1
|
Weller SR, Burnell JE, Aho BM, Obeng B, Ledue EL, Shim JK, Hess ST, Gosse JA. Antimicrobial cetylpyridinium chloride causes functional inhibition of mitochondria as potently as canonical mitotoxicants, nanostructural disruption of mitochondria, and mitochondrial Ca 2+ efflux in living rodent and primary human cells. Food Chem Toxicol 2024; 186:114547. [PMID: 38408634 PMCID: PMC11060648 DOI: 10.1016/j.fct.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 μM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 μM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 μM CPC in RBL-2H3 cells and 1.25 μM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.
Collapse
Affiliation(s)
- Sasha R Weller
- Department of Molecular and Biomedical Sciences, 5735 Hitchner, University of Maine, Orono, ME, 04469, USA
| | - John E Burnell
- Department of Molecular and Biomedical Sciences, 5735 Hitchner, University of Maine, Orono, ME, 04469, USA
| | - Brandon M Aho
- Department of Physics and Astronomy, 5709 Bennett Hall, University of Maine, Orono, ME, 04469, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, 5735 Hitchner, University of Maine, Orono, ME, 04469, USA
| | - Emily L Ledue
- Department of Molecular and Biomedical Sciences, 5735 Hitchner, University of Maine, Orono, ME, 04469, USA
| | - Juyoung K Shim
- Department of Biology, Jewett Hall, University of Maine at Augusta, Augusta, ME, 04330, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 5709 Bennett Hall, University of Maine, Orono, ME, 04469, USA.
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, 5735 Hitchner, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
2
|
Okeke CAV, Khanna R, Ehrlich A. Quaternary Ammonium Compounds and Contact Dermatitis: A Review and Considerations During the COVID-19 Pandemic. Clin Cosmet Investig Dermatol 2023; 16:1721-1728. [PMID: 37409071 PMCID: PMC10319159 DOI: 10.2147/ccid.s410910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
The recent global pandemic has resulted in increased use of quaternary ammonium compounds (QACs). Currently, QACs are active ingredients in 292 disinfectants recommended by the US EPA for use against SARS-CoV-2. Among QACs, benzalkonium chloride (BAK), cetrimonium bromide (CTAB), cetrimonium chloride (CTAC), didecyldimethylammonium chloride (DDAC), cetrimide, quaternium-15, cetylpyridinium chloride (CPC), and benzethonium chloride (BEC) were all identified as potential culprits of skin sensitivity. Given their widespread utilization, additional research is needed to better classify their dermal effects and identify other cross-reactors. In this review, we aimed to expand our knowledge about these QACs to further dissect its potential allergic and irritant dermal effects on healthcare workers during COVID-19.
Collapse
Affiliation(s)
- Chidubem A V Okeke
- Department of Dermatology, Howard University College of Medicine, Washington, DC, USA
| | - Ramona Khanna
- Georgetown University School of Medicine, Washington, DC, USA
| | | |
Collapse
|
3
|
Sangita I, Vishwanath S, Sadasiva K, Ramachandran A, Thanikachalam Y, Ramya V. Influence of Simulated Wound Exudate on the Antimicrobial Efficacy of Various Intracanal Medicaments Against Enterococcus faecalis: An In Vitro Study. Cureus 2023; 15:e38677. [PMID: 37288182 PMCID: PMC10243671 DOI: 10.7759/cureus.38677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/09/2023] Open
Abstract
Aim The aim of this study is to compare and evaluate the antimicrobial efficacy of chlorhexidine, calcium hydroxide, and cetylpyridinium chloride against Enterococcus faecalis in the presence and absence of contamination with simulated periapical exudate at different time intervals. Methods Simulated wound exudate and cetylpyridinium chloride gel were prepared prior to testing. The test groups were divided into groups A and B based on the presence and absence of simulated wound exudate. They were further divided into four subgroups as follows: subgroup 1: calcium hydroxide; subgroup 2: 2% chlorhexidine gel; subgroup 3: 0.5% cetylpyridinium chloride gel; subgroup 4: 0.9% saline as control. E. faecalis was inoculated, and the test groups were evaluated at different time periods of six, 12, and 24 hours. Aliquots were then obtained and subjected to 10-fold serial dilutions. A total of 10 µl of individual samples was spread onto the nutrient agar medium using L-rod. The plates were then assessed for colony-forming units (CFU), and the values obtained were subjected to statistical analysis. Kolmogorov-Smirnov and Shapiro-Wilk normality tests were used to check whether the variables follow a normal distribution. For within-group comparison, the Friedman test and the Kruskal-Wallis test were used. For between-group comparison, the Mann-Whitney U test was used. Results Saline had the highest CFU values, while cetylpyridinium chloride had the lowest CFU values in both contaminated and non-contaminated groups. In all the conditions, the CFU values of cetylpyridinium chloride were significantly lowest compared to the other three groups. CFU values of the calcium hydroxide group were significantly high, followed by the chlorhexidine group when compared to cetylpyridinium chloride in both contaminated and non-contaminated groups. Conclusion Within the limitations of the current study, it can be concluded that cetylpyridinium chloride was the most effective intracanal medicament against E. faecalis than calcium hydroxide and chlorhexidine at varying time intervals, even in the presence of a periapical exudate. Thus, cetylpyridinium chloride can be considered an effective intracanal medicament for root canal disinfection.
