1
|
Xiong Y, Shen T, Lou P, Yang J, Kastelic JP, Liu J, Xu C, Han B, Gao J. Colostrum-derived extracellular vesicles: potential multifunctional nanomedicine for alleviating mastitis. J Nanobiotechnology 2024; 22:627. [PMID: 39407245 PMCID: PMC11481564 DOI: 10.1186/s12951-024-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Taiyu Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
2
|
Xu J, Li Y, Yang X, Li H, Xiao X, You J, Li H, Zheng L, Yi C, Li Z, Huang Y. Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages. Sci Rep 2024; 14:20913. [PMID: 39245773 PMCID: PMC11381534 DOI: 10.1038/s41598-024-71569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Cytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties. This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets. Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway. In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Jingyi Xu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Yue Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Yang
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Hong Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Xiao
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Jia You
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Huawei Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Medicine, Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lingnan Zheng
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Cheng Yi
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China.
| | - Zhaojun Li
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), No.31, Longhua Road, Haikou, 570100, China.
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China.
| |
Collapse
|
3
|
Mann G, Mora S, Adegoke OAJ. KIC (ketoisocaproic acid) and leucine have divergent effects on tissue insulin signaling but not on whole-body insulin sensitivity in rats. PLoS One 2024; 19:e0309324. [PMID: 39163364 PMCID: PMC11335129 DOI: 10.1371/journal.pone.0309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Plasma levels of branched-chain amino acids and their metabolites, the branched-chain ketoacids are increased in insulin resistance. Our previous studies showed that leucine and its metabolite KIC suppress insulin-stimulated glucose uptake in L6 myotubes along with the activation of the S6K1-IRS-1 pathway. Because other tissue and fiber types can be differentially regulated by KIC, we analyzed the effect of KIC gavage on whole-body insulin sensitivity and insulin signaling in vivo. We hypothesized that KIC gavage would reduce whole-body insulin sensitivity and increase S6K1-IRS-1 phosphorylation in various tissues and muscle fibers. Five-week-old male Sprague-Dawley rats were starved for 24 hours and then gavaged with 0.75ml/100g of water, leucine (22.3g/L) or KIC (30g/L) twice, ten minutes apart. They were then euthanized at different time points post-gavage (0.5-3h), and muscle, liver, and heart tissues were dissected. Other sets of gavaged animals underwent an insulin tolerance test. Phosphorylation (ph) of S6K1 (Thr389), S6 (Ser235/6) and IRS-1 (Ser612) was increased at 30 minutes post leucine gavage in skeletal muscles irrespective of fiber type. Ph-S6 (Ser235/6) was also increased in liver and heart 30 minutes after leucine gavage. KIC gavage increased ph-S6 (Ser235/6) in the liver. Neither Leucine nor KIC influenced whole-body insulin tolerance, nor ph-Akt (Ser473) in skeletal muscle and heart. BCKD-E1 α abundance was highest in the heart and liver, while ph-BCKD-E1 α (Ser293) was higher in the gastrocnemius and EDL compared to the soleus. Our data suggests that only leucine activates the S6K1-IRS-1 signaling axis in skeletal muscle, liver and heart, while KIC only does so in the liver. The effect of leucine and KIC on the S6K1-IRS-1 signaling pathway is uncoupled from whole-body insulin sensitivity. These results suggest that KIC and leucine may not induce insulin resistance, and the contributions of other tissues may regulate whole-body insulin sensitivity in response to leucine/KIC gavage.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Wang Z, Luo W, Zhang G, Li H, Zhou F, Wang D, Feng X, Xiong Y, Wu Y. FoxO1 knockdown inhibits RANKL-induced osteoclastogenesis by blocking NLRP3 inflammasome activation. Oral Dis 2024; 30:3272-3285. [PMID: 37927112 DOI: 10.1111/odi.14800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This study aimed to elucidate the connection between osteoclastic forkhead transcription factor O1 (FoxO1) and periodontitis and explore the underlying mechanism by which FoxO1 knockdown regulates osteoclast formation. MATERIALS AND METHODS A conventional ligature-induced periodontitis model was constructed to reveal the alterations in the proportion of osteoclastic FoxO1 in periodontitis via immunofluorescence staining. Additionally, RNA sequencing (RNA-seq) was performed to explore the underlying mechanisms of FoxO1 knockdown-mediated osteoclastogenesis, followed by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS FoxO1+ osteoclasts were enriched in the alveolar bone in experimental periodontitis. Moreover, FoxO1 knockdown led to impaired osteoclastogenesis with low expression of osteoclast differentiation-related genes, accompanied by an insufficient osteoclast maturation phenotype. Mechanistically, RNA-seq revealed that the nuclear factor kappa B (NF-κB) and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways were inhibited in FoxO1-knockdown osteoclasts. Consistent with this, MCC950, an effective inhibitor of the NLRP3 inflammasome, substantially attenuated osteoclast formation. CONCLUSIONS FoxO1 knockdown contributed to the inhibition of osteoclastogenesis by effectively suppressing NF-κB signaling and NLRP3 inflammasome activation. This prospective study reveals the role of FoxO1 in mediating osteoclastogenesis and provides a viable therapeutic target for periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S, Liu Y. The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2024:nuad175. [PMID: 38219223 DOI: 10.1093/nutrit/nuad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT Despite the important role of inflammation-related factors on the occurrence of chronic diseases, there is still conflicting evidence about the effects of the ketogenic diet (KD) on these factors. OBJECTIVE In order to obtain a better viewpoint, this study aimed to comprehensively investigate the effects of a KD on inflammation-related markers. DATA SOURCES To find pertinent randomized controlled trials up to August 2023, databases including PubMed/Medline, Web of Science, Scopus, Cochrane Library, and Embase were searched. DATA EXTRACTION This study included all randomized controlled trials investigating the effects of a KD on C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, and IL-10 levels. Pooled weighted mean difference (WMD) and 95% confidence intervals (CIs) were achieved by random-effects model analysis for the best estimation of outcomes. DATA ANALYSIS Forty-four studies were included in this article. The pooled findings showed that a KD has an effect on lowering TNF-α (WMD: -0.32 pg/mL; 95% CI: -0.55, -0.09; P = 0.007) and IL-6 (WMD: -0.27 pg/mL; 95% CI: -0.52, -0.02; P = 0.036) compared with control groups. However, no significant effect was reported for others inflammation marker-related levels. The results of the subgroup analysis showed that, in trials following the KD for ≤8 weeks and in people aged ≤50 years, the reduction in TNF-α levels was significantly higher than in other groups. In addition, in people with a body mass index greater than 30 kg/m2 compared to a body mass index ≤30 kg/m2, IL-6 levels decreased to a greater extent after receiving the KD. CONCLUSIONS Consequently, adherence to a KD appears to improve some markers associated with inflammation, including TNF-α and IL-6.
