1
|
Brüggemann TR, Krishnamoorthy N, Hagner M, Matschiner G, Jaquin T, Tavares LP, Peh HY, Levy BD. A new Anticalin protein for IL-23 inhibits non-type 2 allergen-driven mouse lung inflammation and airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2024; 327:L624-L633. [PMID: 39104317 DOI: 10.1152/ajplung.00295.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Severe asthma is a syndromic label assigned to patients based on clinical parameters, yet there are diverse underlying molecular endotypes in severe asthma pathobiology. Immunophenotyping of asthma biospecimens commonly includes a mixture of granulocytes and lymphocytes. Recently, a subset of patients with severe asthma was defined as non-type 2 with neutrophil-enriched inflammation associated with increased Th17 CD4+ T cells and IL-17 levels. Here, we used an allergen-driven mouse model of increased IL-17 and mixed granulocyte lung inflammation to determine the impact of upstream regulation by an Anticalin protein that specifically binds IL-23. Airway administration of the IL-23-binding Anticalin protein (AcIL-23) decreased lung neutrophils, eosinophils, macrophages, lymphocytes, IL-17+ CD4 T cells, mucous cell metaplasia, and methacholine-induced airway hyperresponsiveness. Selective targeting of IL-23 with a monoclonal antibody (IL-23p19; αIL-23) also decreased macrophages, IL-17+ CD4 T cells, and airway hyperresponsiveness. In contrast, a monoclonal antibody against IL-17A (αIL-17A) had no significant effect on airway hyperresponsiveness but did decrease lung neutrophils, macrophages, and IL-17+ CD4 T cells. Targeting the IL-23 pathway did not significantly change IL-5+ or IL-13+ CD4 T cells. Together, these data indicate that airway AcIL-23 mirrored the activity of systemic anti-IL-23 antibody to decrease airway hyperresponsiveness in addition to mixed granulocytic inflammation and that these protective actions were broader than blocking IL-17A or IL-5 alone, which selectively decreased airway neutrophils and eosinophils, respectively.NEW & NOTEWORTHY This is the first report of an Anticalin protein engineered to neutralize IL-23 (AcIL-23). Airway administration of AcIL-23 in mice regulated allergen-driven airway inflammation, mucous cell metaplasia, and methacholine-induced airway hyperresponsiveness. In mixed granulocytic allergic lung inflammation, immune regulation of IL-23 was broader than neutralization of either IL-17 or IL-5.
Collapse
Affiliation(s)
- Thayse R Brüggemann
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | | | | | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Wu AY, Peebles RS. The emerging role of IL-23 in asthma and its clinical implications. Expert Rev Clin Immunol 2023; 19:1-5. [PMID: 36106675 PMCID: PMC9780171 DOI: 10.1080/1744666x.2023.2125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Ashley Y. Wu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - R. Stokes Peebles
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
3
|
Tsui HC, Ronsmans S, De Sadeleer LJ, Hoet PHM, Nemery B, Vanoirbeek JAJ. Skin Exposure Contributes to Chemical-Induced Asthma: What is the Evidence? A Systematic Review of Animal Models. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:579-598. [PMID: 32400126 PMCID: PMC7224990 DOI: 10.4168/aair.2020.12.4.579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
It is generally assumed that allergic asthma originates primarily through sensitization via the respiratory mucosa, but emerging clinical observations and experimental studies indicate that skin exposure to low molecular weight (LMW) agents, i.e. “chemicals,” may lead to systemic sensitization and subsequently develop asthma when the chemical is inhaled. This review aims to evaluate the accumulating experimental evidence that adverse respiratory responses can be elicited upon inhalation of an LMW chemical sensitizer after previous sensitization by dermal exposure. We systematically searched the PubMed and Embase databases up to April 15, 2017, and conducted forward and backward reference tracking. Animal studies involving both skin and airway exposure to LMW agents were included. We extracted 6 indicators of “selective airway hyper-responsiveness” (SAHR)—i.e. respiratory responses that only occurred in previously sensitized animals—and synthesized the evidence level for each indicator into strong, moderate or limited strength. The summarized evidence weight for each chemical agent was graded into high, middle, low or “not possible to assess.” We identified 144 relevant animal studies. These studies involved 29 LMW agents, with 107 (74%) studies investigating the occurrence of SAHR. Indicators of SAHR included physiological, cytological/histological and immunological responses in bronchoalveolar lavage, lung tissue and airway-draining lymph nodes. Evidence for skin exposure-induced SAHR was present for 22 agents; for 7 agents the evidence for SAHR was inconclusive, but could not be excluded. The ability of a chemical to cause sensitization via skin exposure should be regarded as constituting a risk of adverse respiratory reactions.