Collapse
Affiliation(s)
- Ilango Sangita
- Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Sankar Vishwanath
- Conservative Dentistry and Endodontics, KSR (K.S. Rangasamy) Institute of Dental Science and Research, Erode, IND
| | - Kadandale Sadasiva
- Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Anupama Ramachandran
- Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Yashini Thanikachalam
- Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Vengidesh Ramya
- Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| |
Collapse
|
4
|
Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Murakami M, Nagano K, Hamaoka K, Kato D, Kawai T, Murakami H, Hasegawa Y. Ozone Water Bactericidal and Cleaning Effects on Oral Diseases-related Planktonic and Bacterial Biofilms. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Masahiro Murakami
- Department of Gerodontology and Home Care Dentistry, Aichi Gakuin University
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| | | | - Daisuke Kato
- Department of Gerodontology and Home Care Dentistry, Aichi Gakuin University
| | - Tatsushi Kawai
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University
| | - Hiroshi Murakami
- Department of Gerodontology and Home Care Dentistry, Aichi Gakuin University
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
6
|
Funk B, Kirmayer D, Sahar-Heft S, Gati I, Friedman M, Steinberg D. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health 2019; 19:190. [PMID: 31429746 PMCID: PMC6700812 DOI: 10.1186/s12903-019-0879-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Enterococcus faecalis is a bacterium frequently isolated after failed root canal therapy. This study analyzed the antibacterial and antibiofilm effects in vitro of sustained-release fillers (SRF) containing cetylpyridinium chloride (CPC) against vancomycin resistant E. faecalis. Methods First, the solidification capability was tested by introducing liquid SRF into phosphate buffered saline, followed by 30 s of vortexing. The antimicrobial effects of SRF-CPC against static monospecies biofilms were analyzed with a metabolic assay. Inhibition of biofilm formation was tested by exposing daily refreshed E. faecalis suspensions to SRF-CPC for 9 weeks. To evaluate the effects of SRF-CPC against preformed biofilms, biofilms were grown for 1, 3 and 7 days, and then treated with SRF-CPC for 24 h. Biofilm kill time was tested by applying SRF-CPC to a 3-day-old biofilm and measuring its viability at different time points. All experiments were compared to Placebo SRFs and to untreated control biofilms. Data were analyzed with two-way ANOVA followed by Tukey’s test. Results were considered significant at P < 0.05. Results The liquid SRF solidified within seconds and no structural changes were observed after 30 s of vortexing at maximum speed. SRF-CPC inhibited E. faecalis biofilm formation for 7 weeks and significantly reduced its viability in weeks 8 and 9. Mature biofilms grown for 1, 3 and 7 days were destructed by SRF-CPC in less than 24 h. Fifty percent of a 3-day-old biofilm was destructed in 2 h and complete destruction occurred in less than 12 h. (P < 0.05 in all cases, compared to SRII-Placebo). Conclusions SRF-CPC’s physical properties and long-lasting anti-biofilm effects make it a promising coadjuvant medication for endodontic therapy. Electronic supplementary material The online version of this article (10.1186/s12903-019-0879-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernhard Funk
- The Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David Kirmayer
- The Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharonit Sahar-Heft
- Department of Endodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irith Gati
- The Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Friedman
- The Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- The Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Dentistry, Hebrew University - Hadassah, PO Box 12272, 91120, Jerusalem, Israel
| |
Collapse
|
7
|
Sustained-Release Fillers for Dentin Disinfection: An Ex Vivo Study. Int J Dent 2019; 2019:2348146. [PMID: 31263498 PMCID: PMC6556298 DOI: 10.1155/2019/2348146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 01/18/2023] Open
Abstract
