1
|
Mohseni GK, Mohammadi S, Aghakhaninejad Z, Tajadod S, Abbasi K, Askarpour SA, Salimi Z, Shafaei Kachaei H, Rajabi Harsini A, Alami F, Bagheri SE, Mosavi Jarrahi SA, Gohari A, Khoshdooz S, Doaei S, Kooshki A, Gholamalizadeh M. Egg consumption and risk of cardiovascular disease: a PERSIAN cohort-based study. BMC Cardiovasc Disord 2023; 23:588. [PMID: 38036988 PMCID: PMC10688106 DOI: 10.1186/s12872-023-03621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are one of the main causes of death worldwide. Data on the effect of eggs consumption on the risk of CVDs are still unreliable. Therefore, this study aimed to investigate the association between CVDs and the consumption of eggs. METHODS In this case-control study, the required data were extracted from the Prospective Epidemiologic Research Studies in Iran (PERSIAN) cohort in Sabzevar, Iran. A total of 4241 adults participated including 1535 patients with CVDs as the case group and 2706 healthy people as controls. Egg consumption was assessed using a valid food frequency questionnaire (FFQ). RESULTS A significant association was observed between eggs consumption and stroke after adjustment for physical activity, body mass index (BMI), smoking, systolic blood pressure (SBP), diastolic blood pressure (DBP), using alcohol, lipid profile, diabetes, and the intake of energy, lipid, protein, carbohydrate, and cholestrol (OR:1.007, 95% CI:1.001-1.013, P = 0.03). No association was found between egg consumption with hypertension, cardiac ischemia, and myocardial infarction. CONCLUSIONS There was a significant association between the consumption of eggs and stroke. However, more studies are needed to examine the effect of eggs on CVDs.
Collapse
Affiliation(s)
- Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeideh Mohammadi
- Department of Nutrition, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zohreh Aghakhaninejad
- Department of Nutrition and Biochemistry, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan, Iran
| | - Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salimi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hanieh Shafaei Kachaei
- Student Research Committee, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of medical sciences, Tehran, Iran
| | - Farkhondeh Alami
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Ali Gohari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Akram Kooshki
- Non-Communicable Diseases Research Center, Department of Nutrition & Biochemistry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Takechi R, Sharif A, Brook E, Majimbi M, Chan DC, Lam V, Watts GF, Mamo JCL. Is type 2 diabetes associated dementia a microvascular early-Alzheimer's phenotype induced by aberrations in the peripheral metabolism of lipoprotein-amyloid? Front Endocrinol (Lausanne) 2023; 14:1127481. [PMID: 36875491 PMCID: PMC9978204 DOI: 10.3389/fendo.2023.1127481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
There is increasing evidence of a positive association of type 2 diabetes with Alzheimer's disease (AD), the most prevalent form of dementia. Suggested pathways include cerebral vascular dysfunction; central insulin resistance, or exaggerated brain abundance of potentially cytotoxic amyloid-β (Aβ), a hallmark feature of AD. However, contemporary studies find that Aβ is secreted in the periphery by lipogenic organs and secreted as nascent triglyceride-rich lipoproteins (TRL's). Pre-clinical models show that exaggerated abundance in blood of TRL-Aβ compromises blood-brain barrier (BBB) integrity, resulting in extravasation of the TRL-Aβ moiety to brain parenchyme, neurovascular inflammation and neuronal degeneration concomitant with cognitive decline. Inhibiting secretion of TRL-Aβ by peripheral lipogenic organs attenuates the early-AD phenotype indicated in animal models, consistent with causality. Poorly controlled type 2 diabetes commonly features hypertriglyceridemia because of exaggerated TRL secretion and reduced rates of catabolism. Alzheimer's in diabetes may therefore be a consequence of heightened abundance in blood of lipoprotein-Aβ and accelerated breakdown of the BBB. This review reconciles the prevailing dogma of amyloid associated cytotoxicity as a primary risk factor in late-onset AD, with substantial evidence of a microvascular axis for dementia-in-diabetes. Consideration of potentially relevant pharmacotherapies to treat insulin resistance, dyslipidaemia and by extension plasma amyloidemia in type 2 diabetes are discussed.