Collapse
Affiliation(s)
- Jiawei Ji
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt Ltd, Nagapattinam, Tamil Nadu, India
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
7
|
Tokumasu R, Yasuhara R, Kang S, Funatsu T, Mishima K. Transcription factor FoxO1 regulates myoepithelial cell diversity and growth. Sci Rep 2024; 14:1069. [PMID: 38212454 PMCID: PMC10784559 DOI: 10.1038/s41598-024-51619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.
Collapse
Affiliation(s)
- Rino Tokumasu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, Graduate School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| | - Seya Kang
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Takahiro Funatsu
- Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
8
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Yang R, Lu Y, Yin N, Faiola F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19156-19168. [PMID: 37978927 DOI: 10.1021/acs.est.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Feng Y, Tang Z, Zhang W. The role of macrophages in polycystic ovarian syndrome and its typical pathological features: A narrative review. Biomed Pharmacother 2023; 167:115470. [PMID: 37716116 DOI: 10.1016/j.biopha.2023.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine and metabolic disorder in women of childbearing age, with ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology (PCOM) as the clinical features. Androgen excess, insulin resistance, obesity, adipose tissue dysfunction, ovulatory dysfunction, and gut microbiota dysbiosis are the main pathological features and pathogenesis of PCOS and are related to systemic chronic low-grade inflammation and chronic ovarian tissue inflammation in PCOS. With the advances in immune-endocrine interaction studies, research on the role of immune cells in the occurrence and development of PCOS is gradually increasing. As the core of innate immunity, macrophages play an indispensable role in systemic inflammatory response. Meanwhile, they are involved in maintaining the stability and function of the ovary as the most abundant immune cells in ovarian tissue. Studies in humans and mice have found that the polarization of macrophages into M1 type plays multiple roles in the pathogenesis of PCOS. This review describes the distribution characteristics of macrophage subpopulations in patients and animal models with PCOS, discusses the role of macrophage-related metabolic inflammation in PCOS, and summarizes the relationship between macrophages and PCOS-related pathological features and its possible mechanisms, to further understand the pathogenesis of PCOS and reveal the role of macrophages in it. In addition, research on immune-endocrine interactions can also provide direction for finding new therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhijing Tang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, Diwan A, Schilling JD, Rom O, Yurdagul A, Epelman S, Cho J, Lodhi IJ, Mittendorfer B, Razani B. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ Res 2023; 133:200-219. [PMID: 37350264 PMCID: PMC10527041 DOI: 10.1161/circresaha.122.321542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1β response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Sunny Chen
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Ismail Sergin
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Jeremiah Stitham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | | | - Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - In-Hyuk Jung
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Joel D. Schilling
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Slava Epelman
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network and University of Toronto, Toronto, Canada
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Division of Geriatrics and Nutritional Science, and Washington University School of Medicine, St Louis, MO, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
12
|
Park E, Jeon H, Lee N, Yu J, Park H, Satoh T, Akira S, Furuyama T, Lee C, Choi J, Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS-induced inflammatory responses. EMBO J 2023; 42:e111867. [PMID: 37203866 PMCID: PMC10308371 DOI: 10.15252/embj.2022111867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Eui‐Soon Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Nari Lee
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Jiyeon Yu
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hye‐Won Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Tatsuo Furuyama
- Department of Clinical ExaminationKagawa Prefectural University of Health SciencesKagawaJapan
| | - Chul‐Ho Lee
- Laboratory Animal CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jong‐Soon Choi
- Division of Life ScienceKorea Basic Science Institute (KBSI)DaejeonKorea
| | - Jaerang Rho
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| |
Collapse
|
13
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
14
|
Song X, Gao F, Li H, Qin W, Chai C, Shi G, Yang H. Long noncoding RNA THRIL promotes foam cell formation and inflammation in macrophages. Cell Biol Int 2023; 47:156-166. [PMID: 36229925 DOI: 10.1002/cbin.11934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-α (TNF-α) and heterogenous nuclear ribonucleoprotein L (hnRNPL)-related immunoregulatory lincRNA (THRIL) is a long noncoding RNA (lncRNA) involved in various inflammatory diseases. However, its role in atherosclerosis is not known. In this study, we aimed to investigate the function of THRIL in mediating macrophage inflammation and foam cell formation. The expression of THRIL was quantified in THP-1 macrophages after treatment with oxidized low-density lipoprotein (oxLDL). The effect of THRIL overexpression and knockdown on oxLDL-induced inflammatory responses and lipid accumulation was determined. THRIL-associated protein partners were identified by RNA pull-down and RNA immunoprecipitation assays. We show that THRIL is upregulated in macrophages after oxLDL treatment. Knockdown of THRIL blocks oxLDL-induced expression of interleukin-1β (IL-1β), IL-6, and TNF-α and lipid accumulation. Conversely, ectopic expression of THRIL enhances inflammatory gene expression and lipid deposition in oxLDL-treated macrophages. Moreover, THRIL depletion increases cholesterol efflux from macrophages and the expression of ATP-binding cassette transporter (ABC) A1 and ABCG1. FOXO1 is identified as a protein partner of THRIL and promotes macrophage inflammation and lipid accumulation. Furthermore, overexpression of FOXO1 restores lipid accumulation and inflammatory cytokine production in THRIL-depleted macrophages. In conclusion, our data suggest a model where THRIL interacts with FOXO1 to promote macrophage inflammation and foam cell formation. THRIL may represent a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xiaosu Song
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fen Gao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiwei Qin
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chanjuan Chai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guojuan Shi
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiyu Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of diabetes in aortic abdominal aneurysm: Are antidiabetics the real effectors? Front Cardiovasc Med 2023; 10:1112430. [PMID: 37034348 PMCID: PMC10076877 DOI: 10.3389/fcvm.2023.1112430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second most prevalent aortic disease and represents an important cause of death worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion, pathologically associated with oxidative stress, proteolysis, vascular smooth muscle cell loss, immune-inflammation, and extracellular matrix remodeling and degradation. Most epidemiological studies have shown a potential protective role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The effect of DM on AAA might be explained mainly by two factors: hyperglycemia [or other DM-related factors such as insulin resistance (IR)] and/or by the effect of prescribed DM drugs, which may have a direct or indirect effect on the formation and progression of AAAs. However, recent studies further support that the protective role of DM in AAA may be attributable to antidiabetic therapies (i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature on the relationship between DM and the incidence, progression, and rupture of AAAs, and discusses the potential cellular and molecular pathways that may be involved in its vascular effects. Besides, we provide a summary of current antidiabetic therapies which use could be beneficial for AAA.