Enterococcus faecalis is the most commonly recovered species from failed root canal treatments. In this study, we tested the capability of a novel intracanal sustained-release filler (SRF) containing cetylpyridinium chloride (CPC) to disinfect dentinal tubules of segmented human tooth specimens. Human dental root specimens were infected with E. faecalis V583 for 3 weeks in a static environment. The tested intracanal medicaments were SRF-CPC and calcium hydroxide (CH). Each medicament was introduced into the canal of the dental specimen and incubated for 7 days. The bacteriological samples were taken by shaving the dentine surrounding the root canal with dental burs ranging in size from ISO 014-020. The obtained dentine powder was collected in test tubes containing phosphate-buffered saline, sonicated, and plated on agar plates. Colony-forming units were counted after 48 h of incubation. Random specimens were also examined under confocal laser scanning microscopy and scanning electron microscopy. A statistical difference was found in the bacterial counts obtained from all layers of infected dentin between the control and the SRF-CPC groups. CH reduced bacterial viability significantly only in the first layer of the infected dentin, up to 150 μm into the dentinal tubules. CLSM images showed that SRF-CPC killed most bacteria throughout the infected dentin up to 700 μm of penetration. SEM images demonstrated the adhesion ability of SRF-CPC to the dentinal wall. In conclusion, SRF-CPC is a potential intracanal medicament for disinfecting dentinal tubules.
Collapse
|
8
|
Vishwanath V, Rao HM. Gutta-percha in endodontics - A comprehensive review of material science. J Conserv Dent 2019; 22:216-222. [PMID: 31367101 PMCID: PMC6632621 DOI: 10.4103/jcd.jcd_420_18] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/20/2018] [Accepted: 04/16/2019] [Indexed: 12/04/2022] Open
Abstract
The complete and three-dimensional fluid tight seal of the root canal system is the final component of the endodontic triad. The long-standing and closest material which has fulfilled this criterion is gutta-percha (GP). Several materials have been tried and tested as an endodontic filling material, of which GP has been most extensively used for years and has established itself as a gold standard. In addition, it has proved itself successful with different techniques of obturation while maintaining its basic requisites. This article deals briefly with the history and evolution of GP, source, chemical composition, manufacturing, disinfection, cross-reactivity, and advancements in the material.
Collapse
Affiliation(s)
- Vijetha Vishwanath
- Department of Conservative Dentistry and Endodontics, D. A. Pandu Memorial RV Dental College, Bengaluru, Karnataka, India
| | - H Murali Rao
- Department of Conservative Dentistry and Endodontics, D. A. Pandu Memorial RV Dental College, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Patel E, Pradeep P, Kumar P, Choonara YE, Pillay V. Oroactive dental biomaterials and their use in endodontic therapy. J Biomed Mater Res B Appl Biomater 2019; 108:201-212. [PMID: 30957440 DOI: 10.1002/jbm.b.34379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Dental biomaterials have revolutionized modern therapies. Untreated dental caries remains the major etiological factor for endodontic treatment, and together with a decreasing rate of tooth loss escalates the importance of continuously improving the materials used for endodontic therapies. Endodontic biomaterials are used for vital pulp therapies, irrigation, intracanal medicaments, obturation and regenerative procedures. These materials offer several functions including: antimicrobial activity, mechanical reinforcement, aesthetics, and therapeutic effects. Vital pulp therapies have seen an improvement in clinical results with an incremental approach to build on the strengths of past materials such as calcium hydroxide and calcium silicates. While sodium hypochlorite remains the gold standard for canal irrigation, numerous nanoparticle formulations have been developed to promote sustained antimicrobial action. Gutta-percha based bulk fillers remain the most common materials for root filling. However, while multiple studies focus on the development of novel formulations containing drugs, glass derivatives or ionic-, polymeric-, or drug- loaded nanoparticles, a lack of reliable and long-term clinical evidence obligates further study as experienced clinicians prefer to use what has worked for decades. This review delves in to the biochemistry of the materials to scrutinize their shortcomings, and where opportunity lies to further enhance their efficacy in endodontic practice. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:201-212, 2020.