Collapse
Affiliation(s)
- Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arazu Sharif
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Dick C. Chan
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gerald F. Watts
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, WA, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: John C. L. Mamo,
| |
Collapse
|
3
|
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer's disease: mutual risks and mechanisms. Transl Neurodegener 2022; 11:40. [PMID: 36089575 PMCID: PMC9464468 DOI: 10.1186/s40035-022-00316-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
4
|
Lopez-Yus M, Lopez-Perez R, Garcia-Sobreviela MP, Del Moral-Bergos R, Lorente-Cebrian S, Arbones-Mainar JM. Adiponectin overexpression in C2C12 myocytes increases lipid oxidation and myofiber transition. J Physiol Biochem 2021; 78:517-525. [PMID: 34423393 DOI: 10.1007/s13105-021-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Metabolic syndrome and obesity have detrimental effects on the metabolic function of the skeletal muscle. Mounting evidence indicates that patients with those conditions may present an increased ratio of glycolytic to oxidative fibers associated with a decrease in oxidative capacity. In this regard, adiponectin, a hormone mainly secreted by adipocytes that regulates glucose and lipid metabolism, has emerged as a myokine that could play an important role in this process. We aimed to investigate whether adiponectin overexpression in skeletal muscle might be a local protective mechanism, favoring fatty acid utilization. To that end, we generated an in vitro model of myocytes with upregulated endogenous adiponectin using a lentiviral carrier. We demonstrated that the adiponectin-transduced myocytes were able to produce and secrete fully functional adiponectin complexes. Adiponectin overexpression remarkably upregulated the mRNA level of myogenic regulatory factors as well as genes implicated in lipolysis (HSL, ATGL) and cellular and mitochondrial fatty acid transport (LPL, CD36, CPT1B). This was accompanied by increased isoproterenol-induced lipolysis and β-oxidation and reduced lipogenesis, whereas insulin-stimulated glucose uptake was unaltered in transduced myocytes. Lastly, the relative expression of the more glycolytic myofibers (MyHC IIb) compared to the more oxidative ones (MyHC I) was notably reduced. Our results showed that the released adiponectin acted in an autocrine/paracrine manner, increasing lipid oxidation in myocytes and leading to a transition of myofibers from the glycolytic to the oxidative type. In conclusion, muscle adiponectin overexpression might be a way to relieve muscle diseases caused by oxidative muscle fiber deficiency.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Rebeca Lopez-Perez
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal Y Forense, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain. .,CIBER Fisiopatología Obesidad Y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Godos J, Micek A, Brzostek T, Toledo E, Iacoviello L, Astrup A, Franco OH, Galvano F, Martinez-Gonzalez MA, Grosso G. Egg consumption and cardiovascular risk: a dose-response meta-analysis of prospective cohort studies. Eur J Nutr 2020; 60:1833-1862. [PMID: 32865658 PMCID: PMC8137614 DOI: 10.1007/s00394-020-02345-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Purpose Cardiovascular disease (CVD) is a leading cause of mortality globally and is strongly influenced by dietary risk factors. The aim was to assess the association between egg consumption and risk of CVD risk/mortality, including coronary heart disease (CHD), stroke, and heart failure. Methods MEDLINE, Embase, and Web of Science databases were searched through April 2020 for prospective studies. Two independent reviewers screened and extracted the data through standardized methods. Size effects were calculated as summary relative risks (SRRs) in a dose–response fashion through random-effects meta-analyses. Results Thirty-nine studies including nearly 2 million individuals and 85,053 CHD, 25,103 stroke, 7536 heart failure, and 147,124 CVD cases were included. The summary analysis including 17 datasets from 14 studies conducted on CVD (incidence and/or mortality) showed that intake of up to six eggs per week is inversely associated with CVD events, when compared to no consumption [for four eggs per week, SRR = 0.95 (95% CI: 0.90; 1.00)]; a decreased risk of CVD incidence was observed for consumption of up to one egg per day [SRR = 0.94 (95% CI: 0.89; 0.99)]. The summary analysis for CHD incidence/mortality including 24 datasets from 16 studies showed a decreased risk up to two eggs per week [(SRR = 0.96 (95% CI: 0.91; 1.00)]. No associations were retrieved with risk of stroke. The summary analysis for heart failure risk including six datasets from four studies showed that intake of one egg per day was associated with increased risk raising for higher intakes compared to no consumption [for 1 egg per day, SRR = 1.15 (95% CI:1.02; 1.30)]. After considering GRADE criteria for strength of the evidence, it was rated low for all outcomes but stroke, for which it was moderate (yet referring to no risk). Conclusion There is no conclusive evidence on the role of egg in CVD risk, despite the fact that higher quality studies are warranted to obtain stronger evidence for a possible protection of CVD associated with moderate weekly egg consumption compared to no intake; equally, future studies may strengthen the evidence for increased heart failure risk associated with high regular egg consumption. Electronic supplementary material The online version of this article (10.1007/s00394-020-02345-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Brzostek
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Navarre, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Navarra Institute for Health Research, IdiSNA, Pamplona, Navarre, Spain
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy.,Department of Medicine and Surgery, Research Centre in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Nørre Campus, Copenhagen, Denmark
