and Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
26
|
Liu Y, Yu G, Tian M, Zhang H. Optical probes and the applications in multimodality imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 6:169-77. [PMID: 21246711 DOI: 10.1002/cmmi.428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/23/2010] [Accepted: 10/08/2010] [Indexed: 11/11/2022]
Abstract
Optical imaging essentially refers to in vivo fluorescence imaging and bioluminescence imaging. These types of imaging are widely used visualization methods in biomedical research and are important in molecular imaging. A new generation of imaging agents called multimodal probes have emerged in the past few years. These probes can be detected by two or more imaging modalities, which harnesses the strengths of the different modalities and enables researchers to obtain more information than can be achieved using only one modality. Owing to its low cost and the large number of probes available, the optical method plays an important role in multimodality imaging. In this mini-review, we describe the available multimodal imaging probes for in vivo imaging that combine optical imaging with other modalities.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
27
|
Vilekar P, Awasthi V, Lagisetty P, King C, Shankar N, Awasthi S. In vivo trafficking and immunostimulatory potential of an intranasally-administered primary dendritic cell-based vaccine. BMC Immunol 2010; 11:60. [PMID: 21143974 PMCID: PMC3018378 DOI: 10.1186/1471-2172-11-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coccidioidomycosis or Valley fever is caused by a highly virulent fungal pathogen: Coccidioides posadasii or immitis. Vaccine development against Coccidioides is of contemporary interest because a large number of relapses and clinical failures are reported with antifungal agents. An efficient Th1 response engenders protection. Thus, we have focused on developing a dendritic cell (DC)-based vaccine for coccidioidomycosis. In this study, we investigated the immunostimulatory characteristics of an intranasal primary DC-vaccine in BALB/c mouse strain that is most susceptible to coccidioidomycosis. The DCs were transfected nonvirally with Coccidioides-Ag2/PRA-cDNA. Expression of DC-markers, Ag2/PRA and cytokines were studied by flow cytometry, dot-immunoblotting and cytometric bead array methods, respectively. The T cell activation was studied by assessing the upregulation of activation markers in a DC-T cell co-culture assay. For trafficking, the DCs were co-transfected with a plasmid DNA encoding HSV1 thymidine kinase (TK) and administered intranasally into syngeneic mice. The trafficking and homing of TK-expressing DCs were monitored with positron emission tomography (PET) using 18F-FIAU probe. Based on the PET-probe accumulation in vaccinated mice, selected tissues were studied for antigen-specific response and T cell phenotypes using ELISPOT and flow cytometry, respectively. RESULTS We found that the primary DCs transfected with Coccidioides-Ag2/PRA-cDNA were of immature immunophenotype, expressed Ag2/PRA and activated naïve T cells. In PET images and subsequent biodistribution, intranasally-administered DCs were found to migrate in blood, lung and thymus; lymphocytes showed generation of T effector memory cell population (T(EM)) and IFN-γ release. CONCLUSIONS In conclusion, our results demonstrate that the intranasally-administered primary DC vaccine is capable of inducing Ag2/PRA-specific T cell response. Unique approaches utilized in our study represent an attractive and novel means of producing and evaluating an autologous DC-based vaccine.
Collapse
Affiliation(s)
- Prachi Vilekar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73117, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tang C, Russell PJ, Martiniello-Wilks R, Rasko JEJ, Khatri A. Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 2010; 28:1686-702. [PMID: 20629172 PMCID: PMC2996089 DOI: 10.1002/stem.473] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ineffective treatment and poor patient management continue to plague the arena of clinical oncology. The crucial issues include inadequate treatment efficacy due to ineffective targeting of cancer deposits, systemic toxicities, suboptimal cancer detection and disease monitoring. This has led to the quest for clinically relevant, innovative multifaceted solutions such as development of targeted and traceable therapies. Mesenchymal stem cells (MSCs) have the intrinsic ability to "home" to growing tumors and are hypoimmunogenic. Therefore, these can be used as (a) "Trojan Horses" to deliver gene therapy directly into the tumors and (b) carriers of nanoparticles to allow cell tracking and simultaneous cancer detection. The camouflage of MSC carriers can potentially tackle the issues of safety, vector, and/or transgene immunogenicity as well as nanoparticle clearance and toxicity. The versatility of the nanotechnology platform could allow cellular tracking using single or multimodal imaging modalities. Toward that end, noninvasive magnetic resonance imaging (MRI) is fast becoming a clinical favorite, though there is scope for improvement in its accuracy and sensitivity. In that, use of superparamagnetic iron-oxide nanoparticles (SPION) as MRI contrast enhancers may be the best option for tracking therapeutic MSC. The prospects and consequences of synergistic approaches using MSC carriers, gene therapy, and SPION in developing cancer diagnostics and therapeutics are discussed.
