1
|
McGinn EA, Mandell EW, Smith BJ, Duke JW, Bush A, Abman SH. Dysanapsis as a Determinant of Lung Function in Development and Disease. Am J Respir Crit Care Med 2023; 208:956-963. [PMID: 37677135 PMCID: PMC10870865 DOI: 10.1164/rccm.202306-1120pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
| | - Erica W. Mandell
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Neonatology
| | - Bradford J. Smith
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
- Department of Bioengineering, Anschutz School of Medicine, University of Colorado–Denver, Aurora, Colorado
| | - Joseph W. Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona; and
| | - Andrew Bush
- Center for Pediatrics and Child Health, Imperial College of Medicine, London, United Kingdom
| | - Steven H. Abman
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
| |
Collapse
|
2
|
Rynne J, Ortiz-Zapater E, Bagley DC, Zanin O, Doherty G, Kanabar V, Ward J, Jackson DJ, Parsons M, Rosenblatt J, Adcock IM, Martinez-Nunez RT. The RNA binding proteins ZFP36L1 and ZFP36L2 are dysregulated in airway epithelium in human and a murine model of asthma. Front Cell Dev Biol 2023; 11:1241008. [PMID: 37928904 PMCID: PMC10624177 DOI: 10.3389/fcell.2023.1241008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Asthma is the most common chronic inflammatory disease of the airways. The airway epithelium is a key driver of the disease, and numerous studies have established genome-wide differences in mRNA expression between health and asthma. However, the underlying molecular mechanisms for such differences remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1 and ZFP36L2, and has essential roles in immune regulation by determining the stability and translation of myriad mRNAs encoding for inflammatory mediators. We investigated the expression and possible role of the tristetraprolin (TTP) family of RNA binding proteins (RBPs), poorly understood in asthma. Methods: We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2 mRNA in several publicly available asthma datasets, including single cell RNA-sequencing. We also interrogated the expression of known targets of these RBPs in asthma. We assessed the lung mRNA expression and cellular localization of Zfp36l1 and Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in human bronchial biopsies and performed rescue experiments in primary bronchial epithelium from patients with severe asthma. Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly downregulated in the airway epithelium of patients with very severe asthma in different cohorts (5 healthy vs. 8 severe asthma; 36 moderate asthma vs. 37 severe asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating several datasets allowed us to infer that mRNAs potentially targeted by these RBPs are increased in severe asthma. Zfp36l1 was downregulated in the lung of a mouse model of asthma, and immunostaining of ex vivo lung slices with a dual antibody demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway epithelium of an acute asthma mouse model, which was further enhanced in a chronic model. Immunostaining of human bronchial biopsies showed that airway epithelial cell staining of ZFP36L1 was decreased in severe asthma as compared with mild, while ZFP36L2 was upregulated. Restoring the levels of ZFP36L1 and ZFP36L2 in primary bronchial epithelial cells from patients with severe asthma decreased the mRNA expression of IL6, IL8 and CSF2. Discussion: We propose that the dysregulation of ZFP36L1/L2 levels as well as their subcellular mislocalization contributes to changes in mRNA expression and cytoplasmic fate in asthma.
Collapse
Affiliation(s)
- Jennifer Rynne
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Dustin C. Bagley
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Onofrio Zanin
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - George Doherty
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Varsha Kanabar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jon Ward
- Histochemistry Research Unit, University of Southampton, Southampton, United Kingdom
| | - David J. Jackson
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Maddy Parsons
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Ian M. Adcock
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, United Kingdom
| | - Rocio T. Martinez-Nunez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Foppiano F, Schaub B. Childhood asthma phenotypes and endotypes: a glance into the mosaic. Mol Cell Pediatr 2023; 10:9. [PMID: 37646843 PMCID: PMC10469115 DOI: 10.1186/s40348-023-00159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Asthma is an inflammatory lung disease that constitutes the most common noncommunicable chronic disease in childhood. Childhood asthma shows large heterogeneity regarding onset of disease, symptoms, severity, prognosis, and response to therapy. MAIN BODY Evidence suggests that this variability is due to distinct pathophysiological mechanisms, which has led to an exhaustive research effort to understand and characterize these distinct entities currently designated as "endotypes." Initially, studies focused on identifying specific groups using clinical variables yielding different "clinical phenotypes." In addition, the identification of specific patterns based on inflammatory cell counts and cytokine data has resulted in "inflammatory endotypes." More recently, an increasing number of molecular data from high-throughput technology ("omics" data) have allowed to investigate more complex "molecular endotypes." CONCLUSION A better definition and comprehension of childhood asthma heterogeneity is key for improving diagnosis and treatment. This review aims at summarizing the current knowledge on this topic and discusses some limitations in their application as well as recommendations for future studies.
Collapse
Affiliation(s)
- Francesco Foppiano
- Department of Pulmonary and Allergy, Dr. Von Hauner Children's Hospital, LMU Munich, 80337, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. Von Hauner Children's Hospital, LMU Munich, 80337, Munich, Germany.
- German Lung Centre (DZL), CPC-Munich, 80337, Munich, Germany.
| |
Collapse
|
4
|
Carlsson CJ, Rasmussen MA, Pedersen SB, Wang N, Stokholm J, Chawes BL, Bønnelykke K, Bisgaard H. Airway immune mediator levels during asthma-like symptoms in young children and their possible role in response to azithromycin. Allergy 2021; 76:1754-1764. [PMID: 33150590 DOI: 10.1111/all.14651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Asthma-like symptoms in young children are orchestrated by the local airway immune response, but current knowledge largely relies on in vitro airway models. Azithromycin has been shown to reduce the duration of episodes with asthma-like symptoms, but efficacy may depend on the individual child's immune response. OBJECTIVES To investigate in vivo upper airway immune mediator levels during episodes with asthma-like symptoms in young children and their ability to predict the clinical response to azithromycin treatment. METHODS A total of 535 children aged 0-3 years from the Copenhagen Prospective Studies of Asthma in Childhood-2010 mother-child cohort were examined for immune mediator levels in samples of nasal epithelial lining fluid during episodes with asthma-like symptoms as well as in the asymptomatic state. In a sub-study, children with recurrent asthma-like symptoms were randomized to either a 3-day course of oral azithromycin (10 mg/kg; n = 32) or placebo (n = 38). In the current study, we compared the pretreatment immune mediator levels with the clinical response to treatment with azithromycin in an exploratory post hoc analysis. RESULTS The immune mediator concentrations during vs outside episodes were significantly upregulated for IFN-ɣ (ratio 1.73), TNF-α (ratio 2.05), IL-1β (ratio 1.45), IL-10 (ratio 1.97), while CCL22 (ratio 0.65) was downregulated. Low levels of TNF-α and IL-10 and high levels of CCL22 predicted better treatment response to azithromycin (P-values < .05). CONCLUSION Upper airway immune mediator levels were altered during episodes of asthma-like symptoms, and levels of TNF-α, CCL22, and IL-10 may predict the response to azithromycin treatment.