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Miguel A Martinez-Gonzalez
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Navarre, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain.,Navarra Institute for Health Research, IdiSNA, Pamplona, Navarre, Spain.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
6
|
Johnson LA. APOE and metabolic dysfunction in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:131-151. [PMID: 32739002 DOI: 10.1016/bs.irn.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
7
|
Marventano S, Godos J, Tieri M, Ghelfi F, Titta L, Lafranconi A, Gambera A, Alonzo E, Sciacca S, Buscemi S, Ray S, Del Rio D, Galvano F, Grosso G. Egg consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr 2020; 71:325-331. [PMID: 31379223 DOI: 10.1080/09637486.2019.1648388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Egg consumption has been an area of controversy regarding its impact on human health largely due to the content in cholesterol and its potential role in cardio-metabolic outcomes. This study aimed to summarise the level of evidence of egg consumption on various health outcomes. A systematic search for meta-analyses was performed: study design, dose-response relationship, heterogeneity and agreement of results over time, and identification of potential confounding factors were considered to assess the level of evidence. Results from this umbrella review showed a substantial no association between egg consumption and a number of health outcomes, including cancer, cardiovascular and metabolic disorders. In contrast, evidence of possible beneficial effects toward stroke risk has been found. In conclusions, egg may be part of a healthy diet; however, additional studies exploring confounding factors are needed to ascertain the potential detrimental effects.
Collapse
Affiliation(s)
- Stefano Marventano
- Department of Childhood and Adolescent, AUSL Romagna, Rimini Women's Health, Rimini, Italy
| | | | - Maria Tieri
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Ghelfi
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
| | - Lucilla Titta
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandra Lafranconi
- University of Milano - Bicocca, Milan, Italy
- Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Angelo Gambera
- Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Elena Alonzo
- Food and Nutrition Security and Public Health Service, ASP Catania, Catania, Italy
| | - Salvatore Sciacca
- Integrated Cancer Registry of Catania-Messina-Siracusa-Enna, Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Silvio Buscemi
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), University of Palermo, Palermo, Italy
| | - Sumantra Ray
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Wolfson College at the University of Cambridge, Cambridge, UK
- Nutrition Innovation Centre for Food and Health, Ulster University, Belfast, UK
- Medical Research Council (MRC) Human Nutrition Research Unit, Cambridge, UK
| | - Daniele Del Rio
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- The Laboratory of Phytochemicals in Physiology, Department of Veterinary Science, University of Parma, Parma, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiol Dis 2020; 137:104755. [PMID: 31978603 PMCID: PMC7050417 DOI: 10.1016/j.nbd.2020.104755] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system (CNS) insulin resistance is associated with Alzheimer's disease (AD). In addition, the apolipoprotein E4 (apoE4) isoform is a risk factor for AD. The connection between these two factors in relation to AD is being actively explored. We summarize this literature with a focus on the transport of insulin and apoE across the blood-brain barrier (BBB) and into the CNS, the impact of apoE and insulin on the BBB, and the interactions between apoE, insulin, and the insulin receptor once present in the CNS. We highlight how CNS insulin resistance is apparent in AD and potential ways to overcome this resistance by repurposing currently approved drugs, with apoE genotype taken into consideration as the treatment response following most interventions is apoE isoform-dependent. This review is part of a special issue focusing on apoE in AD and neurodegeneration.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States of America; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - William A Banks
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
9
|
Johnson LA, Torres ER, Weber Boutros S, Patel E, Akinyeke T, Alkayed NJ, Raber J. Apolipoprotein E4 mediates insulin resistance-associated cerebrovascular dysfunction and the post-prandial response. J Cereb Blood Flow Metab 2019; 39:770-781. [PMID: 29215310 PMCID: PMC6498752 DOI: 10.1177/0271678x17746186] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolic dysfunction, commonly a result of diets high in saturated fats and sugar, is associated with impaired cognitive function and an increased risk of age-related cognitive decline (ACD) and Alzheimer's disease (AD). Compared to the E3 isoform of apolipoprotein (apoE), the E4 isoform is a major genetic risk factor for ACD, AD, and for developing cognitive impairments following various environmental challenges, including dietary challenges such as a high-fat diet (HFD). Both insulin resistance (IR) and E4 are associated with metabolic and vascular impairments. Deficits in cerebral metabolism and cerebrovascular function have been proposed as initiating events leading to these impairments. In the current study, we employed a model of human apoE targeted replacement mice and HFD-induced obesity to study the potential link between E4 and IR, at rest and following a postprandial challenge. HFD-induced IR was associated with impaired cognition, reduced cerebral blood volume and decreased glucose uptake. These effects were more profound in E4 than E3 mice. Furthermore, the cognitive, metabolic and cerebrovascular responses to an exogenous glucose load showed an apoE isoform-dependent response, with E4, but not E3 mice, acutely benefiting from a spike in blood glucose.
