1
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
2
|
Shi C, Alvarez-Olmedo D, Zhang Y, Pattar BSB, O’Brien ER. The Heat Shock Protein 27 Immune Complex Enhances Exosomal Cholesterol Efflux. Biomedicines 2020; 8:E290. [PMID: 32824555 PMCID: PMC7460488 DOI: 10.3390/biomedicines8080290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Previously, we demonstrated that Heat Shock Protein 27 (HSP27) reduces the inflammatory stages of experimental atherogenesis, is released by macrophage (MΦ) exosomes and lowers cholesterol levels in atherosclerotic plaques. Recently, we discovered that natural autoantibodies directed against HSP27 enhance its signaling effects, as HSP27 immune complexes (IC) interact at the cell membrane to modulate signaling. We now seek to evaluate the potential role of the HSP27 IC on MΦ exosomal release and cholesterol export. First, in human blood samples, we show that healthy control subjects have 86% more exosomes compared to patients with coronary artery disease (p < 0.0001). Treating human THP-1 MΦ with rHSP27 plus a validated anti-HPS27 IgG antibody increased the abundance of exosomes in the culture media (+98%; p < 0.0001) as well as expression of Flotillin-2, a marker reflective of exosomal release. Exosome cholesterol efflux was independent of Apo-A1. THP-1 MΦ loaded with NBD-labeled cholesterol and treated with the HSP27 IC showed a 22% increase in extracellular vesicles labeled with NBD and a 95% increase in mean fluorescent intensity. In conclusion, exosomal abundance and secretion of cholesterol content increases in response to HSP27 IC treatment, which may represent an important therapeutic option for diseases characterized by cholesterol accumulation.
Collapse
Affiliation(s)
| | | | | | | | - Edward R. O’Brien
- Health Research and Innovation Center, Libin Cardiovascular Institute, University of Calgary, Cumming School of Medicine, Calgary, AB T2N4Z6, Canada; (C.S.); (D.A.-O.); (Y.Z.); (B.S.B.P.)
| |
Collapse
|
3
|
Shao Y, Chen J, Freeman W, Dong LJ, Zhang ZH, Xu M, Qiu F, Du Y, Liu J, Li XR, Ma JX. Canonical Wnt Signaling Promotes Neovascularization Through Determination of Endothelial Progenitor Cell Fate via Metabolic Profile Regulation. Stem Cells 2019; 37:1331-1343. [PMID: 31233254 PMCID: PMC6851557 DOI: 10.1002/stem.3049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/27/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to blood vessel formation. Canonical Wnt signaling plays an important role in physiological and pathological angiogenesis and EPC fate regulation. However, the mechanism for Wnt signaling to regulate EPC fate in neovascularization (NV) has not been clearly defined. Here, we showed that very low-density lipoprotein receptor knockout (Vldlr -/- ) mice, a model of ocular NV induced by Wnt signaling overactivation, have increased EPC numbers in the bone marrow, blood, and retina, as well as an elevated mitochondrial membrane potential indicating higher mitochondrial function of EPCs in the circulation. Isolated EPCs from Vldlr -/- mice showed overactivated Wnt signaling, correlating with increased mitochondrial function, mass, and DNA copy numbers, compared with WT EPCs. Our results also demonstrated that Wnt signaling upregulated mitochondrial biogenesis and function, while inhibiting glycolysis in EPCs, which further decreased EPC stemness and promoted EPCs to a more active state toward differentiation, which may contribute to pathologic vascular formation. Fenofibric acid, an active metabolite of fenofibrate, inhibited Wnt signaling and mitochondrial function in EPCs and decreased EPC numbers in Vldlr -/- mice. It also decreased mitochondrial biogenesis and reactive oxygen species production in Vldlr -/- EPCs, which may be responsible for its therapeutic effect on diabetic retinopathy. These findings demonstrated that Wnt signaling regulates EPC fate through metabolism, suggesting potential application of the EPC metabolic profile as predictor and therapeutic target for neovascular diseases. Stem Cells 2019;37:1331-1343.