Collapse
Affiliation(s)
- Christian J. Carlsson
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Morten A. Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
- Department of Food Science University of Copenhagen Frederiksberg Denmark
| | - Susanne B. Pedersen
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Ni Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Bo L. Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| |
Collapse
|
5
|
Yang M, Wang L. MALAT1 knockdown protects from bronchial/tracheal smooth muscle cell injury via regulation of microRNA-133a/ryanodine receptor 2 axis. J Biosci 2021. [DOI: 10.1007/s12038-021-00149-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Liu C, Zheng K, Liu X, Zheng M, Liu Z, Wang X, Zhang L. Use of Nasal Nitric Oxide in the Diagnosis of Allergic Rhinitis and Nonallergic Rhinitis in Patients with and without Sinus Inflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1574-1581.e4. [DOI: 10.1016/j.jaip.2019.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
8
|
Singh D. Blood Eosinophil Counts in Chronic Obstructive Pulmonary Disease: A Biomarker of Inhaled Corticosteroid Effects. Tuberc Respir Dis (Seoul) 2020; 83:185-194. [PMID: 32578413 PMCID: PMC7362755 DOI: 10.4046/trd.2020.0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Blood eosinophil counts have emerged as a chronic obstructive pulmonary disease (COPD) biomarker that predict the effects of inhaled corticosteroids (ICS) in clinical practice. Post-hoc and prospective analysis of randomized control trials have shown that higher blood eosinophil counts at the start of the study predict a greater response to ICS. COPD patients with frequent exacerbations (2 or more moderate exacerbations/yr) or a history of hospitalization have a greater response to ICS. Ex-smokers also appear to have a greater ICS response. Blood eosinophil counts can be combined with clinical information such as exacerbation history and smoking status to enable a precision medicine approach to the use of ICS. Higher blood eosinophil counts are associated with increased eosinophilic lung inflammation, and other biological features that may contribute to the increased ICS response observed. Emerging data indicates that lower blood eosinophil counts are associated with an increased risk of bacterial infection, suggesting complex relationships between eosinophils, ICS response, and the airway microbiome.
Collapse
Affiliation(s)
- Dave Singh
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester University NHS Hospital Trust, Manchester, UK
| |
Collapse
|
9
|
Lutchen KR, Paré PD, Seow CY. Hyperresponsiveness: Relating the Intact Airway to the Whole Lung. Physiology (Bethesda) 2018; 32:322-331. [PMID: 28615315 DOI: 10.1152/physiol.00008.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Collapse
Affiliation(s)
- Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Chun Y Seow
- Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Debelleix S, Siao-Him Fa V, Begueret H, Berger P, Kamaev A, Ousova O, Marthan R, Fayon M. Montelukast reverses airway remodeling in actively sensitized young mice. Pediatr Pulmonol 2018; 53:701-709. [PMID: 29493871 DOI: 10.1002/ppul.23980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022]
Abstract
UNLABELLED Asthma is characterized by airway hyperresponsiveness (AHR) and inflammation leading to airway remodeling (AR). In children, AR may occur very early prior to the age of 6 years. Treatments to prevent or reverse AR are unknown. AIM We sought to determine (i) whether short allergenic sensitization at a young age in a mouse model may induce enhanced AR and inflammation compared to adults; (ii) the effect of Montelukast on such AR. METHODS Immature and adult Balb/c mice were sensitized and challenged with ovalbumin. AHR and AR were measured using cultured precision-cut lung slices and inflammation by bronchoalveolar lavage. Experiments were repeated after administration of Montelukast. RESULTS OVA-challenged mice developed AHR to methacholine regardless of age of first exposure to OVA. Young mice developed greater thickened basement membrane, increased smooth muscle mass, and increased area of bronchovascular fibrosis compared with adult mice. Cellular infiltrates in BAL differed depending upon animal age at first exposure with higher eosinophilia measured in younger animals. Montelukast decreased ASM mass, BAL cellularity. CONCLUSION We provide thus evidence for a greater degree of AR after allergenic sensitization and challenge in younger mice versus adults. This study provides proof of concept that airway remodeling can be prevented and reversed in this case by anti-asthmatic drug Montelukast in this model.
Collapse
Affiliation(s)
- Stephane Debelleix
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Valérie Siao-Him Fa
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Hugues Begueret
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Andy Kamaev
- Department of general practice, Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Olga Ousova
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Michael Fayon
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service de Pneumo-Pédiatrie, Service d'anatomopathologie, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| |
Collapse
|
11
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
12
|
Ilic N, Mihailovic N. Serum Clara cell protein and atopic phenotype in children up to 2 years of age. J Clin Lab Anal 2017; 31. [PMID: 28146340 DOI: 10.1002/jcla.22151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/26/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low value of serum Clara cell protein (CC16) is associated with bronchial hyperreactivity in children. OBJECTIVE To evaluate the serum CC16 in relation to atopy and previously manifested LRTD. METHODS In the population of 163 healthy 5- to 24-month-old children, atopy was determined by Phadiatop-infant (serum-specific IgE≥0.35 kUA/L), serum CC16 by ELISA, while data on previously manifested low respiratory tract diseases (LRTD) were collected from the Health Care Center database. RESULTS In atopic children, serum CC16 negatively correlated with age (r -.281, P=.041, n=53), while in nonatopic children, this correlation was positive (r .200, P=.036, n=110). Atopic ≥8-month-old children with previously manifested LRTD had lower level of CC16 (3.07 ng/mL) in relation to atopic children without LRTD at the same age (6.51 ng/mL), P=.029 (value of serum CC16≥4.8 ng/mL indicates atopic phenotype without LRTD 75% sensitivity, 87.5% specificity). In 8- to 24-month-old children with previously manifested pneumonia, serum CC16 was lower in atopic (2.9 ng/mL) in relation to nonatopic children (3.7 ng/mL), P=.029 (serum CC16 ≤3.4 ng/mL indicating atopy in the group of children with pneumonia, sensitivity 100%, and specificity 77%). Atopic 8- to 24-month-old children with previously manifested pneumonia had lower CC16 in relation to other atopic children in this age (P=.021) (for cutoff CC16≤3.4 ng/mL sensitivity 100%, specificity 77%), and also often chronic wheezing (atopic with pneumonia 83.3%, n=5/6 vs atopic without pneumonia 21.4%, n=3/14), P=.018. CONCLUSION Low serum CC16 is associated with previously expressed pneumonia and chronic wheezing in atopic children.