Collapse
Affiliation(s)
- Lance A Johnson
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,2 Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Eileen Ruth Torres
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Esha Patel
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tunde Akinyeke
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- 3 Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,4 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,5 Department of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Katsarou M, Stratikos E, Chroni A. Thermodynamic destabilization and aggregation propensity as the mechanism behind the association of apoE3 mutants and lipoprotein glomerulopathy. J Lipid Res 2018; 59:2339-2348. [PMID: 30309894 PMCID: PMC6277168 DOI: 10.1194/jlr.m088732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Lipoprotein glomerulopathy (LPG) is a rare renal disease, characterized by lipoprotein thrombi in glomerular capillaries. A series of apoE mutations have been associated with LPG development. We previously showed that three mutants based on apoE3 sequence, in which an arginine was substituted by proline, are thermodynamically destabilized and aggregation-prone. To examine whether other LPG-associated apoE3 mutations induce similar effects, we characterized three nonproline LPG-associated apoE3 mutations, namely, R25C (apoEKyoto), R114C (apoETsukuba), and A152D (apoELasVegas). All three apoE3 variants are found to have significantly reduced helical content and to be thermodynamically destabilized, both in lipid-free and lipoprotein-associated form, and to expose a larger portion of hydrophobic surface to the solvent compared with WT apoE3. Furthermore, all three apoE3 variants are aggregation-prone, as shown by dynamic light-scattering measurements and by their enhanced capacity to bind the amyloid probe thioflavin T. Overall, our data suggest that the LPG-associated apoE3 mutations R25C, R114C, and A152D induce protein misfolding, which may contribute to protein aggregation in glomerular capillaries. The similar effects of both LPG-associated proline and nonproline mutations on apoE3 structure suggest that the thermodynamic destabilization and enhanced aggregation of apoE3 may constitute a common underlying mechanism behind the pathogenesis of LPG.