Collapse
Affiliation(s)
- Hung Chang Tsui
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Steven Ronsmans
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Laurens J De Sadeleer
- Department of Respiratory Diseases, Unit for Interstitial Lung Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Lee HS, Park DE, Lee JW, Chang Y, Kim HY, Song WJ, Kang HR, Park HW, Chang YS, Cho SH. IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 312:L13-L21. [PMID: 27864285 DOI: 10.1152/ajplung.00114.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022] Open
Abstract
IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Da-Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Ji-Won Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Yuna Chang
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; and
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; and
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; and
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea; .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; and
| |
Collapse
|
5
|
Malhotra N, Yoon J, Leyva-Castillo JM, Galand C, Archer N, Miller LS, Geha RS. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol 2016; 138:1098-1107.e3. [PMID: 27543072 PMCID: PMC5056816 DOI: 10.1016/j.jaci.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen that colonizes the skin of patients with atopic dermatitis (AD) and aggravates their disease. Neutrophils and the cytokines IL-17A and IL-17F, which drive the expression of the neutrophil-attracting chemokines, are important for the clearance of S aureus infection. The cytokine IL-22 is often coproduced by IL-17-secreting cells. The levels of IL-22 are elevated in AD skin lesions. OBJECTIVE We sought to determine the role of IL-22 in the clearance of S aureus infection of mouse skin subjected to tape stripping, a surrogate for scratching, a cardinal feature of AD. METHODS S aureus was applied to the tape-stripped skin of wild-type and Il22-/- mice. Bacterial burden was evaluated by enumerating colony-forming units. Quantitative PCR and ELISA were performed to quantify Il22 mRNA and IL-22 protein in mouse and human skin. Flow cytometry was used to enumerate neutrophils in the skin. RESULTS Scratching the skin of healthy adults and tape stripping of mouse skin induced local expression of Il22 mRNA and IL-22 protein. Induction of Il22 expression by tape stripping was dependent on IL-23 and γδ T cells. Clearance of S aureus from tape-stripped skin was significantly impaired in Il22-/- mice. Neutrophil infiltration and upregulation of expression of genes encoding the antimicrobial peptides antigen-6/urokinase-type plasminogen activator receptor related protein-1 and β-DEFENSIN 14 and the chemokine (C-X-C motif) ligand following tape stripping were significantly impaired in Il22-/- mice. CONCLUSIONS These findings show that IL-22 is important for limiting the growth of S aureus on mechanically injured skin and caution that IL-23 and IL-22 blockade in patients with AD may enhance susceptibility to staphylococcal skin infection.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Juhan Yoon
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Claire Galand
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Nathan Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
6
|
Ogawa R, Suzuki Y, Kagawa S, Masaki K, Fukunaga K, Yoshimura A, Fujishima S, Terashima T, Betsuyaku T, Asano K. Distinct effects of endogenous interleukin-23 on eosinophilic airway inflammation in response to different antigens. Allergol Int 2015; 64 Suppl:S24-9. [PMID: 26344076 DOI: 10.1016/j.alit.