Collapse
Affiliation(s)
- Nevenka Ilic
- Department of Allergology and Immunology, Public Health Institute, Kragujevac, Serbia
| | - Natasa Mihailovic
- Department of Biostatistics, Public Health Institute, Kragujevac, Serbia
| |
Collapse
|
13
|
Mallol J. ASMA DEL LACTANTE: ACTUALIZACIÓN. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Bannier MAGE, van de Kant KDG, Jöbsis Q, Dompeling E. Biomarkers to predict asthma in wheezing preschool children. Clin Exp Allergy 2016; 45:1040-50. [PMID: 25409553 DOI: 10.1111/cea.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wheezing in preschool children is a very common symptom. An adequate prediction of asthma in these children is difficult and cannot be reliably assessed with conventional clinical tools. The study of potential predictive biomarkers in various media, ranging from invasive sampling (e.g. bronchoscopy) to non-invasive sampling (lung function testing and exhaled breath analysis), was comprehensively reviewed. The evolution in biomarker discovery has resulted in an 'omics' approach, in which hundreds of biomarkers in the field of genomics, proteomics, metabolomics, and 'breath-omics' can be simultaneously studied. First, results on gene expression and exhaled breath profiles in predicting an early asthma diagnosis are promising. However, many hurdles need to be overcome before clinical implementation is possible. To reliably predict asthma in a wheezing child, probably a holistic approach is needed, combining clinical information with blood sampling, lung function tests, and potentially exhaled breath analysis. The further development of predictive, non-invasive biomarkers may eventually improve an early asthma diagnosis in wheezing preschool children and assist clinicians in early treatment decision-making.
Collapse
Affiliation(s)
- M A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - K D G van de Kant
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Q Jöbsis
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E Dompeling
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
15
|
Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biol Open 2016; 5:112-21. [PMID: 26740570 PMCID: PMC4823983 DOI: 10.1242/bio.014464] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis. Summary: This study describes a systematic analysis of molecular end points in an murine model of allergic asthma. The biosignature described can be used to interrogate molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Jacquie Schwartz
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| |
Collapse
|
16
|
Ram A, Mabalirajan U, Jaiswal A, Rehman R, Singh VP, Ghosh B. Parabromophenacyl bromide inhibits subepithelial fibrosis by reducing TGF-β1 in a chronic mouse model of allergic asthma. Int Arch Allergy Immunol 2015; 167:110-8. [PMID: 26303861 DOI: 10.1159/000434679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous study showed that parabromophenacyl bromide (PBPB) inhibits the features of allergic airway inflammation and airway hyperresponsiveness (AHR). However, its effect on airway remodeling, e.g. subepithelial fibrosis in a chronic allergic asthma model, was not investigated. We examined this issue in this study. METHODS PBPB was administered to mice with an induced chronic asthmatic condition. AHR was estimated at the end of the experiment, followed by euthanasia. Lung sections were stained with hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome to determine airway inflammation, goblet cell metaplasia and subepithelial fibrosis, respectively. Transforming growth factor-β1 (TGF-β1) was estimated in lung homogenates. To determine the effect of PBPB on smooth-muscle hyperplasia, immunohistochemistry against α-smooth-muscle actin was performed on the lung sections. RESULTS Chronic ovalbumin challenges in a mouse model of allergic asthma caused significant subepithelial fibrosis and elevated TGF-β1, along with significant AHR. PBPB attenuated subepithelial fibrosis with a reduction of lung TGF-β1, airway inflammation and AHR without affecting goblet cell metaplasia. It also attenuated smooth-muscle hyperplasia with a reduction in the expression of α-smooth-muscle actin in the lungs. CONCLUSION Our findings indicate that PBPB attenuates some crucial features of airway remodeling such as subepithelial fibrosis and smooth-muscle hyperplasia. These data suggest that PBPB could therefore be a therapeutic drug for chronic asthma.
Collapse
Affiliation(s)
- Arjun Ram
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | |
Collapse
|
17
|
Guilbert TW, Bacharier LB, Fitzpatrick AM. Severe asthma in children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 2:489-500. [PMID: 25213041 DOI: 10.1016/j.jaip.2014.06.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
Severe asthma in children is characterized by sustained symptoms despite treatment with high doses of inhaled corticosteroids or oral corticosteroids. Children with severe asthma may fall into 2 categories, difficult-to-treat asthma or severe therapy-resistant asthma. Difficult-to-treat asthma is defined as poor control due to an incorrect diagnosis or comorbidities, or poor adherence due to adverse psychological or environmental factors. In contrast, treatment resistant is defined as difficult asthma despite management of these factors. It is increasingly recognized that severe asthma is a highly heterogeneous disorder associated with a number of clinical and inflammatory phenotypes that have been described in children with severe asthma. Guideline-based drug therapy of severe childhood asthma is based primarily on extrapolated data from adult studies. The recommendation is that children with severe asthma be treated with higher-dose inhaled or oral corticosteroids combined with long-acting β-agonists and other add-on therapies, such as antileukotrienes and methylxanthines. It is important to identify and address the influences that make asthma difficult to control, including reviewing the diagnosis and removing causal or aggravating factors. Better definition of the phenotypes and better targeting of therapy based upon individual patient phenotypes is likely to improve asthma treatment in the future.
Collapse
Affiliation(s)
- Theresa W Guilbert
- Division of Pulmonology Medicine, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Anne M Fitzpatrick
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, Ga
| |
Collapse
|
18
|
Boskabady MH, Tabatabaee A, Jalali S. Potential effect of the extract of Zataria multiflora and its constituent, carvacrol, on lung pathology, total and differential WBC, IgE and eosinophil peroxidase levels in sensitized guinea pigs. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Yilmaz O, Turkeli A, Sahin S, Yuksel H. Predictive Value of the TRACK Questionnaire as a Measure of Asthma Control in Preschool Aged Children. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:357-61. [PMID: 24991460 PMCID: PMC4077963 DOI: 10.4168/aair.2014.6.4.357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/10/2013] [Accepted: 08/09/2013] [Indexed: 11/20/2022]
Abstract
Assessment of asthma control in preschool children is important for therapeutic decisions. Aim of this study was to evaluate the predictive value of TRACK questionnaire scores for subsequent clinical parameters and to investigate the validity and reliability of the Turkish version of the TRACK questionnaire. We enrolled 100 children with asthma aged 4 years or younger in this cohort study. We recorded sociodemographic characteristics and clinical severity parameters. A pediatric allergist filled in the asthma severity scale and the caregiver of the child filled in the TRACK questionnaire. We called in the children again at the end of one month and recorded the same parameters and administered TRACK again. Uncontrolled asthma was defined as a TRACK score below 80. According to the TRACK score, 65% of the children had controlled asthma initially while at the end of the study 64.1% had controlled asthma. At the beginning of the study, all clinical parameters were worse in children with uncontrolled asthma according to TRACK score. Similarly, other objective clinical parameters during the following one month period were worse in children with initial uncontrolled asthma. Cronbach's alpha score for the TRACK questionnaire was 0.84. Turkish TRACK questionnaire is a valid and reliable tool that is predictive of short term asthma prognosis.