Collapse
Affiliation(s)
- Belén Picatoste
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedicine Department, Alfonso X El Sabio University, Madrid, Spain
- Correspondence: Belén Picatoste ,
| | - Isabel Cerro-Pardo
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Medicine Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Hu J, Jin C, Fang L, Lu Y, Wu Y, Xu X, Sun S. MicroRNA-486-5p suppresses inflammatory response by targeting FOXO1 in MSU-treated macrophages. Autoimmunity 2022; 55:661-669. [PMID: 36226520 DOI: 10.1080/08916934.2022.2128780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gouty arthritis (GA) is mainly caused by the precipitation of monosodium urate (MSU) crystals in the joint. Recently, different regulatory roles of microRNAs (miRNAs) in arthritis have been widely verified. Nevertheless, the specific function of microRNA-486-5p (miR-486-5p) in GA is still unclear. GA cell models in vitro were established by the treatment of 250 μg/mL MSU crystals into THP-1 cells or J774A.1 cells. Then, the accumulation of tumor necrosis factor (TNF)-α, interleukin (IL)-8, and IL-β was estimated by ELISA. The mRNA levels of TNF-α, IL-8, and IL-β were measured through RT-qPCR. The protein level of forkhead box protein O1 (FOXO1) was tested via western blot. Furthermore, the interplay of miR-486-5p and FOXO1 was evaluated via the luciferase reporter assay. In this study, MSU treatment successfully stimulated the inflammatory response in macrophage cells. MiR-486-5p downregulation was observed in THP-1 and J774A.1 cells treated with MSU, and its upregulation markedly decreased the concentration and mRNA levels of TNF-α, IL-8, and IL-β. Furthermore, FOXO1 was demonstrated to be negatively modulated by miR-486-5p. The rescue assay indicated that overexpressing FOXO1 reversed the effects of overexpressing miR-486-5p on inflammatory cytokines. Overall, this study proves that miR-486-5p inhibits GA inflammatory response via modulating FOXO1.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Rheumatology and Immunology, Xinyu People's Hospital, Xinyu, Jiangxi, China
| | - Cheng Jin
- Department of Orthopedics, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Li Fang
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Yao Lu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Yanying Wu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Xiangfeng Xu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Simei Sun
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| |
Collapse
|
17
|
20(S)-ginsenoside Rh1 alleviates T2DM induced liver injury via the Akt/FOXO1 pathway. Chin J Nat Med 2022; 20:669-678. [DOI: 10.1016/s1875-5364(22)60201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/18/2022]
|
18
|
The Essential Role of FoxO1 in the Regulation of Macrophage Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1068962. [PMID: 35993049 PMCID: PMC9388302 DOI: 10.1155/2022/1068962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Macrophages are widely distributed in various tissues and organs. They not only participate in the regulation of innate and adaptive immune response, but also play an important role in tissue homeostasis. Dysregulation of macrophage function is closely related to the initiation, development and prognosis of multiple diseases, including infection and tumorigenesis. Forkhead box transcription factor O1 (FoxO1) is an important member among the forkhead box transcription factor family. Through directly binding to the promoter regions of downstream target genes, FoxO1 is implicated in cell proliferation, apoptosis, metabolic activities and other biological processes. In this review, we summarized the regulatory role of FoxO1 in macrophage phagocytosis, migration, differentiation and inflammatory activation. We also emphasized that macrophage reciprocally modulated FoxO1 activity via a post-translational modification (PTM) dominant manner.
Collapse
|
19
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
21
|
Behl T, Wadhwa M, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Mechanistic insights into the role of FOXO in diabetic retinopathy. Am J Transl Res 2022; 14:3584-3602. [PMID: 35836845 PMCID: PMC9274583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM), a metabolic disorder characterized by insulin-deficiency or insulin-resistant conditions. The foremost microvascular complication of diabetes is diabetic retinopathy (DR). This is a multifaceted ailment mainly caused by the enduring adverse effects of hyperglycaemia. Inflammation, oxidative stress, and advanced glycation products (AGES) are part and parcel of DR pathogenesis. In regulating many cellular and biological processes, the family of fork-head transcription factors plays a key role. The current review highlights that FOXO is a requisite regulator of pathways intricate in diabetic retinopathy on account of its effect on microvascular cells inflammatory and apoptotic gene expression, and FOXO also has the foremost province in regulating cell cycle, proliferation, apoptosis, and metabolism. Blockage of insulin turns into an exaggerated level of glucose in the bloodstream and can upshot into the exaggerated triggering of FOXO1, which can ultimately uplift the production of several factors of apoptosis and inflammation, such as TNF-α, NF-kB, and various others, as well as reactive oxygen species, which can also come up with diabetic retinopathy. The current review also focuses on various therapies which can be used in the future, like SIRT1 signalling, resveratrol, retinal VEGF, etc., which can be used to suppress FOXO over activation and can prevent the progression of diabetic complications viz. diabetic retinopathy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Muskan Wadhwa
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun-248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté UniversityFrance
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
22
|
Lee S, Usman TO, Yamauchi J, Chhetri G, Wang X, Coudriet GM, Zhu C, Gao J, McConnell R, Krantz K, Rajasundaram D, Singh S, Piganelli J, Ostrowska A, Soto-Gutierrez A, Monga SP, Singhi AD, Muzumdar RH, Tsung A, Dong HH. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest 2022; 132:154333. [PMID: 35700043 PMCID: PMC9282937 DOI: 10.1172/jci154333] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis and fibrosis in mice and patients with NASH. Myeloid cell-conditional FoxO1 knockout skewed macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes, accompanied by the reduction of macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1 knockout mice on HFD. When fed a NASH-inducing diet, myeloid cell FoxO1 knockout mice were protected from developing NASH, culminating in the reduction of hepatic inflammation, steatosis and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward M1 signatures to perpetuate hepatic inflammation in NASH. FoxO1 appears as a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.