Collapse
Affiliation(s)
- Maria Katsarou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRaSTES), National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
11
|
Gonzalez L, MacDonald ME, Deng YD, Trigatti BL. Hyperglycemia Aggravates Diet-Induced Coronary Artery Disease and Myocardial Infarction in SR-B1-Knockout/ApoE-Hypomorphic Mice. Front Physiol 2018; 9:1398. [PMID: 30356742 PMCID: PMC6189369 DOI: 10.3389/fphys.2018.01398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for development of atherosclerotic cardiovascular disease. Animal model studies in mice revealed that hyperglycemia increases development of atherosclerosis in the aorta as well as myocardial fibrosis in surgical models of coronary artery ligation; however, the impact of hyperglycemia on coronary artery atherosclerosis and subsequent heart disease is less clear. To investigate the effect of hyperglycemia on atherosclerosis and coronary heart disease, we used a mouse model of diet-induced coronary artery atherosclerosis and myocardial infarction, the high fat/high cholesterol (HFC) diet fed SR-B1 knockout (KO)/apoE-hypomorphic (HypoE) mouse. Hyperglycemia was induced in these mice by streptozotocin (STZ) treatment. This increased HFC diet-dependent atherosclerosis development (p = 0.02) and necrotic core formation (p = 0.0008) in atherosclerotic plaques in the aortic sinus but did not increase the extent of atherosclerosis in coronary arteries. However, it did increase the extent of platelet accumulation in atherosclerotic coronary arteries (p = 0.017). This was accompanied by increased myocardial fibrosis (p = 0.005) and reduced survival (p = 0.01) compared to control-treated, normoglycemic mice. These results demonstrate that STZ-treatment exerted differential effects on the level of atherosclerosis in the aortic sinus and coronary arteries. These results also suggest that SR-B1-KO/HypoE mice may be a useful non-surgical model of diabetic cardiomyopathy in the context of coronary artery atherothrombosis.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Melissa E MacDonald
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yak D Deng
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Kim K, Goldberg IJ, Graham MJ, Sundaram M, Bertaggia E, Lee SX, Qiang L, Haeusler RA, Metzger D, Chambon P, Yao Z, Ginsberg HN, Pajvani UB. γ-Secretase Inhibition Lowers Plasma Triglyceride-Rich Lipoproteins by Stabilizing the LDL Receptor. Cell Metab 2018; 27:816-827.e4. [PMID: 29576536 PMCID: PMC5884729 DOI: 10.1016/j.cmet.2018.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Excess plasma triglycerides (TGs) are a key component of obesity-induced metabolic syndrome. We have shown that γ-secretase inhibitor (GSI) treatment improves glucose tolerance due to inhibition of hepatic Notch signaling but found additional Notch-independent reduction of plasma TG-rich lipoproteins (TRLs) in GSI-treated, as well as hepatocyte-specific, γ-secretase knockout (L-Ncst) mice, which suggested a primary effect on hepatocyte TRL uptake. Indeed, we found increased VLDL and LDL particle uptake in L-Ncst hepatocytes and Ncst-deficient hepatoma cells, in part through reduced γ-secretase-mediated low-density lipoprotein receptor (LDLR) cleavage and degradation. To exploit this novel finding, we generated a liver-selective Nicastrin ASO, which recapitulated glucose and lipid improvements of L-Ncst mice, with increased levels of hepatocyte LDLR. Collectively, these results identify the role of hepatic γ-secretase to regulate LDLR and suggest that liver-specific GSIs may simultaneously improve multiple aspects of the metabolic syndrome.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY, USA
| | - Ira J Goldberg
- Department of Medicine, New York University, New York, NY, USA
| | | | - Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Enrico Bertaggia
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel X Lee
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Li Qiang
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Rebecca A Haeusler
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | | | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res 2016; 57:758-66. [PMID: 27015743 DOI: 10.1194/jlr.r067249] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/16/2022] Open
Abstract
ApoE is a multifunctional protein that is expressed by many cell types that influences many aspects of cardiovascular physiology. In humans, there are three major allelic variants that differentially influence lipoprotein metabolism and risk for the development of atherosclerosis. Apoe-deficient mice and human apoE isoform knockin mice, as well as hypomorphic Apoe mice, have significantly contributed to our understanding of the role of apoE in lipoprotein metabolism, monocyte/macrophage biology, and atherosclerosis. This brief history of these mouse models will highlight their contribution to the understanding of the role of apoE in these processes. These Apoe(-/-) mice have also been extensively utilized as an atherosensitive platform upon which to assess the impact of modulator genes on the development and regression of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology University of Chicago, Chicago, IL
| | | |
Collapse
|
14
|
Zhong H, Cai Y, Cheng J, Cai D, Chen L, Su C, Li K, Chen P, Xu J, Cui L. Apolipoprotein E Epsilon 4 Enhances the Association between the rs2910164 Polymorphism of miR-146a and Risk of Atherosclerotic Cerebral Infarction. J Atheroscler Thromb 2016; 23:819-29. [PMID: 26875519 DOI: 10.5551/jat.32904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To analyse the relationship between two potentially functional single-nucleotide polymorphisms (SNPs) of the miR-146a gene (rs2910164 and rs57095329) and the risk of atherosclerotic cerebral infarction (ACI). METHODS A total of 297 patients with ACI and 300 matched healthy individuals were enrolled in the study. The miR-146a polymorphism was detected using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS A significant difference in the C allele frequency at rs2910164 (p=0.028) was noted between patients with ACI and control subjects. In contrast, the genotype and allele frequencies of rs57095329 were not statistically associated with ACI. In addition, the decreased expression of miR-146a was significantly more frequent in ACI patients who were ApoEε4 (+) carriers (p=0.0233), and rs2910164 G>C was intimately associated with the ApoEε4-containing genotype in patients compared with the ApoEε4 (-) carriers (p=0.0323). CONCLUSIONS Our findings indicated that the C allele of rs2910164 miR-146a is an important risk factor for ACI, and ApoEε4 may function through attenuating miR-146a expression to enhance ACI susceptibility. This study provides new information about the possible relationship between miR-146a and ApoEε4 in the development of ACI, with potentially important therapeutic implications.
