1
|
Owoicho O, Olwal CO, Tettevi EJ, Atu BO, Durugbo EU. Loop-mediated isothermal amplification for Candida species surveillance in under-resourced setting: a review of evidence. Expert Rev Mol Diagn 2022; 22:643-653. [PMID: 35920288 DOI: 10.1080/14737159.2022.2109963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Non-albicans Candida species (NACS) have emerged as a major public health burden although they are still underappreciated. Some NACS have intrinsic antifungal resistance, requiring constant surveillance to improve patient care and thwart outbreaks of recalcitrant candida infections. However, effective Candida species surveillance has relied on PCR-based or other high-end techniques that are largely unaffordable in under-resourced countries. Loop-mediated isothermal amplification (LAMP) has emerged as a potentially effective and affordable technique for infectious disease surveillance, especially in under resourced settings. AREAS COVERED We critically reviewed current literature on application of LAMP for Candida species identification in pure fungal isolates, and in clinical and non-clinical samples. EXPERT OPINION LAMP has been studied for Candida species identification, including the NACS. Besides a short turnaround time, LAMP has analytical sensitivity and specificity that are not only higher than culture method but also comparable with conventional and quantitative PCR techniques. However, extensive evaluation of LAMP for Candida species detection using various types of clinical and environmental samples are required before deploying the technique for Candida species surveillance.
Collapse
Affiliation(s)
- Oloche Owoicho
- Department of Biological Sciences, Benue State University, P.M.B. 102119, Makurdi, Benue State, Nigeria
| | | | - Edward Jenner Tettevi
- Biomedical and Public Health Research Unit, Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Bernard Ortwer Atu
- Department of Biological Sciences, Benue State University, P.M.B. 102119, Makurdi, Benue State, Nigeria
| | - Ernest Uzodimma Durugbo
- Department of Biological Sciences, Redeemer's University, P.M.B. 230, Ede, Osun State, Nigeria
| |
Collapse
|
2
|
Satoh K, Yamazaki T, Furukawa S, Mukai C, Makimura K. Identification of fungi isolated from astronaut nasal and pharyngeal smears and saliva. Microbiol Immunol 2021; 65:89-94. [PMID: 33393685 DOI: 10.1111/1348-0421.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
As part of a series of studies regarding the microbiota in manned space environments, we isolated the fungal strains from nasal and pharyngeal smears and saliva of 21 astronauts preflight, in-flight, and postflight. On the ground, 120 strains from 43 genera of environmental fungi were isolated from the astronauts. The dominant fungal genera were Cladosporium, Penicillium, and Aspergillus. Only 18 strains from four genera were isolated from the astronauts inside the International Space Station. These fungi are currently thought to be harmless, but regular screening and cleaning are necessary to prevent fungus-related health disorders.
Collapse
Affiliation(s)
- Kazuo Satoh
- Medical Mycology, Space and Environmental Medicine, Graduate School of Medicine/Medical Technology, Teikyo University, Japan.,General Medical Education and Research Center, Teikyo University, Japan
| | - Takashi Yamazaki
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Japan
| | - Chiaki Mukai
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Japan
| | - Koichi Makimura
- Medical Mycology, Space and Environmental Medicine, Graduate School of Medicine/Medical Technology, Teikyo University, Japan.,General Medical Education and Research Center, Teikyo University, Japan
| |
Collapse
|
3
|
Malik A, Fatma T, Shamsi W, Khan HA, Gul A, Jamal A, Bhatti MF. Molecular Characterization of Medically Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
White PL, Price JS, Cordey A, Backx M. Molecular Diagnosis of Yeast Infections. CURRENT FUNGAL INFECTION REPORTS 2021; 15:67-80. [PMID: 34178207 PMCID: PMC8212580 DOI: 10.1007/s12281-021-00421-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The use of molecular tests to aid the diagnosis of invasive yeast infection, in particular invasive candidosis, has been described for over two decades, yet widespread application is limited, and diagnosis remains heavily dependent on classical microbiology. This article will review developments from the past decade in attempt to build on existing knowledge. It will highlight clinical performance and limitations while reviewing developments on recognized procedures; it will also provide insight into novel approaches incorporated in response to clinical demand (e.g. C. auris and antifungal resistance) or technological advances (e.g. next-generation sequencing). RECENT FINDINGS Limited methodological standardization and, until recently, unavailability of commercial options have hindered the integration of molecular diagnostics for yeasts. The development of certain, novel commercial methods has received considerable evaluation allowing a greater understanding of individual assay performance, but widespread multicentre evaluation of most commercial kits is lacking. The detection of emerging pathogens (e.g. C. auris) has been enhanced by the development of molecular tests. Molecular methods are providing a better understanding of the mycobiome, mechanisms of resistance and epidemiology/phylogeny. SUMMARY Despite over two decades of use, the incorporation of molecular methods to enhance the diagnosis of yeast infections remains limited to certain specialist centres. While the development of commercial tests will provide stimulus for broader application, further validation and reduced costs are required. Over the same period of time, Aspergillus PCR has become more widely accepted driven by international efforts to standardize methodology; it is critical that yeast PCR follows suit. Next-generation sequencing will provide significant information on the mycobiome, antifungal resistance mechanism and even broad-range detection directly from the specimen, which may be critical for the molecular detection of yeasts other than Candida species, which is currently limited.