Collapse
Affiliation(s)
- Sojin Lee
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Taofeek O Usman
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jun Yamauchi
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Goma Chhetri
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Xingchun Wang
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Gina M Coudriet
- Department of Surgery, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Cuiling Zhu
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jingyang Gao
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Riley McConnell
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Kyler Krantz
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jon Piganelli
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Radhika H Muzumdar
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| |
Collapse
|
23
|
Zhang X, Schalkwijk CG, Wouters K. Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166425. [DOI: 10.1016/j.bbadis.2022.166425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
24
|
Li S, Huang C, Xiao J, Wu Y, Zhang Z, Zhou Y, Tian N, Wu Y, Wang X, Zhang X. The Potential Role of Cytokines in Diabetic Intervertebral Disc Degeneration. Aging Dis 2022; 13:1323-1335. [PMID: 36186138 PMCID: PMC9466964 DOI: 10.14336/ad.2022.0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain. Diabetes mellitus is a chronic inflammatory disease that may cause or aggravate IVDD; however, the mechanism by which diabetes induce IVDD is currently unclear. Compared to non-diabetic individuals, diabetic patients have higher levels of plasma cytokines, especially TNF-α, IL-1β, IL-5, IL-6, IL-7, IL-10, and IL-18. Due to the crucial role of cytokines in the process of intervertebral disc degeneration, we hypothesized that elevation of these cytokines in plasma of diabetic patients may be involved in the process of diabetes-induced IVDD. In this review, changes in plasma cytokine levels in diabetic patients were summarized and the potential role of elevated cytokines in diabetes-induced IVDD was discussed. Results showed that some cytokines such as TNF-α and IL-1β may accelerate the development of IVDD, while others such as IL-10 is supposed to prevent its development. Apoptosis, senescence, and extracellular matrix metabolism were found to be regulated by these cytokines in IVDD. Further studies are required to validate the cytokines targeted strategy for diabetic IVDD therapy.
Collapse
Affiliation(s)
- Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiaolei Zhang () or Dr. Xiangyang Wang (), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, West Xueyuan Road, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Chellappan R, Guha A, Si Y, Kwan T, Nabors LB, Filippova N, Yang X, Myneni AS, Meesala S, Harms AS, King PH. SRI-42127, a novel small molecule inhibitor of the RNA regulator HuR, potently attenuates glial activation in a model of lipopolysaccharide-induced neuroinflammation. Glia 2022; 70:155-172. [PMID: 34533864 PMCID: PMC8595840 DOI: 10.1002/glia.24094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1β, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-β1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.
Collapse
Affiliation(s)
- Rajeshwari Chellappan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiuhua Yang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anish S. Myneni
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shriya Meesala
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294,Correspondence to: Dr. P.H. King; UAB Dept. of Neurology, Civitan 545C, 1530 3 Avenue South, Birmingham, AL 35294-0017, USA. Tel. (205) 975-8116; Fax (205) 996-7255;
| |
Collapse
|
26
|
Tantipaiboonwong P, Chaiwangyen W, Suttajit M, Kangwan N, Kaowinn S, Khanaree C, Punfa W, Pintha K. Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells. Molecules 2021; 26:6757. [PMID: 34833849 PMCID: PMC8622939 DOI: 10.3390/molecules26226757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.
Collapse
Affiliation(s)
- Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Pathiu, Chumphon 86160, Thailand;
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Wanisa Punfa
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| |
Collapse
|
27
|
Li Y, Yao N, Gao Y, Wang Y, Bai L, Xu J, Wang H. MiR-1224-5p attenuates polycystic ovary syndrome through inhibiting NOD-like receptor protein 3 inflammasome activation via targeting Forkhead box O 1. Bioengineered 2021; 12:8555-8569. [PMID: 34637688 PMCID: PMC8806973 DOI: 10.1080/21655979.2021.1987125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that poses a great threat to women's health. MiR-1224-5p is downregulated in the follicular fluid of patients with PCOS, but its role remains largely unknown. In this study, mice were treated with dehydroepiandrosterone (DHEA) to establish an in vivo model of PCOS. We found that enhanced activation of NLRP3 inflammasome was accompanied by downregulation of miR-1224-5p in ovarian tissue of PCOS mice. The effect of miR-1224-5p was further explored in TNF-α-treated human granulosa-like tumor (KGN) cells. Upregulation of miR-1224-5p suppressed TNF-α-induced secretion of DHEA and testosterone. MiR-1224-5p attenuated TNF-α-induced inflammation by inhibiting NLRP3 inflammasome activation, IL-1β synthesis, and nuclear factor kappa B (NF-κB) p65 nuclear translocation. Notably, miR-1224-5p decreased the expression of Forkhead box O 1 (FOXO1) and its downstream gene thioredoxin interaction protein (TXNIP). Luciferase reporter assay confirmed FOXO1 as a target of miR-1224-5p. Upregulation of FOXO1 abolished miR-1224-5p-induced activation of NLRP3 inflammasome, demonstrating that miR-1224-5p might inhibit NLRP3 inflammasome activation through regulating FOXO1. This study provided novel insights into the pathogenesis of PCOS and suggested that miR-1224-5p might be a promising target for treating PCOS.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nianling Yao
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Gao
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
29