Collapse
Affiliation(s)
- Huidong Zhong
- Department of Neurosurgery, Affiliated second Hospital, Guangdong Medical University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma. EBioMedicine 2015; 3:26-42. [PMID: 26870815 PMCID: PMC4739422 DOI: 10.1016/j.ebiom.2015.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.
Collapse
Key Words
- ADMA, Asymmetric dimethylarginine
- BDNF, Brain-derived neurotrophic factor
- BW, Body weight
- Br Fat, Brown adipose tissue
- Brain
- C-X-C motif, Chemokine
- CBV, Cerebral blood volume
- CH, Cholesterol
- Cerebrovascular
- Cognitive
- Cxcl1, Ligand 1
- DG, Diacylglycerol
- Diabetes
- FFA, Free fatty acids
- GL, Glycerolipid
- GLP-1, Glucagon-like peptide 1
- GPL, Glycerophospholipid
- GlcCer, Glucosylceramide
- HFD, High fat diet
- IFNγ, Interferon-γ
- IL-10, Interleukin-10
- IL-12p70, Interleukin-12p70
- IL-6, Interleukin-6
- IR, Insulin resistance
- ITT, Insulin tolerance test
- Il-1b, Interleukin-1β
- KB, Total ketone bodies
- LFD, Low fat diet
- LPA, Lysophosphatidic acid
- MetS, Metabolic syndrome
- Metabolic syndrome
- OGTT, Oral glucose tolerance test
- Obesity
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PG, Phosphatidylglycerol
- PGP, Phosphatidylglycerolphosphate
- PI, Phosphatidylinositol
- PS, Phosphatidylserine
- Plasma
- SC Fat, Subcutaneous adipose tissue
- T1D, Type 1 Diabetes
- T2D, Type 2 Diabetes
- TG, Triglycerides
- TNFα, Tumor necrosis factor-α
- V Fat, Visceral adipose tissue
Collapse
|
16
|
Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro. J Physiol Biochem 2015; 71:537-46. [DOI: 10.1007/s13105-015-0393-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
|
17
|
Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, Maeda N, Arbones-Mainar JM. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J 2014; 28:3769-79. [PMID: 24812087 DOI: 10.1096/fj.14-251165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Impaired adipogenesis renders an adipose tissue unable to expand, leading to lipotoxicity and conditions such as diabetes and cardiovascular disease. While factors important for adipogenesis have been studied extensively, those that set the limits of adipose tissue expansion remain undetermined. Feeding a Western-type diet to apolipoprotein E2 knock-in mice, a model of metabolic syndrome, produced 3 groups of equally obese mice: mice with normal glucose tolerance, hyperinsulinemic yet glucose-tolerant mice, and prediabetic mice with impaired glucose tolerance and reduced circulating insulin. Using proteomics, we compared subcutaneous adipose tissues from mice in these groups and found that the expression of PTRF (polymerase I and transcript release factor) associated selectively with their glucose tolerance status. Lentiviral and pharmacologically overexpressed PTRF, whose function is critical for caveola formation, compromised adipocyte differentiation of cultured 3T3-L1cells. In human adipose tissue, PTRF mRNA levels positively correlated with markers of lipolysis and cellular senescence. Furthermore, a negative relationship between telomere length and PTRF mRNA levels was observed in human subcutaneous fat. PTRF is associated with limited adipose tissue expansion underpinning the key role of caveolae in adipocyte regulation. Furthermore, PTRF may be a suitable adipocyte marker for predicting pathological obesity and inform clinical management.