Collapse
Affiliation(s)
- Yan Shao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjing Medical University Eye Hospital, Tianjin, China
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Willard Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Li-Jie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhi-Hui Zhang
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Manhong Xu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Juping Liu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao-Rong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjing Medical University Eye Hospital, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Wu Z, Zheng X, Meng L, Fang X, He Y, Li D, Zheng C, Zhang H. α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions. J Vasc Surg 2018; 67:1263-1273.e1. [DOI: 10.1016/j.jvs.2017.02.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
|
5
|
Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med 2017; 15:185. [PMID: 28859673 PMCID: PMC5580204 DOI: 10.1186/s12967-017-1280-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced levels of endothelial progenitor cells (EPCs) counts have been reported in diabetic mellitus (DM) patients and other diabetes-related disorder. EPCs are a circulating, bone marrow-derived cell population that appears to participate in vasculogenesis, angiogenesis and damage repair. These EPC may revert the damage caused in diabetic condition. We aim to identify several existing drugs and signaling molecule, which could alleviate or improve the diabetes condition via mobilizing and increasing EPC number as well as function. MAIN BODY Accumulated evidence suggests that dysregulation of EPC phenotype and function may be attributed to several signaling molecules and cytokines in DM patients. Hyperglycemia alone, through the overproduction of reactive oxygen species (ROS) via eNOS and NOX, can induce changes in gene expression and cellular behavior in diabetes. Furthermore, reports suggest that EPC telomere shortening via increased oxidative DNA damage may play an important role in the pathogenesis of coronary artery disease in diabetic patients. In this review, different type of EPC derived from different sources has been discussed along with cell-surface marker. The reduced number and immobilized EPC in diabetic condition have been mobilized for the therapeutic purpose via use of existing, and novel drugs have been discussed. Hence, evidence list of all types of drugs that have been reported to target the same pathway which affect EPC number and function in diabetes has been reviewed. Additionally, we highlight that proteins are critical in diabetes via polymorphism and inhibitor studies. Ultimately, a lucid pictorial explanation of diabetic and normal patient signaling pathways of the collected data have been presented in order to understand the complex signaling mystery underlying in the diseased and normal condition. CONCLUSION Finally, we conclude on eNOS-metformin-HSp90 signaling and its remedial effect for controlling the EPC to improve the diabetic condition for delaying diabetes-related complication. Altogether, the review gives a holistic overview about the elaborate therapeutic effect of EPC regulated by novel and existing drugs in diabetes and diabetes-related disorder.
Collapse
Affiliation(s)
- Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| |
Collapse
|
6
|
Song X, Yang B, Qiu F, Jia M, Fu G. High glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathway. Cell Biol Int 2017; 41:1146-1159. [PMID: 28786152 DOI: 10.1002/cbin.10833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoxiao Song
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Boyun Yang
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Fuyu Qiu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Minyue Jia
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Guosheng Fu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| |
Collapse
|
7
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
8
|
Qin Y, He YH, Hou N, Zhang GS, Cai Y, Zhang GP, Xiao Q, He LS, Li SJ, Yi Q, Luo JD. Sonic hedgehog improves ischemia-induced neovascularization by enhancing endothelial progenitor cell function in type 1 diabetes. Mol Cell Endocrinol 2016; 423:30-9. [PMID: 26773732 DOI: 10.1016/j.mce.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/28/2022]
Abstract
The Sonic hedgehog (Shh) pathway is downregulated in type 1 diabetes, and it has been reported that augmentation of this pathway may alleviate diabetic complications. However, the cellular mechanisms underlying these protective effects are poorly understood. Recent studies indicate that impaired function of endothelial progenitor cells (EPCs) may contribute to cardiovascular problems in diabetes. We hypothesized that impaired Shh signaling contribute to endothelial progenitor cell dysfunction and that activating the Shh signaling pathway may rescue EPC function and promote diabetic neovascularization. Adult male C57/B6 mice and streptozotocin (STZ)-induced type 1 diabetic mice were used. Gli1 and Ptc1 protein levels were reduced in EPCs from diabetic mice, indicating inhibition of the Shh signaling pathway. EPC migration, tube formation ability, and mobilization were impaired in diabetic mice compared with non-diabetic controls (p < 0.05 vs control), and all were improved by in vivo administration of the Shh pathway receptor agonist SAG (p < 0.05 vs diabetes). SAG significantly increased capillary density and blood perfusion in the ischemic hindlimbs of diabetic mice (p < 0.05 vs diabetes). The AKT activity was lower in EPCs from diabetic mice than those from non-diabetic controls (p < 0.05 vs control). This decreased AKT activity led to an increased GSK-3β activity and degradation of the Shh pathway transcription factor Gli1/Gli2. SAG significantly increased the activity of AKT in EPCs. Our data clearly demonstrate that an impaired Shh pathway mediated by the AKT/GSK-3β pathway can contribute to EPC dysfunction in diabetes and thus activating the Shh signaling pathway can restore both the number and function of EPCs and increase neovascularization in type 1 diabetic mice.