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Shi Y, Ye L, Shen S, Qian T, Pan Y, Jiang Y, Lin J, Liu C, Wu Y, Wang X, Xu J, Jin H. Morin attenuates osteoclast formation and function by suppressing the NF-κB, MAPK and calcium signalling pathways. Phytother Res 2021; 35:5694-5707. [PMID: 34423505 DOI: 10.1002/ptr.7229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin β3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianchen Qian
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Youjin Pan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuhan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinghao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Yang CM, Yang CC, Hsiao LD, Yu CY, Tseng HC, Hsu CK, Situmorang JH. Upregulation of COX-2 and PGE 2 Induced by TNF-α Mediated Through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 Cascade in Human Cardiac Fibroblasts. J Inflamm Res 2021; 14:2807-2824. [PMID: 34234507 PMCID: PMC8254141 DOI: 10.2147/jir.s313665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) has been shown to exert as a pathogenic factor in cardiac fibrosis and heart failure which were associated with the up-regulation of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) axis. However, whether TNF-α-induced COX-2/PGE2 upregulation mediated through ROS-dependent cascade remains elusive in human cardiac fibroblasts (HCFs). This study aims to address the underlying mechanisms of TNF-α-induced COX-2/PGE2 expression. Methods Here, we used TNF receptor neutralizing antibody (TNFR nAb), pharmacologic inhibitors, and siRNAs to dissect the involvement of signaling components examined by Western blot and ELISA in TNF-α-mediated responses in HCFs. MitoSOX Red was used to measure mitoROS generation. Isolation of subcellular fractions was performed to determine membrane translocation of PKCα. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to determine the role of transcription factor. Results We found that TNF-α time- and concentration-dependently upregulated COX-2 protein and mRNA expression as well as PGE2 synthesis which was attenuated by TNFR1 nAb, the inhibitor of mitochondrial ROS scavenger (MitoTEMPO), protein kinase C [(PKC)α, Gö6976], p38 MAPK [p38 inhibitor VIII, (p38i VIII)], JNK1/2 (SP600125), or forkhead box protein O1 [(FoxO1), AS1842856], and transfection with their respective siRNAs in HCFs. TNF-α-stimulated PKCα phosphorylation was inhibited by TNFR1 nAb, MitoTEMPO, or Gö6976. TNF-α stimulated phosphorylation of p38 MAPK and JNK1/2 was attenuated by TNFR1 nAb, MitoTEMPO, Gö6976, and their inhibitors p38i VIII and SP600125. Moreover, TNF-α-triggered FoxO1 phosphorylation was abolished by AS1842856, TNFR1 nAb, and its upstream inhibitors MitoTEMPO, Gö6976, p38i VIII, and SP600125. Phosphorylation of FoxO1 could enhance its interaction with the COX-2 promoter element revealed by ChIP assay, which was attenuated by AS1842856. Conclusion Our results suggested that TNF-α-induced COX-2/PGE2 upregulation is mediated through TNFR1-dependent MitoROS/PKCα/p38 MAPK and JNK1/2 cascade to activate FoxO1 binding with the COX-2 promoter in HCFs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Ying Yu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Kai Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Jiro Hasegawa Situmorang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
32
|
van Niekerk G, van der Merwe M, Engelbrecht AM. Diabetes and susceptibility to infections: Implication for COVID-19. Immunology 2021; 164:467-475. [PMID: 34115881 PMCID: PMC8446942 DOI: 10.1111/imm.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
A number of mechanisms have been proposed to explain the well‐established link between diabetic status and an increased susceptibility to infection. Notably, diabetes has been shown to be one of the strongest factors influencing healthcare outcome in COVID‐19 infections. Though it has long been noted that lymphocytes upregulate insulin receptors following immune activation, until recently, this observation has received little attention. Here, we point out key findings implicating dysregulated insulin signalling in immune cells as a possible contributing factor in the immune pathology associated with diabetes. Mechanistically, insulin, by activating the PI3K/Akt/mTOR pathway, regulates various aspects of both myeloid cells and lymphocytes, such as cell survival, metabolic reprogramming and the polarization and differentiation of immune cells. PI3K signalling is also supressed by immune checkpoint proteins, suggesting that insulin signalling may antagonize peripheral tolerance. Remarkably, it has also recently been shown that, following insulin binding, the insulin receptor translocates to the nucleus where it plays a key role in regulating the transcription of various immune‐related genes, including pathways involved in viral infections. Taken together, these observations suggest that dysregulated insulin signalling may directly contribute to a defective immune response during COVID‐19 infections.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
33
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
34
|
Luo J, Wang F, Sun F, Yue T, Zhou Q, Yang C, Rong S, Yang P, Xiong F, Yu Q, Zhang S, Wang CY, Li J. Targeted Inhibition of FTO Demethylase Protects Mice Against LPS-Induced Septic Shock by Suppressing NLRP3 Inflammasome. Front Immunol 2021; 12:663295. [PMID: 34017338 PMCID: PMC8128997 DOI: 10.3389/fimmu.2021.663295] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis refers to the systemic inflammatory response syndrome caused by infection. It is a major clinical problem and cause of death for patients in intensive care units worldwide. The Fat mass and obesity-related protein (FTO) is the primary N6-methyladenosine demethylase. However, the role of FTO in the pathogenesis of inflammatory diseases remains unclear. We herein show that nanoparticle-mediated Fto-siRNA delivery or FTO inhibitor entacapone administration dramatically inhibited macrophage activation, reduced the tissue damage and improved survival in a mouse model of LPS-induced endotoxic shock. Importantly, ablation of FTO could inhibit NLRP3 inflammasome through FoxO1/NF-κB signaling in macrophages. In conclusion, FTO is involved in inflammatory response of LPS-induced septic shock and inhibition of FTO is promising for the treatment of septic shock.