Collapse
Affiliation(s)
- Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Robert M DeKroon
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Oscar Alzate
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine and
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Ong QR, Chan ES, Lim ML, Wong BS. Expression of human apolipoprotein E4 reduces insulin-receptor substrate 1 expression and Akt phosphorylation in the ageing liver. FEBS Open Bio 2014; 4:260-5. [PMID: 24649407 PMCID: PMC3958919 DOI: 10.1016/j.fob.2014.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 12/21/2022] Open
Abstract
Emerging studies suggest that ApoE has other functions beyond cholesterol metabolism. At 32-weeks, insulin signaling was similar in both ApoE3 and ApoE4 knock-in mice. At 72-weeks, IRS1 and PI3K expression and Akt phosphorylation were reduced in ApoE4 mice. Aged huApoE4 mice also have lower liver insulin but higher glucose content. This shows an ApoE genotype-dependent effect on liver insulin signaling during ageing.
The diabetic drug rosiglitazone was reported to improve glucose tolerance in insulin-resistant ApoE3 but not ApoE4 knock-in mice. We therefore examined whether apolipoprotein E (ApoE) has genotype-specific effects on liver insulin function. At 12 weeks, no difference in liver insulin signaling was detected between fasting ApoE3 and ApoE4 mice. At 72 weeks however, ApoE4 mice had lower IRS-1 and PI3K expression, and reduced Akt phosphorylation. This decline was associated with lower insulin and higher glucose in ApoE4 mouse liver. Liver cholesterol was not affected. These results show that ApoE4 expression reduces liver insulin signaling and insulin levels, leading to higher glucose content.
Collapse
Affiliation(s)
- Qi-Rui Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elizabeth S Chan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei-Li Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep 2014; 4:3754. [PMID: 24435134 PMCID: PMC3894554 DOI: 10.1038/srep03754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/24/2013] [Indexed: 01/03/2023] Open
Abstract
Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.
Collapse
|
20
|
Travaglione S, Loizzo S, Ballan G, Fiorentini C, Fabbri A. The E. coli CNF1 as a pioneering therapy for the central nervous system diseases. Toxins (Basel) 2014; 6:270-82. [PMID: 24402235 PMCID: PMC3920261 DOI: 10.3390/toxins6010270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/24/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
21
|
Stratikos E, Chroni A. A possible structural basis behind the pathogenic role of apolipoprotein E hereditary mutations associated with lipoprotein glomerulopathy. Clin Exp Nephrol 2013; 18:225-9. [PMID: 24149834 DOI: 10.1007/s10157-013-0886-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 01/18/2023]
Abstract
Single amino acid mutations in apolipoprotein E (apoE) have been associated with the development of the rare kidney disease lipoprotein glomerulopathy (LPG). Although the genetic linkage to disease development is well established, the mechanism of pathogenesis is largely unknown, limiting therapeutic insight. Here, we summarize current knowledge in the field and focus on the possible effects of LPG-associated mutations on the structure of apoE. Recent findings have suggested that mutation-induced folding perturbations in apoE lead to structural destabilization and aggregation, effects that may underlie lipoprotein thrombi accumulation in the glomerulus, a hallmark of LPG. The recognition that structural destabilization may underlie the association between apoE mutations and LPG can be key for development of new innovative treatments for this rare disease.
Collapse
Affiliation(s)
- Efstratios Stratikos
- National Center for Scientific Research Demokritos, Patriarhou Gregoriou and Neapoleos Street, 15310, Agia Paraskevi, Greece,
| | | |
Collapse
|
22
|
CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease. PLoS One 2013; 8:e65898. [PMID: 23738020 PMCID: PMC3667817 DOI: 10.1371/journal.pone.0065898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.