Collapse
Affiliation(s)
- P. Lewis White
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Jessica S. Price
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Alan Cordey
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Matthijs Backx
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| |
Collapse
|
5
|
Pinheiro BG, Hahn RC, de Camargo ZP, Rodrigues AM. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J Fungi (Basel) 2020; 6:E293. [PMID: 33217898 PMCID: PMC7711936 DOI: 10.3390/jof6040293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060900, Brazil;
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| |
Collapse
|
6
|
Arastehfar A, Wickes BL, Ilkit M, Pincus DH, Daneshnia F, Pan W, Fang W, Boekhout T. Identification of Mycoses in Developing Countries. J Fungi (Basel) 2019; 5:E90. [PMID: 31569472 PMCID: PMC6958481 DOI: 10.3390/jof5040090] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive advances in technology offer a vast variety of diagnostic methods that save time and costs, but identification of fungal species causing human infections remains challenging in developing countries. Since the echinocandins, antifungals widely used to treat invasive mycoses, are still unavailable in developing countries where a considerable number of problematic fungal species are present, rapid and reliable identification is of paramount importance. Unaffordability, large footprints, lack of skilled personnel, and high costs associated with maintenance and infrastructure are the main factors precluding the establishment of high-precision technologies that can replace inexpensive yet time-consuming and inaccurate phenotypic methods. In addition, point-of-care lateral flow assay tests are available for the diagnosis of Aspergillus and Cryptococcus and are highly relevant for developing countries. An Aspergillus galactomannan lateral flow assay is also now available. Real-time PCR remains difficult to standardize and is not widespread in countries with limited resources. Isothermal and conventional PCR-based amplification assays may be alternative solutions. The combination of real-time PCR and serological assays can significantly increase diagnostic efficiency. However, this approach is too expensive for medical institutions in developing countries. Further advances in next-generation sequencing and other innovative technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic tools may lead to efficient, alternate methods that can be used in point-of-care assays, which may supplement or replace some of the current technologies and improve the diagnostics of fungal infections in developing countries.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
| | - Brian L Wickes
- The Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana 01330, Turkey.
| | | | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WX Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Zhao F, Niu L, Yan L, Nong J, Wang C, Wang J, Gao N, Zhu X, Wu L, Zheng F, Hu S. Establishment and Application of Multiple Cross Displacement Amplification Coupled With Lateral Flow Biosensor (MCDA-LFB) for Visual and Rapid Detection of Candida albicans in Clinical Samples. Front Cell Infect Microbiol 2019; 9:102. [PMID: 31058099 PMCID: PMC6477880 DOI: 10.3389/fcimb.2019.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that predominantly causes invasive candidiasis. The conventional diagnosis of C. albicans infection depends on time-consuming, culture-based gold-standard methods. Here, a multiple cross displacement amplification (MCDA) assay, combined with a gold nanoparticle-based lateral flow biosensor (LFB) visualization method, was developed for the rapid detection of C. albicans. The internal transcribed spacer II, a region between 5.8 and 28 S fungal ribosomal DNA, is a C. albicans species-specific sequence that was used as the MCDA assay target. As an isothermal amplification method, the MCDA reaction with optimized conditions could be completed within only 40 min at a constant temperature (64°C). Then, the amplification reaction products could be visibly detected by a LFB without special equipment. The developed MCDA-LFB assay for C. albicans detection was a specific and accurate method, and could distinguish C. albicans from other pathogens. Just 200 fg of genomic DNA template from pure cultures of C. albicans could be detected using the MCDA-LFB method. The limit of detection (LOD) of the new method was more sensitive than that of both qPCR and loop-mediated isothermal amplification (LAMP). Of 240 clinical sputum samples, all of the C. albicans-positive (87/240) samples identified by the gold-standard method were successfully detected by the MCDA-LFB assay. Moreover, the true positive rate of the newly developed assay was not only higher than that of qPCR (100 vs. 86.2%), but also higher than that of LAMP (100 vs. 94.3%). Thus, the MCDA-LFB assay might be a simple, specific, and sensitive method for the rapid diagnosis of C. albicans in clinical samples.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Lina Niu
- Department of Pathogen Biology, School of Basic Medicine and Lifescience, Hainan Medical University, Haikou, China.,Key Laboratory of Translation Medicine Tropical Diseases, Haikou, China.,Hainan Medical University-University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Jinqing Nong
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Chunmei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Naishu Gao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Xiaoxue Zhu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Lei Wu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fengzhi Zheng
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
9
|
Abstract
Diagnosing fungal infections poses a number of unique problems, including a decline in expertise needed for identifying fungi, and a reduced number of instruments and assays specific for fungal identification compared to that of bacteria and viruses.These problems are exacerbated by the fact that patients with fungal infections are often immunosuppressed, which predisposes to infections from both commonly and rarely seen fungi. In this review, we discuss current and future molecular technologies used for fungal identification, and some of the problems associated with development and implementation of these technologies in today’s clinical microbiology laboratories. Diagnosing fungal infections poses a number of unique problems. In this Review, Wickes and Wiederhold discuss molecular technologies used for fungal identification, and the problems associated with their development and implementation in today’s clinical microbiology laboratories.
Collapse
|
10
|
Chair-Side Direct Microscopy Procedure for Diagnosis of Oral Candidiasis in an Adolescent. Case Rep Dent 2018; 2018:6561735. [PMID: 29854484 PMCID: PMC5949180 DOI: 10.1155/2018/6561735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 11/20/2022] Open
Abstract
Oral candidiasis is caused by fungi of the genus Candida and one of the most common opportunistic fungal infections of the human oral cavity. Given the clinical variability of this disease, microbiological techniques are often required for clinical confirmation, as well as establishing a differential diagnosis with other diseases. The aim of this brief technical report is to illustrate a simple chair-side method, which can provide immediate microscopic diagnosis of this disease. We present the case of a 14-year-old boy suffering from a denture-related erythematous stomatitis, diagnosed and followed-up with a simplified direct microscopy technique. It enables an accurate diagnosis with a noninvasive and painless sampling method, linked to laboratory results.
Collapse
|