Collapse
Affiliation(s)
- Jiahui Luo
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Yue
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunliang Yang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanjie Rong
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Sahin K, Kucuk O, Orhan C, Erten F, Sahin N, Komorowski JR. Effects of supplementing different chromium histidinate complexes on glucose and lipid metabolism and related protein expressions in rats fed a high-fat diet. J Trace Elem Med Biol 2021; 65:126723. [PMID: 33508549 DOI: 10.1016/j.jtemb.2021.126723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The objective of this study was to investigate the effects of different chromium histidinate (CrHis) complexes added to the diet of rats fed a high-fat diet (HFD) on body weight changes, glucose and lipid metabolism parameters, and changes in biomarkers such as PPAR-γ, IRS-1, GLUTs, and NF-κB proteins. METHODS Forty-two Sprague-Dawley rats were divided equally into six groups and fed either a control, an HFD, or an HFD supplemented with either CrHis1, CrHis2, CrHis3, or a combination of the CrHis complexes as CrHisM. RESULTS Feeding an HFD to rats increased body weights, HOMA-IR values, fasting serum glucose, insulin, leptin, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and MDA concentrations as well as AST activities, and decreased serum and brain serotonin concentrations compared with rats fed a control diet (P < 0.0001). The levels of the PPAR-γ, IRS-1, and GLUTs in the liver and brain decreased, while NF-κB level increased, with feeding an HFD (P < 0.05). Although all the CrHis supplements reversed the negative effects of feeding an HFD (P < 0.05), the CrHis1 complex was most effective in changing the protein levels, while CrHisM was most effective in influencing certain parameters such as body weight and serum metabolites. CONCLUSION The results of the present work suggest that the CrHis1 complex is most potent for alleviating the negative effects of feeding an HFD. The efficacy of CrHisM is likely due to the presence of the CrHis1 complex.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| | - Osman Kucuk
- Department of Animal Nutrition and Nutritional Diseases, School of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fusun Erten
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | | |
Collapse
|
36
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
37
|
The Roles of FOXO1 in Periodontal Homeostasis and Disease. J Immunol Res 2021; 2021:5557095. [PMID: 33860060 PMCID: PMC8026307 DOI: 10.1155/2021/5557095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an oral chronic inflammatory disease that is initiated by periodontal microbial communities and requires disruption of the homeostatic responses. The prevalence of periodontal disease increases with age; more than 70% of adults 65 years and older have periodontal disease. A pathogenic microbial community is required for initiating periodontal disease. Dysbiotic immune-inflammatory response and bone remodeling are characteristics of periodontitis. The transcription factor forkhead box protein O1 (FOXO1) is a key regulator of a number of cellular processes, including cell survival and differentiation, immune status, reactive oxygen species (ROS) scavenging, and apoptosis. Although accumulating evidence indicates that FOXO1 activity can be induced by periodontal pathogens, the roles of FOXO1 in periodontal homeostasis and disease have not been well documented. The present review summarizes how the FOXO1 signaling axis can regulate periodontal bacteria-epithelial interactions, immune-inflammatory response, bone remodeling, and wound healing.
Collapse
|
38
|
Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. Lysosome (Dys)function in Atherosclerosis-A Big Weight on the Shoulders of a Small Organelle. Front Cell Dev Biol 2021; 9:658995. [PMID: 33855029 PMCID: PMC8039146 DOI: 10.3389/fcell.2021.658995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gisela Machado-Oliveira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Diabetes, inflammation, and the adiponectin paradox: Therapeutic targets in SARS-CoV-2. Drug Discov Today 2021; 26:2036-2044. [PMID: 33775925 PMCID: PMC7997138 DOI: 10.1016/j.drudis.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Aging and pre-existing conditions in older patients increase severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) severity and its complications, although the causes remain unclear. Apart from acute pulmonary syndrome, Coronavirus 2019 (COVID-19) can increasingly induce chronic conditions. Importantly, SARS-CoV-2 triggers de novo type 2 diabetes mellitus (T2DM) linked to age-associated cardiovascular disease (CVD), cancers, and neurodegeneration. Mechanistically, SARS-CoV-2 induces inflammation, possibly through damage-associated molecular pattern (DAMP) signaling and ‘cytokine storm,’ causing insulin resistance and the adiponectin (APN) paradox, a phenomenon linking metabolic dysfunction to chronic disease. Accordingly, preventing the APN paradox by suppressing APN-related inflammatory signaling might prove beneficial. A better understanding could uncover novel therapies for SARS-CoV-2 and its chronic disorders.
Collapse
|
40
|
Jeon HH, Yu Q, Witek L, Lu Y, Zhang T, Stepanchenko O, Son VJ, Spencer E, Oshilaja T, Shin MK, Alawi F, Coelho PG, Graves DT. Clinical application of a FOXO1 inhibitor improves connective tissue healing in a diabetic minipig model. Am J Transl Res 2021; 13:781-791. [PMID: 33594326 PMCID: PMC7868841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The forkhead box O1 (FOXO1) transcription factor plays a key role in wound healing process. Recently it has been reported that lineage-specific genetic ablation of FOXO1 significantly improves diabetic wound healing in a mouse model. To investigate the clinical usefulness of these findings, translational preclinical studies with a large animal model are needed. We report for the first time that the local application of a FOXO1 inhibitor (AS1842856) significantly improves connective tissue healing in a preclinical T2DM minipig model, reflected by increased collagen matrix formation, increased myofibroblast numbers, improved angiogenesis, and a shift in cell populations from pro-inflammatory (IL-1β+, TNF-α+ and iNOS+) to pro-healing (CD163+). Our results set up the basis for the clinical application of a FOXO1 antagonist in early diabetic wounds where there is impaired connective tissue healing.