Collapse
Affiliation(s)
- Yuan Qin
- Guangzhou Institute of Venoms, Guangzhou Medical University, Guangzhou 510182, China
| | - Yan-Huan He
- Guangzhou Institute of Venoms, Guangzhou Medical University, Guangzhou 510182, China
| | - Ning Hou
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Gen-Shui Zhang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Yi Cai
- Guangzhou Institute of Venoms, Guangzhou Medical University, Guangzhou 510182, China
| | - Gui-Ping Zhang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Qing Xiao
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Li-Shan He
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Su-Juan Li
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Quan Yi
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China
| | - Jian-Dong Luo
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, China.
| |
Collapse
|
9
|
Damien P, Allan DS. Regenerative Therapy and Immune Modulation Using Umbilical Cord Blood-Derived Cells. Biol Blood Marrow Transplant 2015; 21:1545-54. [PMID: 26079441 DOI: 10.1016/j.bbmt.2015.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
Abstract
Since the first cord blood transplantation in 1988, umbilical cord blood has become an important option as a source of cells for hematopoietic transplantation. Beyond its role in regenerating the blood and immune systems to treat blood diseases and inherited metabolic disorders, the role of nonhematopoietic progenitor cells in cord blood has led to new and emerging uses of umbilical cord blood in regenerative therapy and immune modulation. In this review, we provide an update on the clinical and preclinical studies using cord blood-derived cells such as mesenchymal stromal cells, endothelial-like progenitor cells, and others. We also provide insight on the use of cord blood cells as vehicles for the delivery of therapeutic agents through gene therapy and microvesicle-associated strategies. Moreover, cord blood can provide essential reagents for regenerative applications. Clinical activity using cord blood cells is increasing rapidly and this review aims to provide an important update on the tremendous potential within this fast-moving field.
Collapse
Affiliation(s)
- Pauline Damien
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; Regenerative Medicine Program, Ottawa Hospital Research Unit, Ottawa, Ontario, Canada; Department of Medicine (Hematology), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Muniyappa R, Sowers JR. Glycogen synthase kinase-3β and cathepsin B in diabetic endothelial progenitor cell dysfunction: an old player finds a new partner. Diabetes 2014; 63:1194-7. [PMID: 24651804 PMCID: PMC3964509 DOI: 10.2337/db14-0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - James R. Sowers
- Department of Internal Medicine, Department of Medical Pharmacology and Physiology, and Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO
- Corresponding author: James R. Sowers,
| |
Collapse
|
11
|
ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:318714. [PMID: 24689035 PMCID: PMC3932294 DOI: 10.1155/2014/318714] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/28/2013] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS), traditionally viewed as toxic by-products that cause damage to biomolecules, now are clearly recognized as key modulators in a variety of biological processes and pathological states. The development and regulation of the cardiovascular system require orchestrated activities; Notch and Wnt/β-catenin signaling pathways are implicated in many aspects of them, including cardiomyocytes and smooth muscle cells survival, angiogenesis, progenitor cells recruitment and differentiation, arteriovenous specification, vascular cell migration, and cardiac remodelling. Several novel findings regarding the role of ROS in Notch and Wnt/β-catenin modulation prompted us to review their emerging function in the cardiovascular system during embryogenesis and postnatally.
Collapse
|