Collapse
Affiliation(s)
- Ebrahim Patel
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Zhang Y, Mi DY, Wang J, Luo YP, Yang X, Dong S, Ma XM, Dong KZ. Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chin J Nat Med 2018; 16:252-260. [PMID: 29703325 DOI: 10.1016/s1875-5364(18)30055-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 12/31/2022]
Abstract
Sophora moorcroftiana (S. moorcroftiana) is an endemic leguminous dwarf shrub in Tibet, China. Decoctions of the seeds have been used in Chinese folk medicine for dephlogistication, detoxication, and infectious diseases. The present study aimed to investigate the constituent and biological effects of polysaccharides from S. moorcroftiana seeds in Caenorhabditis elegans (C. elegans). Polysaccharides from S. moorcroftiana seeds (SMpol) were extracted with 60% ethanol and constituent was analyzed by GC-MS. SMpol was composed of glucose, galactose and inositol in the molar ratio of 35.7 : 1.3 : 17.0. Synchronized worms were treated with SMpol and then lifespan, motility, reproduction, stress resistance and antimicrobial activity were examined. Compared with the control group, the lifespan was increased to the average of 27.3 days and the number of laying eggs showed a 1.3-fold increase in nematodes treated with SMpol (4 mg·mL-1). In SMpol (4 mg·mL-1) treated worms, there was a 1.1-fold increase in 24-h survival of acute heat stress and a 1.6-fold increase in 2-h survival of oxidative stress The colonization of the bacteria in the SMpol treated nematode was significantly lower than that of the untreated group by 68.3%. In vivo studies showed SMpol significantly extended the life span, improved reproduction, increased stress resistance and antimicrobial capacity of C. elegans. In conclusion, those results indicated that the polysaccharides from S. moorcroftiana seeds were involved in a variety of biological activities leading to its modulatory effects on C. elegans which may be developed as a natural supplement agent.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan-Yang Mi
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Ping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Yang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xing-Ming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China.
| | - Kai-Zhong Dong
- Department of Microbiology, Medical College, Northwest University for Nationalities, Lanzhou 730000, China.
| |
Collapse
|
11
|
Alsudir S, Lai EPC. Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates. Talanta 2017; 169:115-122. [PMID: 28411799 DOI: 10.1016/j.talanta.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
The UV detection sensitivity of ZnO nanoparticles in capillary electrophoresis (CE) analysis was selectively enhanced, by 27 or 19 folds, after adsorption of dithiothreitol (DTT) or cysteine (Cys) in 10mM sodium phosphate buffer. Adsorption equilibrium was reached within 90min for DTT but only 10min for Cys. The adsorption process was best modeled by the Langmuir isotherm, indicating the formation of a monolayer of DTT or Cys on the surface of ZnO nanoparticles. The selectivity of DTT and Cys towards ZnO nanoparticles was tested using alumina (Al2O3), ceria (CeO2), silica (SiO2) and titania (TiO2) nanoparticles. No changes in the CE-UV peak area of either adsorbates or nanoparticles were observed, indicating a lack of adsorption. Dynamic light scattering (DLS) provided similar evidence of the selectivity of both adsorbates towards ZnO. Cys also improved the colloidal stability of ZnO nanoparticles by breaking down the aggregates, as evidenced by a reduction of their average hydrodynamic diameter. This new analytical approach provides a simple and rapid methodology to detect ZnO nanoparticles selectively by CE-UV analysis with enhanced sensitivity.
Collapse
Affiliation(s)
- Samar Alsudir
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|