Collapse
Affiliation(s)
- Hyeran H Jeon
- Department of Orthodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Quan Yu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Orthodontics, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Lukasz Witek
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
| | - Yongjian Lu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Stomatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tianshou Zhang
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Implantology, School and Hospital of Stomatology, Jilin UniversityChangchun, China
| | - Olga Stepanchenko
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Victoria J Son
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Evelyn Spencer
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Temitope Oshilaja
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Min K Shin
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Faizan Alawi
- Department of Basic & Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paulo G Coelho
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, Langone Medical Center, New York UniversityNew York, NY, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
41
|
Yu Q, Wang T, Wang F, Yang Y, He C, Yang W, Zhang J, Zou Z. High n-3 fatty acids counteract hyperglycemia-induced insulin resistance in fat-1 mice via pre-adipocyte NLRP3 inflammasome inhibition. Food Funct 2021; 12:230-240. [PMID: 33295913 DOI: 10.1039/d0fo02092c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although n-3 polyunsaturated fatty acids (n-3 PUFAs) have potential anti-insulin resistance activity, the mechanism remains largely unknown. In this study, increased glucose resistance, insulin sensitivity, and lower glycemia were observed upon streptozotocin (STZ) treatment in n-3 PUFA-enriched fat-1 mice compared to wild type (WT) mice. Endogenous n-3 PUFAs in fat-1 mice were found to impair hyperglycemia or high glucose level-induced nucleotide-binding domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome activation and inhibit IL-1β secretion in adipose tissues. In addition, endogenous n-3 PUFAs also inhibited high glucose-induced caspase-1 activity and IL-1β secretion in pre-adipocyte-enriched stromal vascular fractions (SVF) isolated from adipose tissues. Furthermore, in 3T3-L1 pre-adipocytes, high levels of glucose induced thioredoxin interacting protein (TXNIP) expression and activated the NLRP3 inflammasome, which was counteracted by docosahexaenoic acid (DHA), the major n-3 PUFA in fat-1 mice, by downregulating TXNIP via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Our results suggest that n-3 PUFA-mediated insulin sensitivity is at least partly associated with inflammasome inhibition in pre-adipocytes. Our findings highlight the potential clinical use of dietary n-3 PUFAs in the prevention or intervention of T2D and other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Qingyao Yu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Tiantian Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Yong Yang
- Department of Clinical laboratory, the affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Canxia He
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - JinJie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zuquan Zou
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
42
|
Jia X, Qiu T, Yao X, Jiang L, Wang N, Wei S, Tao Y, Pei P, Wang Z, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces hepatic insulin resistance via mtROS-NLRP3 inflammasome pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123034. [PMID: 32544768 DOI: 10.1016/j.jhazmat.2020.123034] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Hepatic insulin resistance (IR) is the key event for arsenic-caused type 2 diabetes (T2D). However, the unequivocal mechanism of arsenic-induced hepatic IR remains unclear. The current study determined the role of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in arsenic-induced IR and revealed the underlying mechanism. Three-month NaAsO2 gavage led to glucose intolerance and insulin insensitivity, impaired hepatic insulin signaling. Additionally, NaAsO2 upregulated the level of oxidized mitochondrial DNA (ox-mtDNA) and mitophagy, thereby activating the NLRP3 inflammasome in SD rat liver. In vitro, we demonstrated that NaAsO2-induced IR depended upon the NLRP3 inflammasome activation. Moreover, inhibiting mitophagy mitigated the NLRP3 inflammasome activation and impaired insulin signaling induced by NaAsO2. Furthermore, mitochondrial reactive oxygen species (mtROS) scavenger alleviated the upregulated ox-mtDNA and mitophagy, thereby inhibiting the NLRP3 inflammasome activation, and improving insulin signaling. Taken together, these data demonstrated that mtROS-triggered ox-mtDNA, mitophagy, and the activation of NLRP3 inflammasome was involved in arsenic-induced hepatic IR.
Collapse
Affiliation(s)
- Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
43
|
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
|
44
|
Liu J, Xie X, Yan D, Wang Y, Yuan H, Cai Y, Luo J, Xu A, Huang Y, Cheung CW, Irwin MG, Xia Z. Up-regulation of FoxO1 contributes to adverse vascular remodelling in type 1 diabetic rats. J Cell Mol Med 2020; 24:13727-13738. [PMID: 33108705 PMCID: PMC7754018 DOI: 10.1111/jcmm.15935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular complications from diabetes often result in poor outcomes for patients, even after optimized interventions. Forkhead box protein O1 (FoxO1) is a key regulator of cellular metabolism and plays an important role in vessel formation and maturation. Alterations of FoxO1 occur in the cardiovascular system in diabetes, yet the role of FoxO1 in diabetic vascular complications is poorly understood. In Streptozotocin (STZ)‐induced type 1 diabetic rats, FoxO1 expression was up‐regulated in carotid arteries at 8 weeks of diabetes that was accompanied with adverse vascular remodelling characterized as increased wall thickness, carotid medial cross‐sectional area, media‐to‐lumen ratio and decreased carotid artery lumen area. This adverse vascular remodelling induced by hyperglycaemia in diabetic rats required FoxO1 activation as pharmacological inhibition of FoxO1 with 50mg/kg AS1842856 (AS) reversed vascular remodelling in type 1 diabetic rats. The adverse vascular remodelling in type 1 diabetes mellitus (T1DM) occurred concomitantly with increases in pro‐inflammatory factors, adhesion factors, apoptosis, NOD‐like receptor family protein‐3 inflammasome activation and the phenotypic switch of arterial smooth muscle cells, which were all reversed by AS. In addition, FoxO1 inhibition counteracted the down‐regulation of its upstream mediator PDK1 in T1DM. PDK1 activator reduced FoxO1 nuclear translocation, which serves as the basis for subsequent transcriptional regulation during hyperglycaemia. Taken together, our data suggest that FoxO1 is a critical trigger for type 1 diabetes‐induced vascular remodelling in rats, and inhibition of FoxO1 thus offers a potential therapeutic option for diabetes‐associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Xiang Xie
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan Yan
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Yongshun Wang
- Department of Biomedical Science, University of Hong Kong, Hong Kong, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yin Cai
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Jierong Luo
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Michael G Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol 2020; 11:571731. [PMID: 33178196 PMCID: PMC7596417 DOI: 10.3389/fimmu.2020.571731] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been linked to the development of obesity and type 2 diabetes (T2D). The underlying mechanisms as to how intestinal microbiota may contribute to T2D are only partly understood. It becomes progressively clear that T2D is characterized by a chronic state of low-grade inflammation, which has been linked to the development of insulin resistance. Here, we review the current evidence that intestinal microbiota, and the metabolites they produce, could drive the development of insulin resistance in obesity and T2D, possibly by initiating an inflammatory response. First, we will summarize major findings about immunological and gut microbial changes in these metabolic diseases. Next, we will give a detailed view on how gut microbial changes have been implicated in low-grade inflammation. Lastly, we will critically discuss clinical studies that focus on the interaction between gut microbiota and the immune system in metabolic disease. Overall, there is strong evidence that the tripartite interaction between gut microbiota, host immune system and metabolism is a critical partaker in the pathophysiology of obesity and T2D.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
46
|
Al-Mukh H, Baudoin L, Bouaboud A, Sanchez-Salgado JL, Maraqa N, Khair M, Pagesy P, Bismuth G, Niedergang F, Issad T. Lipopolysaccharide Induces GFAT2 Expression to Promote O-Linked β- N-Acetylglucosaminylation and Attenuate Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:2499-2510. [PMID: 32978282 DOI: 10.4049/jimmunol.2000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.