Collapse
Affiliation(s)
- Ozge Yilmaz
- Celal Bayar Univ Medical Faculty, Department of Pediatric Allergy and Pulmonology, Manisa, Turkey
| | - Ahmet Turkeli
- Celal Bayar Univ Medical Faculty, Department of Pediatric Allergy and Pulmonology, Manisa, Turkey
| | - Sebnem Sahin
- Celal Bayar Univ Medical Faculty, Department of Pediatrics, Manisa, Turkey
| | - Hasan Yuksel
- Celal Bayar Univ Medical Faculty, Department of Pediatric Allergy and Pulmonology, Manisa, Turkey
| |
Collapse
|
20
|
Boskabady MH, Tabatabaee A, Byrami G. The effect of the extract of Crocus sativus and its constituent safranal, on lung pathology and lung inflammation of ovalbumin sensitized guinea-pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:904-911. [PMID: 22743244 DOI: 10.1016/j.phymed.2012.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/15/2012] [Accepted: 05/01/2012] [Indexed: 06/01/2023]
Abstract
Different pharmacological effects of Crocus sativus have been demonstrated on guinea pig tracheal chains in previous studies. In the present study, the prophylactic effect of the extract of C. sativus and its constituent, safranal on lung pathology and total and differential white blood cells (WBC) of sensitized guinea pigs was examined. Guinea pigs were sensitized with injection and inhalation of ovalbumin (OA). One group of sensitized guinea pigs were given drinking water alone (group S) and three groups were given drinking water containing three concentrations of safranal (S+SA1, S+SA2 and S+SA3 groups), three groups, drinking water containing three concentrations of extract (S+CS1, S+CS2 and S+CS3 groups) and one group drinking water containing one concentration of dexamethasone (S+D group) (n=6, for all groups). The lung pathology was evaluated in control, non treated and treated sensitized groups. Total and differential WBC counts of lung lavage were also examined. All pathological indices in group S showed significant increased compared to control group (p<0.05 for lung congestion and p<0.001 for other groups). Total WBC number (p<0.001), eosinophyl percentage (p<0.001) in lung lavage and serum histamine levels (p<0.01) were also increased in sensitized animals compared to those of controls. Treatment of S animals with dexamethasone, all concentrations of the extract and safranal significantly improved lung pathological changes, most types of WBC and serum histamine levels compared to group S (p<0.05-0.001). Treatment of S group with first concentration of safranal also decreased total WBC. Treatment with safranal was more effective in improvement of most pathological changes, total and differential WBC count as well as serum histamine level (p<0.05-0.001). These results showed a preventive effect of the extract of C. sativus and its constituent safranal on lung inflammation of sensitized guinea pigs. The results also showed that the effect of the plant is perhaps due to its constituent safranal.
Collapse
Affiliation(s)
- M H Boskabady
- Department of Physiology, School of Medicine and Pharmaceutical Research Centre, Mashhad University of Medical Sciences, Mashhad 177948564, Iran.
| | | | | |
Collapse
|
21
|
Zhang W, Hubin G, Endam LM, Al-Mot S, Filali-Mouhim A, Desrosiers M. Expression of the extracellular matrix gene periostin is increased in chronic rhinosinusitis and decreases following successful endoscopic sinus surgery. Int Forum Allergy Rhinol 2012; 2:471-6. [PMID: 22696470 DOI: 10.1002/alr.21056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND The extracellular matrix (ECM) is a potentially important component of mucosal immunity. ECM dysregulation in chronic rhinosinusitis (CRS) is suggested by genomewide association studies identifying ECM genes as top candidates. Further support is afforded by the demonstration of increased expression of periostin (POSTN) in CRS biopsy samples compared to controls, and by reported roles in eosinophilic inflammation and steroid responsiveness. We wished to evaluate the potential utility of POSTN as a biomarker for disease activity by determining whether POSTN levels were modified in disease and whether they were modulated by endoscopic sinus surgery (ESS). METHODS Twelve patients undergoing ESS for CRS and 10 controls undergoing ESS for skull-base access were recruited. An epithelial sample from the frontal recess was collected using a cytology brush at time of and 3 months after surgery. Microarray analysis of gene expression was performed using the Illumina HumanHT-12 Beadchip v3. POSTN protein level in biopsy samples taken from the same place of brushings at surgery was analyzed by immunohistochemistry (IHC) staining. RESULTS All patients resolved CRS with ESS. At surgery, a higher expression of POSTN was seen in the CRS group compared to controls (fold change [FC] = 4.89, positive false discovery rate (pFDR) = 0.0006), which was also verified by IHC. After ESS, POSTN expression in CRS group decreased (FC = -3.074, pFDR = 0.0044), and was no longer different from controls (FC = 1.56, pFDR = 0.3). CONCLUSION Demonstration of reduced levels in the expression of POSTN, an ECM gene, following resolution of disease, implicates POSTN, a potential pathogenesis indicator or biomarker of CRS disease activity and responsiveness to treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), CHUM-Hotel Dieu Hospital, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hyaluronic acid (HA) is a non-sulphated glycosaminoglycan. It is a natural polymer characterised by a coiled linear chain in particularly well-hydrated configuration composed of repeating disaccaride units. In mammals, its molecular weight can be extremely wide, ranging from 20 to 4,000 kDa. High molecular mass forms are provided with anti-inflammatory properties. A unique characteristic of HA is hydration (up to 6,000 molecules water/molecule of HA) with a major role in the regulation of fluid balance in the interstitium, a fundamental activity on the amorphous colloidal matrix gluing connective cell and fibers, and many other biological functions including lubrication, solute transport and microcirculatory exchange. HA has been widely used in the treatment of eye, ear, joint and skin disorders; in the last 15 years HA has been also proposed successfully in the treatment of a number of lung diseases in vitro, experimental animals and humans. In particular, inhaled HA at relatively high molecular weight has been proven to prevent bronchoconstiction induced in asthmatics by direct and indirect challenges such as inhalation of methacholine, inhalation of ultrasonically nebulised distilled water, muscular exercise. More recently, in patients affected by chronic obstructive pulmonary diseases, we have demonstrated that repeated administrations of inhaled HA (daily, for 8 weeks) induce significant increase in bronchial patency as well as progressive lung deflation with decrease of residual volume. In conclusion there are elements that can let us state that is perhaps time to change the focus to connective tissue and extracellular matrix substances such as HA, in order to prevent and treat chronic lung diseases.
Collapse
Affiliation(s)
- Luigi Allegra
- Università degli Studi, IRCCS Fondazione Ca' Granda, Ospedale Policlinico, Milano, Italy.
| | | | | |
Collapse
|
23
|
Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol 2011; 4:682-94. [PMID: 21881572 DOI: 10.1038/mi.2011.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c+ CD11b+ inflammatory dendritic cell and CD8α+ plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.