Collapse
Affiliation(s)
- Catherine Tang
- Oncology Research Centre, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
29
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Jacobs AH. Mouse models in neurological disorders: applications of non-invasive imaging. Biochim Biophys Acta Mol Basis Dis 2010; 1802:819-39. [PMID: 20471478 DOI: 10.1016/j.bbadis.2010.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 12/14/2022]
Abstract
Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to investigate the spatial and temporal dynamics of disease-specific functional and molecular events longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging technologies with in vivo models of neurological disorders provides unique opportunities to understand the aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease progression but also plays an essential role in the development and evaluation of disease-specific treatment approaches. In this way MI is a key technology in translational research, helping to design improved disease models as well as experimental treatment protocols that may afterwards be implemented into clinical routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegeneration (Parkinson's disease, PD, and Alzheimer's disease, AD) and brain cancer (glioma).
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging at the Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
30
|
Gera A, Steinberg GK, Guzman R. In vivo neural stem cell imaging: current modalities and future directions. Regen Med 2010; 5:73-86. [PMID: 20017696 DOI: 10.2217/rme.09.79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells have been proposed as a promising therapy for treating a wide variety of neuropathologies. While several studies have demonstrated the therapeutic benefits of neural stem cells, the exact mechanism remains elusive. In order to facilitate research efforts to understand these mechanisms, and before neural stem cell-based therapies can be utilized in a clinical context, we must develop means of monitoring these cells in vivo. However, because of tissue depth and the blood-brain barrier, in vivo imaging of neural stem cells in the brain has unique challenges that do not apply to stem cells for other purposes. In this paper, we review contemporary methods for in vivo neural stem cell imaging, including MRI, PET and optical imaging techniques.
Collapse
Affiliation(s)
- Atul Gera
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, 300 Pasteur Drive, R2111, Stanford, CA 94305-95327, USA
| | | | | |
Collapse
|
31
|
Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JMG, Eyckmans J, Luyten FP, Van Laere K, Verfaillie CM, Himmelreich U. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 2010; 19:919-36. [PMID: 20350351 DOI: 10.3727/096368910x494623] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ultimate therapy for ischemic stroke is restoration of blood supply in the ischemic region and regeneration of lost neural cells. This might be achieved by transplanting cells that differentiate into vascular or neuronal cell types, or secrete trophic factors that enhance self-renewal, recruitment, long-term survival, and functional integration of endogenous stem/progenitor cells. Experimental stroke models have been developed to determine potential beneficial effect of stem/progenitor cell-based therapies. To follow the fate of grafted cells in vivo, a number of noninvasive imaging approaches have been developed. Magnetic resonance imaging (MRI) is a high-resolution, clinically relevant method allowing in vivo monitoring of cells labeled with contrast agents. In this study, labeling efficiency of three different stem cell populations [mouse embryonic stem cells (mESC), rat multipotent adult progenitor cells (rMAPC), and mouse mesenchymal stem cells (mMSC)] with three different (ultra)small superparamagnetic iron oxide [(U)SPIO] particles (Resovist, Endorem, Sinerem) was compared. Labeling efficiency with Resovist and Endorem differed significantly between the different stem cells. Labeling with (U)SPIOs in the range that allows detection of cells by in vivo MRI did not affect differentiation of stem cells when labeled with concentrations of particles needed for MRI-based visualization. Finally, we demonstrated that labeled rMAPC could be detected in vivo and that labeling did not interfere with their migration. We conclude that successful use of (U)SPIOs for MRI-based visualization will require assessment of the optimal (U)SPIO for each individual (stem) cell population to ensure the most sensitive detection without associated toxicity.
Collapse
|
32
|
Sher F, van Dam G, Boddeke E, Copray S. Bioluminescence Imaging of Olig2-Neural Stem Cells Reveals Improved Engraftment in a Demyelination Mouse Model. Stem Cells 2009; 27:1582-91. [DOI: 10.1002/stem.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|