Collapse
Affiliation(s)
- Hasanain Al-Mukh
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Léa Baudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | | | - Nabih Maraqa
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Mostafa Khair
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Patrick Pagesy
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| |
Collapse
|
47
|
Polyphenols of cambuci (Campomanesia phaea (O. Berg.)) fruit ameliorate insulin resistance and hepatic steatosis in obese mice. Food Chem 2020; 340:128169. [PMID: 33007695 DOI: 10.1016/j.foodchem.2020.128169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/14/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Polyphenols from cambuci (CBC) (Campomanesia phaea (O. Berg.)), a Brazilian native fruit, were investigated on therapeutic actions mitigating insulin resistance and hepatic steatosis in high-fat-sucrose diet (HFS) induced obese mice. For this, C57BL/6J mice fed with a obesogenic and diabetogenic HFS diet were administered with either water or two CBC doses (36 or 74 mg gallic acid equivalent (GAE)/kg body weight) by gavage from week 6 to week 14 (end-point) of HFS feeding. CBC reduced body weight gain, inflammation, hepatic steatosis, hyperglycemia, glucose intolerance, and insulin resistance in liver and skeletal muscle of obese mice, and such effects were associated with activation of Akt and AMPK in these tissues. In conclusion, polyphenols from CBC show important therapeutic actions ameliorating obesity-associated complications.
Collapse
|
48
|
Lee JH, Jeon J, Bai F, Wu W, Ha UH. Negative regulation of interleukin 1β expression in response to DnaK from Pseudomonas aeruginosa via the PI3K/PDK1/FoxO1 pathways. Comp Immunol Microbiol Infect Dis 2020; 73:101543. [PMID: 32937288 DOI: 10.1016/j.cimid.2020.101543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/06/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-1β is crucial for a wide range of inflammatory responses. Previously, we reported that IL-1β is produced in response to Pseudomonas aeruginosa-derived DnaK via NF-κB and JNK pathways; however, the signaling pathways that counter the process to maintain IL-1β homeostasis are unknown. Here, we show that DnaK-mediated expression of IL1β is increased markedly in macrophages upon blockade of PI3K/PDK1. This was verified by measuring released IL-1β protein. The negative effect of PI3K on IL-1β production was dependent on suppression of both NF-κB and JNK activation. Intriguingly, PDK1 (an underlying mediator of PI3K) acted as an upstream regulator for the activation of NF-κB, but downregulated JNK activation. Furthermore, production of IL-1β and activation of JNK were triggered by inhibition of phosphorylated FoxO1; phosphorylation of FoxO1 was controlled by PDK1 signaling in response to DnaK. Thus, IL-1β production is modulated by P. aeruginosa-derived DnaK via cross-talk between JNK and PI3K/PDK1/FoxO1 pathways.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jisu Jeon
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin 300071, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
49
|
Babaee M, Chamani E, Ahmadi R, Bahreini E, Balouchnejadmojarad T, Nahrkhalaji AS, Fallah S. The expression levels of miRNAs- 27a and 23a in the peripheral blood mononuclear cells (PBMCs) and their correlation with FOXO1 and some inflammatory and anti-inflammatory cytokines in the patients with coronary artery disease (CAD). Life Sci 2020; 256:117898. [DOI: 10.1016/j.lfs.2020.117898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/24/2020] [Accepted: 05/31/2020] [Indexed: 01/22/2023]
|
50
|
Xie K, He X, Chen K, Sakao K, Hou DX. Ameliorative effects and molecular mechanisms of vine tea on western diet-induced NAFLD. Food Funct 2020; 11:5976-5991. [PMID: 32666969 DOI: 10.1039/d0fo00795a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease that is prevalent worldwide, and its prevention by dietary administration has recently been considered as an important strategy. In this study, we administered mice with vine tea polyphenol (VTP) extracted from Ampelopsis grossedentata, a Chinese herb, to investigate the preventive effect on western diet (WD)-induced NAFLD. Male C57BL/6N mice were fed either a normal diet (ND) or WD with or without VTP for 12 weeks. The results revealed that VTP supplementation decreased the serum levels of cholesterol and triglycerides, and reduced the accumulation of hepatic lipid droplets caused by WD. Molecular data revealed that VTP enhanced fatty acid oxidation by reactivating the WD-suppressed phosphorylation of AMP-activated protein kinaseα (AMPKα) and the expressions of peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmitoyl transferase IA (CPT1A) and cytochrome P450, family 4, subfamily a1 (CYP4A1). VTP inhibited hepatic lipogenesis by reducing the WD-enhanced level of mature sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS). Moreover, VTP activated nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated expressions of hemeoxygenase-1 (HO-1) and quinone oxidoreductase (NQO1), and reduced hepatic TBARS levels to prevent hepatic oxidative stress. On the other hand, VTP also increased intestinal zonula occludens-1 (ZO-1) expression and the relative abundance of gut Akkermansia, and reduced the ratio of Firmicutes/Bacteroidetes. Thus, VTP might prevent WD-induced NAFLD by balancing fatty acid oxidation and lipogenesis, hepatic oxidative stress, and gut microbiome, at least. These results suggest that vine tea, containing a high content of the bioactive compound dihydromyricetin, is a potential food resource for preventing NAFLD.
Collapse
Affiliation(s)
- Kun Xie
- Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | |
Collapse
|