Collapse
|
24
|
Montuschi P, Barnes PJ. New perspectives in pharmacological treatment of mild persistent asthma. Drug Discov Today 2011; 16:1084-91. [PMID: 21930234 DOI: 10.1016/j.drudis.2011.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Until the relationship between symptoms, lung function tests, airway inflammation, airway hyper-responsiveness (AHR), exacerbations and remodelling is clarified, regular treatment seems to enable a greater disease control than on-demand therapy in most patients with mild persistent asthma. Current guideline classification based on disease severity remains a cornerstone in asthma management. However, the heterogeneity of asthma, the growing emphasis on subphenotypes, including molecular phenotypes identified by -omics technologies, and their possible implications in terms of different asthma severity, progression and therapeutic response, are changing current asthma treatment mainly based on disease severity classification to a pharmacological strategy more focused on the individual patient.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of Sacred Heart, Largo Francesco Vito, 1-00168 Rome, Italy.
| | | |
Collapse
|
25
|
Abstract
Asthma is a complex disease with a significant inflammatory component characterized by repeated episodes of exacerbation and inflammatory changes in both large and peripheral airways. The clinical course of childhood asthma varies substantially among individuals. The reasons why the clinical course of asthma displays persistence and even progression in some children but is intermittent in others remains unclear. Children with asthma are different from adults with asthma. Inflammatory involvement in children with asthma appears to be localised more in peripheral than central airways, and the inflammatory phenotype displays differences from adults. Children with acute asthma display a dominant eosinophilic inflammatory phenotype instead of the neutrophilic phenotype that is seen in adults with acute asthma. Corticosteroids do not alter the natural history of the disease and may not prevent progressive decline of lung function in the subset of severe asthma. The underlying inflammatory mechanisms involved in the decline of lung function remains to be elucidated. Non-invasive biomarkers for monitoring lung function and inflammation are needed in children to track and monitor pathological changes in the distal airways, as is the development of therapeutic strategies that effective to peripheral airway in this vulnerable population. This review summarises our present understanding of airway inflammatory phenotypes in children with asthma and factors determining disease severity in exacerbations of asthma, and focuses on studies evaluating relationships between clinical features and the dominant inflammatory phenotypes in disease prognosis in a variety of asthma populations. This presents the crucial steps for describing the strategies associated with improvements for paediatric asthma care.
Collapse
Affiliation(s)
- Xiao Yan He
- Centre for Asthma and Respiratory Disease, University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|
26
|
Montuschi P. Pharmacotherapy of patients with mild persistent asthma: strategies and unresolved issues. Front Pharmacol 2011; 2:35. [PMID: 21808620 PMCID: PMC3139104 DOI: 10.3389/fphar.2011.00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/21/2011] [Indexed: 12/22/2022] Open
Abstract
In studies comparing regular versus on-demand treatment for patients with mild persistent asthma, on-demand treatment seems to have a similar efficacy on clinical and functional outcomes, but it does not suppress chronic airway inflammation or airway hyper-responsiveness (AHR) associated with asthma. Data on the efficacy of a continuous treatment with inhaled corticosteroids (ICS) in preventing the progression of asthma are conflicting. There is the possibility that patients without a regular treatment with ICS may develop a more severe asthma associated with airway structural changes (remodeling) and a progressive loss of lung function. However, the possible clinical and functional consequences of persistent, not controlled, airway inflammation in patients with asthma have to be established. Assessment of asthma control should include inflammatory outcomes, such as fraction of exhaled nitric oxide and sputum eosinophil counts. Until the relationships between symptoms, lung function tests, AHR, airway inflammation, exacerbations, and airway remodeling are clarified, regular treatment seems to be generally more appropriate than on-demand treatment to warrant a greater control of asthma. Select subgroups of patients with mild asthma who are well controlled by regular treatment might adopt the on-demand treatment plan as an intermediate step toward the suspension of controller medication. The increasing evidence for heterogeneity of asthma, the growing emphasis on asthma subphenotypes, including molecular phenotypes identified by omics technologies, and their possible implications for different asthma severity and progression and therapeutic response, are changing the paradigm of treating patients with asthma only based on classification of their disease severity to a pharmacological strategy more focused on the individual asthmatic patient. Pharmacological treatment of asthma is going toward a personalized approach.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred HeartRome, Italy
| |
Collapse
|
27
|
Matsumoto K, Fukuda S, Hashimoto N, Saito H. Human eosinophils produce and release a novel chemokine, CCL23, in vitro. Int Arch Allergy Immunol 2011; 155 Suppl 1:34-9. [PMID: 21646793 DOI: 10.1159/000327263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND CCL23 (MPIF1/CK-BETA-8) is a novel CC chemokine that plays important roles in the inhibition of myeloid progenitor cell development, the selective recruitment of resting T lymphocytes and monocytes, and the potentiation of VEGF-induced proliferation and migration of human endothelial cells. Since eosinophils participate in the pathogenesis of airway remodeling, we examined CCL23 production and release by human eosinophils in vitro. METHODS Using Ficoll and antibody-coated immunomagnetic beads, eosinophils and other blood cells were purified from peripheral blood samples obtained from normal subjects and mildly allergic patients. Eosinophils were cultured in the presence of 10 ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF), 10 ng/ml IL-5, 100 ng/ml IFN-γ, 100 ng/ml IFN-α, or immobilized secretory IgA (sIgA). Total mRNA was extracted after 6 h of culture, and mRNA expression was measured using a microarray and RT-PCR. The CCL23 concentrations in the supernatants and cell lysates after 24 and 48 h of culture were measured by ELISA. RESULTS CCL23 mRNAs (both CK-β8-1 and CK-β8) were constitutively expressed in fresh eosinophils, and their expression levels were higher than in other types of blood cells. CCL23 mRNAs were significantly increased by stimulation with GM-CSF and IL-5 and slightly by IFN-α and immobilized sIgA. Fresh eosinophils contained trace amounts of CCL23 protein. CCL23 was significantly released into the supernatant when the eosinophils were stimulated with GM-CSF or IL-5 but not with IFN-γ or immobilized sIgA. CONCLUSION Our data suggest that eosinophils produce and release CCL23 and may be involved in some in vivo physiological and pathological conditions.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Airway remodeling: a potential therapeutic target in asthma. World J Pediatr 2011; 7:124-8. [PMID: 21574028 DOI: 10.1007/s12519-011-0264-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Apart from airway inflammation, airway remodeling is one of the main pathological features of asthma. However, it remains unclear when airway remodeling starts in children and whether it could be a potential therapeutic target in asthma. DATA SOURCES We have reviewed the recent literature regarding structural changes after airway remodeling, the relationship between airway inflammation and airway remodeling, the relationship between childhood asthma and airway remodeling, and the role of long-term medication in asthma treatment for airway remodeling. RESULTS The relationship between airway inflammation and airway remodeling is still controversial. A number of morphological and pathological studies have confirmed that airway remodeling occurs not only in adult asthma, but also in childhood asthma. It develops early in the disease process of asthma. At present, long-term medication in asthma treatment mainly focuses on anti-inflammation. However, there are no therapeutic interventions that revert airway remodeling once it is established. CONCLUSIONS Airway remodeling may provide a possible new therapeutic target in the management of asthma. It is imperative to strengthen the research in developing new medications specifically for asthma airway remodeling. Prevention and treatment of airway remodeling become top priority in future asthma research.