Collapse
|
23
|
Lee JY, Jeon I, Kim JW, Song YS, Yoon JM, Park SM. Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies. Int J Gynecol Cancer 2013; 23:402-12. [PMID: 23354371 DOI: 10.1097/igc.0b013e31828189b2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the epidemiologic association between diabetes and risk of ovarian cancer. METHODS We searched PubMed, EMBASE, and The Cochrane Library for observational studies on the association between diabetes and ovarian cancer. Cohort studies that reported relative risks (RRs) and case-control studies that showed odds ratios were included in the analysis. Summary RRs with 95% confidence intervals (CIs) were calculated with a random-effects model. RESULTS A total of 19 studies from 18 articles (7 case-control studies and 11 cohort studies) met the inclusion criteria. Combining data from all studies, diabetes was associated with an increased risk of ovarian cancer, compared with no diabetes (summary RR of ovarian cancer incidence, 1.17; 95% CI, 1.02-1.33). In cohort and nested case-control studies, patients with diabetes had statistically significant increased risk of ovarian cancer (RR, 1.16; 95% CI, 1.01-1.33), without significant heterogeneity (I = 27; P = 0.172). Among studies that control for age, body mass index, smoking, and alcohol, a prominent association between diabetes and ovarian cancer was found (RR, 1.55; 95% CI, 1.11-2.19). CONCLUSIONS This study suggests that women with diabetes have a moderately increased risk of ovarian cancer.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Georgiadou D, Stamatakis K, Efthimiadou EK, Kordas G, Gantz D, Chroni A, Stratikos E. Thermodynamic and structural destabilization of apoE3 by hereditary mutations associated with the development of lipoprotein glomerulopathy. J Lipid Res 2012; 54:164-76. [PMID: 23110818 DOI: 10.1194/jlr.m030965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein glomerulopathy (LPG) is a dominant inherited kidney disorder characterized by lipoprotein thrombi in glomerular capillaries. Single-amino-acid mutations in apoE have been associated with the development of the disease, although the mechanism is unknown. In an effort to gain mechanistic insight linking the presence of such mutations and the development of LPG, we evaluated the effects of three of the most common apoE3 variants associated with this disease, namely R145P(Sendai), R147P(Chicago), and R158P(Osaka or Kurashiki), on the structural and conformational integrity of the protein. All three variants were found to have significantly reduced helical content, to expose a larger portion of hydrophobic surface to the solvent, and to be significantly thermodynamically destabilized, often lacking functionally relevant unfolding intermediates. Furthermore, all variants were aggregation prone and had enhanced sensitivity to protease digestion. Finally, although the variants were able to form discoidal lipoprotein particles, discrete subpopulations of poorly formed or aberrant particles were evident. Furthermore, these lipoprotein particles were thermodynamically destabilized and aggregation prone. Overall, our data suggest that these mutations induce a generalized unfolding of the N-terminal domain of apoE3 toward a molten-globule-like structure. ApoE3 N-terminal domain unfolding due to mutation may constitute a common mechanism underlying the protein's association with the pathogenesis of LPG.
Collapse
Affiliation(s)
- Dimitra Georgiadou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | | | | | | | | | | | | |
Collapse
|
25
|
Cash JG, Kuhel DG, Basford JE, Jaeschke A, Chatterjee TK, Weintraub NL, Hui DY. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem 2012; 287:27876-84. [PMID: 22730380 DOI: 10.1074/jbc.m112.377549] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E4 is a major genetic risk factor for a wide spectrum of inflammatory metabolic diseases, including atherosclerosis, diabetes, and Alzheimer disease. This study compared diet-induced adipose tissue inflammation as well as functional properties of macrophages isolated from human APOE3 and APOE4 mice to identify the mechanism responsible for the association between apoE4 and inflammatory metabolic diseases. The initial study confirmed previous reports that APOE4 gene replacement mice were less sensitive than APOE3 mice to diet-induced body weight gain but exhibited hyperinsulinemia, and their adipose tissues were similarly inflamed as those in APOE3 mice. Peritoneal macrophages isolated from APOE4 mice were defective in efferocytosis compared with APOE3 macrophages. Increased cell death was also observed in APOE4 macrophages when stimulated with LPS or oxidized LDL. Western blot analysis of cell lysates revealed that APOE4 macrophages displayed elevated JNK phosphorylation indicative of cell stress even under basal culturing conditions. Significantly higher cell stress due mainly to potentiation of endoplasmic reticulum (ER) stress signaling was also observed in APOE4 macrophages after LPS and oxidized LDL activation. The defect in efferocytosis and elevated apoptosis sensitivity of APOE4 macrophages was ameliorated by treatment with the ER chaperone tauroursodeoxycholic acid. Taken together, these results showed that apoE4 expression causes macrophage dysfunction and promotes apoptosis via ER stress induction. The reduction of ER stress in macrophages may be a viable option to reduce inflammation and inflammation-related metabolic disorders associated with the apoE4 polymorphism.
Collapse
Affiliation(s)
- James G Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | |
Collapse
|