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The role of interleukin (IL)-23 in asthma pathophysiology is still controversial. We examined its role in allergic airway inflammation in response to two distinct antigens using IL-23-deficient mice. METHODS Allergic airway inflammation was evaluated in wild-type and IL-23p19(-/-) mice. Mice were sensitized to ovalbumin (OVA) or house dust mite (HDM) by intraperitoneal injection of antigen and their airways were then exposed to the same antigen. Levels of antigen-specific immunoglobulins in serum as well as cytokines in bronchoalveolar or peritoneal lavage fluid and lung tissue were determined by enzyme-linked immunosorbent assay and/or quantitative polymerase chain reaction. RESULTS Deficiency of IL-23p19 decreased eosinophils and Th2 cytokines in bronchoalveolar lavage fluid (BALF) of OVA-treated mice, while it increased BALF eosinophils of HDM-treated mice. Peritoneal injection of OVA with alum, but not of HDM, induced local synthesis of IL-6, IL-10, and IL-23. Systemic production of antigen-specific IgG1 was partially dependent on IL-23. In contrast, airway exposure to HDM, but not to OVA, induced IL-23p19 mRNA expression in the lungs. In IL-23p19-deficient mice, HDM-exposed lungs did not exhibit the induction of IL-17A, which negatively regulates eosinophilic inflammation. CONCLUSIONS Different antigens induced IL-23 at different part of the body in our similar asthma models. Endogenous IL-23 production at the site of antigen sensitization facilitates type-2 immune responses, whereas IL-23 production and subsequent IL-17A synthesis in the airways suppresses allergic inflammation.
Collapse
|
7
|
Guest I, Sell S. Bronchial lesions of mouse model of asthma are preceded by immune complex vasculitis and induced bronchial associated lymphoid tissue (iBALT). J Transl Med 2015; 95:886-902. [PMID: 26006019 PMCID: PMC4520747 DOI: 10.1038/labinvest.2015.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/10/2023] Open
Abstract
We systematically examined by immune histology the lungs of some widely used mouse models of asthma. These models include sensitization by multiple intraperitoneal injections of soluble ovalbumin (OVA) or of OVA with alum, followed by three intranasal or aerosol challenges 3 days apart. Within 24 h after a single challenge there is fibrinoid necrosis of arterial walls with deposition of immunoglobulin (Ig) and OVA and infiltration of eosinophilic polymorphonuclear cells that lasts for about 3 days followed by peribronchial B-cell infiltration and slight reversible goblet cell hypertrophy (GCHT). After two challenges, severe eosinophilic vasculitis is present at 6 h, increases by 72 h, and then declines; B-cell proliferation and significant GCHT and hyperplasia (GCHTH) and bronchial smooth muscle hypertrophy recur more prominently. After three challenges, there is significantly increased induced bronchus-associated lymphoid tissue (iBALT) formation, GCHTH, and smooth muscle hypertrophy. Elevated levels of Th2 cytokines, IL-4, IL-5, and IL-13, are present in bronchial lavage fluids. Sensitized mice have precipitating antibody and positive Arthus skin reactions but also develop significant levels of IgE antibody to OVA but only 1 week after challenge. We conclude that the asthma like lung lesions induced in these models is preceded by immune complex-mediated eosinophilic vasculitis and iBALT formation. There are elevations of Th2 cytokines that most likely produce bronchial lesions that resemble human asthma. However, it is unlikely that mast cell-activated atopic mechanisms are responsible as we found only a few presumed mast cells by toluidine blue and metachromatic staining limited to the most proximal part of the main stem bronchus, and none in the remaining main stem bronchus or in the lung periphery.
Collapse
Affiliation(s)
- Ian Guest
- Division of Translational Medicine, Wadsworth Center, New York State
Department of Health, Empire State Plaza, Albany, NY
| | - Stewart Sell
- Division of Translational Medicine, Wadsworth Center, New York State
Department of Health, Empire State Plaza, Albany, NY
- School of Public Health, University at Albany
| |
Collapse
|
8
|
Prabhala P, Ammit AJ. Tristetraprolin and its role in regulation of airway inflammation. Mol Pharmacol 2014; 87:629-38. [PMID: 25429052 DOI: 10.1124/mol.114.095984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|