Collapse
|
29
|
Risk factors for bronchial hyperresponsiveness in teenagers differ with sex and atopic status. J Allergy Clin Immunol 2011; 128:301-307.e1. [PMID: 21497891 DOI: 10.1016/j.jaci.2011.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sex-related differences in bronchial hyperresponsiveness (BHR) have been reported in adolescents, but the mechanisms remain obscure. OBJECTIVE To investigate the risk factors for BHR in the Raine Study, a community-based longitudinal birth cohort. METHODS At 14 years of age, children underwent a respiratory assessment including a questionnaire, lung function testing, methacholine challenge, and determination of atopic status. RESULTS A total of 1779 children provided data for assessment, with 1510 completing lung function and methacholine challenge testing. Current asthma was present in 152 (10.4%), 762 (50.5%) were atopic, and 277 (18.6%) had BHR. BHR was more common in girls, whereas atopy was more common in boys, with no sex differences in asthma or current wheeze. Independent risk factors for BHR were being female (odds ratio [OR], 3.45; P < .001), atopy at 14 years (OR, 1.27; P = .004), and current asthma (OR, 2.15; P = .005). Better lung function was protective against BHR (forced expiratory flow between 25% and 75% of forced vital capacity/forced vital capacity, OR, 0.09; P < .001). Risk factors differed with sex and atopic status. Early-life factors were generally not independent risk factors for BHR at 14 years of age, with the exception of being smaller at birth in boys (birth length, OR, 6 × 10(-9); P = .017) and maternal asthma in girls (OR, 1.84; P = .041). Current asthma was not a risk for BHR in nonatopic children. CONCLUSION Bronchial hyperresponsiveness was more common and more severe in girls. These differences could not be explained by differences in lung function or atopic status.
Collapse
|
30
|
Wright RJ. Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am 2011; 31:19-39. [PMID: 21094921 PMCID: PMC3052958 DOI: 10.1016/j.iac.2010.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several epidemiologic frameworks, exemplified through extant research examples, provide insight into the role of stress in the expression of asthma and other allergic disorders. Biologic, psychological, and social processes interact throughout the life course to influence disease expression. Studies exploiting a child development framework focus on critical periods of exposure, including the in utero environment, to examine the influence of stress on disease onset. Early stress effects that alter the normal course of morphogenesis and maturation that affect both structure and function of key organ systems (eg, immune, respiratory) may persist into adult life underscoring the importance of a life course perspective. Other evidence suggests that maternal stress influences programming of integrated physiologic systems in their offspring (eg, neuroendocrine, autonomic, immune function) starting in pregnancy; consequently stress effects may be transgenerational. A multilevel approach that includes an ecological perspective may help to explain heterogeneities in asthma expression across socioeconomic and geographic boundaries that to date remain largely unexplained. Evolving studies incorporating psychological, behavioral, and physiologic correlates of stress more specifically inform underlying mechanisms operating in these critical periods of development. The role of genetics, gene by environment interactions, and epigenetic mechanisms of gene expression have been sparsely examined in epidemiologic studies on stress and asthma although overlapping evidence provides proof of concept for such studies in the future.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat Rec (Hoboken) 2010; 293:947-54. [PMID: 20503389 DOI: 10.1002/ar.20824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basement membrane zone (BMZ) appears as three component layers: the lamina lucida, lamina densa, and lamina reticularis. The laminas lucida and densa are present during all stages of development. The lamina reticularis appears during postnatal development. Collagens I, III, and V form heterogeneous fibers that account for the thickness of the lamina reticularis. Additionally, there are three proteoglycans considered as integral components of the BMZ: perlecan, collagen XVIII, and bamacan. Perlecan is the predominant heparan sulfate proteoglycan in the airway BMZ. It is responsible for many of the functions attributed to the BMZ, in particular, trafficking of growth factors and cytokines between epithelial and mesenchymal cells. Growth factor binding sites on perlecan include FGF-1, FGF-2, FGF-7, FGF-10, PDGF, HGF, HB-EGF, VEGF, and TGF-beta. Growth factors pass through the BMZ when moving between the epithelial and mesenchymal cell layers. They move by rapid reversible binding with sites on both the heparan sulfate chains and core protein of perlecan. In this manner, perlecan regulates movement of growth factors between tissues. Another function of the BMZ is storage and regulation of FGF-2. FGF-2 has been shown to be involved with normal growth and thickening of the BMZ. Thickening of the BMZ is a feature of airway remodeling in asthma. It may have a positive effect by protecting against airway narrowing and air trapping. Conversely, it may have a negative effect by influencing trafficking of growth factors in the epithelial mesenchymal trophic unit. However, currently the significance of BMZ thickening is not known.
Collapse
Affiliation(s)
- Michael J Evans
- California National Primate Research Center, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
32
|
Bousquet J, Mantzouranis E, Cruz AA, Aït-Khaled N, Baena-Cagnani CE, Bleecker ER, Brightling CE, Burney P, Bush A, Busse WW, Casale TB, Chan-Yeung M, Chen R, Chowdhury B, Chung KF, Dahl R, Drazen JM, Fabbri LM, Holgate ST, Kauffmann F, Haahtela T, Khaltaev N, Kiley JP, Masjedi MR, Mohammad Y, O'Byrne P, Partridge MR, Rabe KF, Togias A, van Weel C, Wenzel S, Zhong N, Zuberbier T. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 2010; 126:926-38. [PMID: 20926125 DOI: 10.1016/j.jaci.2010.07.019] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Asthma is a global health problem affecting around 300 million individuals of all ages, ethnic groups and countries. It is estimated that around 250,000 people die prematurely each year as a result of asthma. Concepts of asthma severity and control are important in evaluating patients and their response to treatment, as well as for public health, registries, and research (clinical trials, epidemiologic, genetic, and mechanistic studies), but the terminology applied is not standardized, and terms are often used interchangeably. A common international approach is favored to define severe asthma, uncontrolled asthma, and when the 2 coincide, although adaptation may be required in accordance with local conditions. A World Health Organization meeting was convened April 5-6, 2009, to propose a uniform definition of severe asthma. An article was written by a group of experts and reviewed by the Global Alliance against Chronic Respiratory Diseases review group. Severe asthma is defined by the level of current clinical control and risks as "Uncontrolled asthma which can result in risk of frequent severe exacerbations (or death) and/or adverse reactions to medications and/or chronic morbidity (including impaired lung function or reduced lung growth in children)." Severe asthma includes 3 groups, each carrying different public health messages and challenges: (1) untreated severe asthma, (2) difficult-to-treat severe asthma, and (3) treatment-resistant severe asthma. The last group includes asthma for which control is not achieved despite the highest level of recommended treatment and asthma for which control can be maintained only with the highest level of recommended treatment.
Collapse
Affiliation(s)
- Jean Bousquet
- University Hospital, Hôpital Arnaud de Villeneuve, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Picinin IFDM, Camargos PAM, Marguet C. Cell profile of BAL fluid in children and adolescents with and without lung disease. J Bras Pneumol 2010; 36:372-85. [PMID: 20625676 DOI: 10.1590/s1806-37132010000300016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/25/2010] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to review the literature on bronchoalveolar lavage fluid cell profiles in healthy children and adolescents, as well as on the use of BAL as a diagnostic and follow-up tool for lung disease patients in this age bracket. To that end, we used the Medline database, compiling studies published between 1989 and 2009 employing the following MeSH descriptors (with Boolean operators) as search terms: bronchoalveolar lavage AND cytology OR cell AND child. In healthy children, the cell profile includes alveolar macrophages (> 80%), lymphocytes (approximately 10%), neutrophils (approximately 2%) and eosinophils (< 1%). The profile varies depending on the disease under study. The number of neutrophils is greater in wheezing children, especially in non-atopic children, as well as in those with pulmonary infectious and inflammatory profiles, including cystic fibrosis and interstitial lung disease. Eosinophil counts are elevated in children/adolescents with asthma and can reach high levels in those with allergic bronchopulmonary aspergillosis or eosinophilic syndromes. In a heterogeneous group of diseases, the number of lymphocytes can increase. Evaluation of the BAL fluid cell profile, when used in conjunction with clinical and imaging findings, has proven to be an essential tool in the investigation of various lung diseases. Less invasive than transbronchial and open lung biopsies, BAL has great clinical value. Further studies adopting standard international protocols should be carried out. Such studies should involve various age groups and settings in order to obtain reference values for BAL fluid cell profiles, which are necessary for a more accurate interpretation of findings in children and adolescents with lung diseases.
Collapse
|
34
|
Thavagnanam S, Williamson G, Ennis M, Heaney LG, Shields MD. Does airway allergic inflammation pre-exist before late onset wheeze in children? Pediatr Allergy Immunol 2010; 21:1002-7. [PMID: 20573036 DOI: 10.1111/j.1399-3038.2010.01052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidemiological studies show that some children develop wheezing after 3 yr of age which tends to persist. It is unknown how this starts or whether there is a period of asymptomatic inflammation. The aim of this study is to determine whether lower airway allergic inflammation pre-exists in late onset childhood wheeze (LOCW). Follow-up study of children below 5 yr who had a non-bronchoscopic bronchoalveolar lavage (BAL) performed during elective surgery. The children had acted as normal controls. A modified ISAAC questionnaire was sent out at least 7 yr following the initial BAL, and this was used to ascertain whether any children had subsequently developed wheezing or other atopic disease (eczema, allergic rhinitis). Cellular and cytokine data from the original BAL were compared between those who never wheezed (NW) and those who had developed LOCW. Eighty-one normal non-asthmatic children were recruited with a median age of 3.2. Of the 65 children contactable, 9 (16.7%) had developed wheeze, 11 (18.5%) developed eczema and 14 (22.2%) developed hay fever. In five patients, wheeze symptoms developed mean 3.3-yr (range: 2-5 yr) post-BAL. Serum IgE and blood eosinophils were not different in the LOCW and NW, although the blood white cell count was lower in the LOCW group. The median BAL eosinophil % was significantly increased in the patients with LOCW (1.55%, IQR: 0.33 to 3.92) compared to the children who never wheezed, NW (0.1, IQR: 0.0 to 0.3, p = 0.01). No differences were detected for other cell types. There were no significant differences in BAL cytokine concentrations between children with LOCW and NW children. Before late onset childhood wheezing developed, we found evidence of elevated eosinophils in the airways. These data suggest pre-existent airways inflammation in childhood asthma some years before clinical presentation.
Collapse
Affiliation(s)
- Surendran Thavagnanam
- Centre for Infection and Immunity, Queen's University of Belfast, Hospital for Sick Children, Belfast, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
35
|
Wright RJ. Perinatal stress and early life programming of lung structure and function. Biol Psychol 2010; 84:46-56. [PMID: 20080145 PMCID: PMC2888999 DOI: 10.1016/j.biopsycho.2010.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/31/2022]
Abstract
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02116, USA.
| |
Collapse
|
36
|
Verbanck S, Schuermans D, Vincken W. Inflammation and airway function in the lung periphery of patients with stable asthma. J Allergy Clin Immunol 2010; 125:611-6. [PMID: 20132975 DOI: 10.1016/j.jaci.2009.10.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND An important role for exhaled nitric oxide (NO) measurement could be in the distinction between proximal and peripheral lung contributions to inflammation, with a particular interest for the alveolar lung zone and its implication on airway function. OBJECTIVE We aimed to isolate the acinar lung zone contribution to both inflammation and airway function to seek a relationship between them. METHODS In 30 patients with asthma with an asthma control test score exceeding 20, indices of conductive and acinar ventilation heterogeneity (Scond, Sacin) were obtained from a multiple breath washout. NO production in the conductive airways (J'aw(NO)), alveolar NO concentration (CA(NO)), and the standard exhaled NO at 50 mL/s (FENO(50)) were obtained from exhaled NO. RESULTS Scond was consistently abnormal in all patients with stable asthma, but without any correlation to inflammation abnormality in that compartment (J'aw(NO)). Sacin was particularly abnormal in the asthma subgroup receiving >500 microg budesonide equivalent, and a correlation was found between Sacin and CA(NO) (r = 0.61; P = .015); in this subgroup, a weak association was found between Scond and J'aw(NO) or FENO(50) (r = 0.50; P = .059 for both). CONCLUSION The persistent functional abnormality of small conductive airways in patients with stable asthma is largely independent of inflammation as measured by exhaled NO. In the alveolar compartment, a functional correlate of alveolar NO was found in a subgroup of patients with stable asthma on moderate-to-high maintenance doses of inhaled steroids. These patients in particular could benefit from novel therapies specifically aimed at improving airway functionality at the level of the acinar entrance and beyond.
Collapse
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
37
|
Tliba O, Panettieri RA. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 2009; 71:509-35. [PMID: 18851708 DOI: 10.1146/annurev.physiol.010908.163227] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although pivotal in regulating bronchomotor tone in asthma, airway smooth muscle (ASM) also modulates airway inflammation and undergoes hypertrophy and hyperplasia, contributing to airway remodeling in asthma. ASM myocytes secrete or express a wide array of immunomodulatory mediators in response to extracellular stimuli, and in chronic severe asthma, increases in ASM mass may render the airway irreversibly obstructed. Although the mechanisms by which ASM secretes cytokines and chemokines are the same as those regulating immune cells, there exist unique ASM signaling pathways that may provide novel therapeutic targets. This review provides an overview of our current understanding of the proliferative as well as the synthetic properties of ASM.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
38
|
Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res 2009; 690:24-39. [PMID: 19769993 PMCID: PMC2923754 DOI: 10.1016/j.mrfmmm.2009.09.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
Allergic asthma is a complex and chronic inflammatory disorder which is associated with airway hyper-responsiveness and tissue remodelling of the airway structure. Although originally thought to be a Th2-driven inflammatory response to inhaled innocuous allergen, the immune response in asthma is now considered highly heterogeneous. There are now various in vivo systems which have been designed to examine the pathways leading to the development of this chronic immune response and reflect, in part this heterogeneity. Furthermore, the emergence of endogenous immunoregulatory pathways and active pro-resolving mediators hold great potential for future therapeutic intervention. In this review, the key cellular and molecular mediators relating to chronic allergic airway disease are discussed, as well as emerging players in the regulation of chronic allergic inflammation.
Collapse
Affiliation(s)
- Jenna R Murdoch
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
39
|
The origins of asthma and chronic obstructive pulmonary disease in early life. Ann Am Thorac Soc 2009; 6:272-7. [PMID: 19387029 DOI: 10.1513/pats.200808-092rm] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Results from birth cohort and cross-sectional studies of young children with wheezing have uncovered strong associations between both lung function and immune responses in early life and the subsequent development of persistent wheezing and chronic airway obstruction up to mid-adulthood. It is now apparent that the pattern of bronchial hyperresponsiveness, deficits in lung function, and structural airway remodeling that are characteristic of asthma may be already established during the preschool years in most patients. Interactions between acute viral infections, especially those due to rhinovirus and respiratory syncytial virus, and exposure to perennial aeroallergens may induce persistent alterations in immune responses and airway function in susceptible subjects. Similarly, deficits in airway function present shortly after birth predict airflow limitation in early adult life, which in turn is a strong predisposing factor for chronic obstructive pulmonary disease. The fact that these alterations are more likely to occur during early life and even in utero than later during childhood suggests that there a developmental window of susceptibility during which exposures can disrupt normal growth trajectories. Novel strategies for primary prevention of chronic respiratory diseases will be based on the identification of the genetic and environmental factors that interactively cause these disruptions.
Collapse
|
40
|
Abstract
Significant advances continue in the subjective and quantifiable imaging features of asthma. Radiologists need to be aware of not only the general features, but also potential asthma mimics as well as complications.
Collapse
Affiliation(s)
- Alyn Q Woods
- Division of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
41
|
Carlsen KCL, Håland G, Carlsen KH. Natural history of lung function in health and diseases. Curr Opin Allergy Clin Immunol 2009; 9:146-50. [PMID: 19307885 DOI: 10.1097/aci.0b013e3283292243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To outline major advances in the understanding of factors that influence lung function development through childhood. RECENT FINDINGS New study approaches such as adjusting for 'tracking' or analysing without predefined phenotypes suggest that reduced lung function reported with several pre or coexisting features such as lower respiratory tract infections and early allergic sensitization may be spurious rather than causative. Also, two large, recent studies have clearly demonstrated that living close to major roads causes significant lung function deficits in school children, with the possible long-term impact this can have on health in adult life. Furthermore, it is becoming clear that we need to focus upon early life events that can cause harm as well as have a potential for catch-up growth or development in postnatal life. SUMMARY The implications of these findings are clearly that there is a potential for intervening in a potential pathological development. Furthermore, there is a clear need to focus research upon early life events that can improve lung growth in the damaged lung and prevent damage to the potentially healthy lung at the very start of life.
Collapse
|
42
|
Pérez-Yarza EG, Sardón Prado O, Korta Murua J. [Recurrent wheezing in three year-olds: facts and opportunities]. An Pediatr (Barc) 2009; 69:369-82. [PMID: 18928707 DOI: 10.1157/13126564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The 3 year-old group of children has an increased incidence and prevalence of recurrent wheezing episodes. There are different subgroups, who give different inflammatory responses to different triggering agents, and subgroups that differ in aetiopathology and immunopathology. Current diagnostic methods (exhaled nitric oxide in multiple breaths, nitric oxide in exhaled air condensate, induced sputum, broncho-alveolar lavage and endo-bronchial biopsy), enable the inflammatory pattern to be identified and to give the most effective and safe treatment. The various therapeutic options for treatment are reviewed, such as inhaled glucocorticoids when the inflammatory phenotype is eosinophilic, and leukotriene receptor antagonists, when the inflammatory phenotype is predominantly neutrophilic. In accordance with the current recommendations, for the diagnosis as well as for the therapy initiated in children of this age, they must be regularly reviewed, so that if the benefit is not clear, the treatment must be stopped and an alternative diagnosis and treatment considered. The start of treatment should be determined depending on the intensity and frequency of the symptoms, with the aim of decreasing morbidity and increasing the quality of life of the patient.
Collapse
Affiliation(s)
- E G Pérez-Yarza
- Unidad de Neumología, Servicio de Pediatría, Hospital Donostia, San Sebastián, España.
| | | | | |
Collapse
|
43
|
Regamey N, Balfour-Lynn I, Rosenthal M, Hogg C, Bush A, Davies JC. Time required to obtain endobronchial biopsies in children during fiberoptic bronchoscopy. Pediatr Pulmonol 2009; 44:76-9. [PMID: 19085925 DOI: 10.1002/ppul.20949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Endobronchial biopsies are an important tool for the study of airway remodeling in children. We aimed to evaluate the impact of performing endobronchial biopsies as a part of fiberoptic bronchoscopy on the length of the procedure. METHODS Clinically indicated fiberoptic bronchoscopy at which endobronchial biopsy was attempted as a part of a research protocol was performed in 40 children (median age 6 years, range 2 months-16 years). Time needed for airway inspection, bronchoalveolar lavage (BAL) with three aliquots of 1 ml/kg of 0.9% saline, sampling of three macroscopically adequate biopsies, teaching, and other interventions (e.g., removal of plugs) was recorded. The bronchoscopist was not aware that the procedure was being timed. RESULTS Median (range) duration (min) was 2.5 (1.0-8.2) for airway inspection, 2.8 (1.7-9.4) for BAL, 5.3 (2.5-16.6) for biopsy sampling, 2.4 (1.5-6.6) for teaching and 4.1 (0.8-18.5) for other interventions. Three adequate biopsies were obtained in 33 (83%) children. Use of 2.0 mm biopsy forceps (via 4.0 and 4.9 mm bronchoscopes) rather than 1.0 mm (via 2.8 and 3.6 mm bronchoscopes) significantly reduced biopsy time (4.6 min vs. 8.4 min, P < 0.001). CONCLUSIONS It takes a median of just over 5 min to obtain three endobronchial biopsies in children, which we consider an acceptable increase in the duration of fiberoptic bronchoscopy for the purpose of research.
Collapse
Affiliation(s)
- Nicolas Regamey
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|